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ABSTRACT  
With the unprecedented increase in the size of genomic datasets, the quantification and protection of 
sensitive personal information is a vital issue to be addressed for protection of privacy.  In this paper, we 
present a comprehensive framework for quantification and analysis of sensitive information in the gene 
expression datasets. We present a general scenario where an adversary can utilize gene expression 
datasets in conjunction with expression quantitative loci, eQTL, datasets to correctly predict the 
genotypes of the eQTL variants to link two datasets and re-identify individuals. In the context of this re-
identification scenario, we first propose measures for studying the tradeoff between quantification of 
the leakage of individual identifying information and predictability of the eQTL variant genotypes. Next 
we present a general framework that consists of 3 steps for individual identification and utilize it on a 
representative dataset to show that significant fraction of individuals become vulnerable for 
identification. Finally, we present a simple genotype prediction method and utilize it in our framework 
to show in a simple practical setting that a significant fraction of the samples can be re-identified.  

1 BACKGROUND 
 [[Define sensitive information: Anything that the individuals do not want leaked]] 

The decreasing cost of DNA sequencing [1] has rendered a massive increase in the annual amount of 
high-dimensional personalized “–omic” data being generated [2]. Many large consortia, like GTex [3], 
ENCODE [4], 1000 Genomes [5], and TCGA [6], are generating large amount of high dimensional –omics 
datasets. Coupled with the generated data, the sophisticated analysis methods are being developed to 
discovery complex biological correlations between the molecular signatures and phenotypes, which can 
contain sensitive information about individuals like disease status. It is therefore necessary for the 
models for sharing these datasets to keep up with the analysis methods so as to control the leakage of 
the predictable sensitive information in each study.  

 [[Previous work: Homer, Schadt, Erlich, …]] 

Several previous studies have demonstrated the possibility of individual identification in different 
specific scenarios by exploiting different statistical and genomic attributes of the generated datasets. A 
review of breaches of genomic privacy can be found  [7]. In [8] authors propose a novel statistical 
analysis methodology for testing whether an individual is in a pool of samples, where only the allele 
frequencies are known. In [9], the authors identify the identities of several male participants of 1000 



Genomes [5] project by exploiting that the short tandem repeats on Y-chromosome can be used as an 
individual identifying biomarker. In [10], the authors demonstrate that one can build a model for 
predicting genotypes  for eQTLs  using gene expression levels and use the model to identify individuals 
with high accuracy.  

[[Previous approaches: Differential privacy, different types of attacks, model inversion attack, linking attack]] [[Genetic leakage protection: Several of these: De-identification based (removal of names), Encryption based, more complicated de-identification techniques (k-anonymization), differential privacy based (makes a very high compromise of utility for privacy’s sake). These are 
active fields of research.]] [[It has been shown previously that differential privacy formality, which is theoretically the most complete data protection scheme, for releasing genomic information may lead to very poor utility~\cite{XX,XX}. It is therefore necessary to analyze where the sensitive information exists in different datasets and how protection of the sensitive data affects data 
utility. To accomplish this, This study furthers the understanding of the predictable sensitive genetic information from gene expression datasets.]] 

In addition, different formalities have been proposed for protecting sensitive information. For example 
differential privacy [11] establishes bounds on the leakage on sensitive information in statistical 
databases. The main issue with this formality is that there is a stringent tradeoff between utility and 
privacy. Thus, it has been shown that differential privacy mechanisms can decrease the utility of the 
biological information [12]. In addition, homomorphic encryption [13], which enable performing 
operations on encrypted data directly, are possible approaches that can offer protection of sensitive 
information as the real data is never seen by the information processors. These approaches require from 
very high computational complexity and storage requirements for encrypted data. Another well-
established formality is k-anonymization [14]. In this formality, the released dataset is anonymized by 
different data perturbation techniques for ensuring that no combination of features in the dataset can 
be shared by less than k individuals. This approach, however, is computationally very high complexity 
with large features and usually not practical for high dimensional biomedical datasets. Several variants 
have been proposed that extend k-anonymity framework [15, 16]. As the size and nature of the 
biomedical datasets change, it is necessary to build analysis frameworks that can quantify the 
correlations between different data types that can lead to sensitive information leakage. 

In this paper, we are proposing metrics and an analysis framework for quantification of sensitive 
information in gene expression datasets that can be used for re-identification of individuals. The 
expression datasets generated by RNA-sequencing [17] can be utilized directly for identification of 
personal variants directly from the reads. This can, however, be easily remedied by removing the 
nucleotide information in the datasets [18] or by releasing the gene expression levels in the publicly 
accessible datasets. Another information that can be utilized for genotype identification from gene 
expression datasets is the expression quantitative trait loci (eQTLs) datasets. Each eQTL contains a 
common genetic variant and a gene expression such that the genotype of the variant is significantly 
correlated with the expression level of the gene. Each eQTL entry contains typically the strength of the 
correlation and a gradient information that tells which genotype is associated with higher or lower 
expression level. The eQTLs are especially useful since there are large eQTL datasets that are publicly 
available online. [[GTex Project eQTLs are accessible with gradient, significance information, and even the joint distribution of expression and genotypes]]For example, GTex project hosts approximately 30 million 
eQTLs whose gradient and significance information can be viewed freely through eQTL Browser [[\cite 
GTex Browser]].   

[[In this paper, we analyze identifiability of SNP genotypes and identifiability of individuals in the context of linking attacks. These are the most prevalent attacks that can affect the currently generated genomics datasets.]] 

We concentrate on the linking attack scenario. In this scenario, the attacker gains access to an 
expression dataset where the expression levels of participants are stored with sensitive information. The 
attacker also gains access to a genotype dataset where the genotypes of a set of individuals are stored 
with their identities. The aim of the attacker is to match the individuals in a gene expression dataset to 



individuals in a genotype dataset where each match enables the attacker to link the identity of an 
individual in the genotype dataset to the sensitive information in expression dataset.  

[[First, we present an analysis framework that formalizes and decomposes the analysis of genetic leakage in the context of linking attacks. Our framework decomposes the linking attack into 3 steps that we study in detail. -- We evaluate the incorporation of auxiliary information. This framework can be used for leakage analysis in the future studies. We finally present a practical 
attack for prediction of genotypes from gene expression levels.]] 

The paper is organized as follows: We first analyze the predictability of the SNPs and evaluate the 
tradeoff between the amount of identifying information recovered versus the predictability of the eQTLs 
using expression datasets. Next we present the 3 step individual identification framework and study 
different aspects of vulnerability using the framework. In the last section, we present a novel and simple 
but effective genotype prediction method, which can be employed in most scenarios, and use it in our 
framework. 

2 RESULTS 

2.1 Overview of the Privacy Breaching Scenario by Linking Attacks 
Figure 1a illustrates the privacy breaching scenario that is considered. In the context of breach, there are 
two datasets. First dataset contains gene expression levels and certain sensitive information (e.g., 
disease status) for 𝑛𝑒 individuals. The gene expression dataset is de-identified by removal of the names. 
This dataset is release for public access. The second dataset contains the genotypes and the identities 
for 𝑛𝑣 individuals. We assume that this dataset is released with restricted access. It should be noted that 
the number of individuals in genotype dataset is assumed to be larger than the number of individuals in 
expression dataset. The adversary gains access to both datasets and intends to identify the identities of 
each of the 𝑛𝑒 individuals in the gene expression dataset. For this, attacker predicts the genotypes of 
the variants for each individual in gene expression dataset and links the individuals in the expression 
dataset to the individuals in the genotype dataset. The linking process is basically comparison of the 
predicted genotypes for each individual and identifying the best matching individual. In the genotype 
prediction, the attacker concentrates on expression quantitative trait loci (eQTL) in the attack. The 
attacker aims at exploiting the correlation between the eQTL variant genotypes and eQTL gene 
expression levels for predicting eQTL variant genotypes with high accuracy. 

 [[We first present the notations]]     

Figure 1b illustrates the eQTL, expression, and genotype datasets. The eQTL dataset is composed of a list 
of gene-variant pairs such that the gene expression levels and variant genotypes are significantly 
correlated. We will denote the number of eQTL entries with 𝑛𝑞. The eQTL (gene) expression levels and 
eQTL (variant) genotypes are stored in 𝑛𝑞 × 𝑛𝑒 and 𝑛𝑞 × 𝑛𝑣 matrices 𝑒 and 𝑣, respectively, where 𝑛𝑒 
and 𝑛𝑣 denotes the number of individuals in gene expression dataset and individuals in genotype 
dataset.  𝑘𝑡ℎ row of 𝑒, 𝑒𝑘, contains the gene expression values for 𝑘𝑡ℎ eQTL entry and 𝑒𝑘,𝑗 represents 
the expression of the 𝑘𝑡ℎ gene for 𝑗𝑡ℎ individual. Similarly, 𝑘 row of 𝑣, 𝑣𝑘, contains the genotypes for 
𝑘𝑡ℎ eQTL variant and 𝑣𝑘,𝑗 represents the genotype (𝑣𝑘,𝑗 ϵ {0,1,2}) of 𝑘 variant for 𝑗𝑡ℎ individual.  We 
assume that the variant genotypes and gene expression levels for the 𝑘𝑡ℎ eQTL entry are distributed 
randomly over the samples in accordance with random variables (RV) which we denote with 𝐸𝑘 and 𝑉𝑘, 
respectively. As explained earlier, these random variables are correlated with each other. We denote 



the correlation with ρ(𝐸𝑘 ,𝑉𝑘). In most of the eQTL studies, the value of the correlation is reported in the 
eQTL dataset. The absolute value of ρ(𝐸𝑘 ,𝑉𝑘) indicates the strength of association between the eQTL 
genotype and the eQTL expression level. The sign of ρ(𝐸𝑘 ,𝑉𝑘) represents the direction of association, 
i.e., which genotype corresponds to higher expression and the magnitude represents the strength of the 
association. This forms the basis for correct predictability of the eQTL genotypes using eQTL expression 
expression levels: The homozygous genotypes associate with the extremes of the gene expression 
levels, i.e., the highest of the lowest levels of expression and the heterozygous genotypes associate with 
moderate levels of expression. Most of the eQTL studies utilize complicated linear models to identify 
this association between the genotypes and the gene expression levels.  

[[For generalization of the analysis, we assume that the attacker can predict with high certainty the posterior probabilities. Previous studies have presented different approaches for predicting a-posteriori probabilities of genotypes given gene expression levels.]]  

For generalization of the analysis, we assume that the attacker can utilize a prediction model that can 
estimate the a posteriori distribution of the eQTL genotypes given the eQTL expression levels, i.e.,  
𝑝(𝑉𝑘|𝐸𝑘). This allows us to quantify the individual identifying information and also analyze the fraction 
of individuals that are vulnerable to linking attack in different settings, without making any assumptions 
on the prediction model that is utilized by the attacker. 

2.2 Quantification of Tradeoff between Predictability of the SNP Genotypes 
and Individual Identification 

[[Predictability of the eQTL genotypes, individual identification information. This is the analysis where the attacker is to match with no database at hand by just predicting all the SNPs he chooses to predict.]] 

In the context of the linking attack introduced in Section 2.1, the attacker aims to correctly identify 𝑛𝑒 
individuals in the expression dataset among 𝑛𝑣 individuals in the genotype dataset. In order to identify 
an individual, the attacker should select a set of eQTLs that he believes he can predict correctly. Next, 
given the individual’s expression levels, the attacker should predict the genotypes for the selected eQTLs 
correctly such that the predicted set of genotypes are not shared by more than 1 individual, i.e., the 
predicted genotypes identify the individual. In other words, the frequency of the set of predicted 

genotypes for the selected eQTLs should be at most 1
𝑛𝑣

. We can rephrase this condition as following in 

information theoretic terms: If the attacker can reliably predict log2(𝑛𝑣) bits of information using the 
genotypes predicted from expression data for an individual, the individual is vulnerable. It should be 
noted that, assuming the independence of the genotypes for different eQTLs, we can decompose the 
quantity of individual identifying information that is leaked for a set of 𝑛 correctly predicted eQTL 
genotypes:  

𝐼𝐼𝐼({𝑉1 = 𝑔1,𝑉2 = 𝑔2, … ,𝑉𝑛 = 𝑔𝑛}) = −� log�𝑝(𝑉𝑘 = 𝑔𝑘)�
𝑛

𝑘=1

 

where 𝑉𝑘 is the kth  eQTL and 𝑔𝑘 is a specific genotype for the eQTL (Refer to Methods Section 3.1 for 
more details), 𝑝(𝑉𝑘 = 𝑔𝑘) denote the genotype frequency of 𝑔𝑘 within the population, and III denotes 
the total individual identifying information. Evaluating the above formula, III increases as the frequency 
of the variant’s genotype 𝑔𝑘 decreases. In other words, the more rare genotypes contribute higher to III 
compared to the more common ones. Thus, individual identifying information can be interpreted as a 



quantification of how rare the predicted genotypes are. The attacker aims to predict as many eQTLs as 
possible such that III for the predicted genotypes is at least log(𝑛𝑣).  

In order to maximize the amount of III, the attacker will aim at predicting as many eQTL genotypes 
correctly as possible. The (correct) predictability of the eQTL genotypes from expression levels, however, 
varies over the eQTL dataset as some of the eQTL genotypes are more highly correlated with the 
expression levels compared to others, given in |ρ(𝐸𝑘 ,𝑉𝑘)|. Thus, the attacker will try to select the eQTLs 
whose genotypes are the most correctly predictable to maximize III leakage. Although ρ(𝐸𝑘 ,𝑉𝑘) is a 
measure of predictability, it is computed differently in different studies. In addition, there is no easy way 
to combine these correlation values when we would like to estimate the predictability of multiple eQTL 
genotypes. In order to uniformly quantify predictability of the eQTL genotypes from expression levels, 
we use an information theoretic measure. We use the exponential of the entropy of the conditional 
distribution of genotype given gene expression level as a measure of predictability. Given the expression 
levels for  𝑗𝑡ℎ individual, we compute the predictability of the 𝑘𝑡ℎ eQTL genotypes as 

𝜋�𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗� = exp (−1 × 𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗)�����������

Randomness left in 𝑉𝑘
given 𝐸𝑘=𝑒𝑘,𝑗

)���������������������
Convert the entropy to 
average probability

 

where 𝜋 denotes the predictability of 𝑉𝑘 given the gene expression level 𝑒𝑘,𝑗. 𝜋 can be interpreted as 
the average probability that the attacker can correctly predict the eQTL genotype given the expression 
level. In the equation for 𝜋, the conditional entropy of the genotypes given the gene expression level is a 
measure for the randomness that is left in genotype distribution when the expression level is known. In 
the case of high predictability, the conditional entropy is close to 0, and there is little randomness left in 
the genotype distribution. Taking the exponential of negative of the entropy converts the entropy to 
average probability of correct prediction of the genotype. In the most predictable case (conditional 
entropy close to 0), 𝜋 is close to 1, indicating very high predictability. In order to extend the 
predictability measure to multiple of eQTLs, we use exponential of the negative of joint conditional 
entropy. (Refer to Methods Section 4.1 for more details). 

[[Say sth about the allele frequency, predictability, and information content: The eQTLs are common variants, thus are not very informative]] 

At this point, it is useful to note that there is a natural tradeoff between the correct predictability of 
eQTLs and the leaking individual identifying information. For example, the eQTLs that have the highest 
individual identifying information, i.e., high −log�𝑝(𝑉𝑘 = 𝑔𝑘)�, must have small genotype frequency in 
the population. The low frequency genotypes, however, are most likely not highly correlated with the 
gene expression levels, i.e., 𝜋 is smaller for those variants. 

As discussed earlier, the attacker will aim at predicting the largest number of eQTL genotypes given the  
expression levels. For this, we assume the attacker will sort the eQTLs with respect to absolute 
correlation then predict the eQTL genotypes starting from the first eQTL. Within this scenario, in order 
to evaluate the tradeoff between the identifying information of the top predictable eQTLs and their 
predictabilities, we plotted average III versus average 𝜋 in Fig 2.  For this, we first sorted the eQTLs with 



respect to the reported |ρ(𝐸𝑘 ,𝑉𝑘)|. Then for top n=1,2,3,…,20 eQTLs, we estimated mean 𝜋 and mean III 
over all the samples. We then plotted mean 𝜋 versus mean III for each n which is shown in Fig 2a. There 
is significant leakage of III at 20% average predictability, there is approximately 7 bits of leakage and at 
5% predictability, there is around 11 bits of leakage, which is enough to identify, on average, all the 
individuals in the dataset. (At 12.4% predictability, the leakage is approximately 9 bits for 6 top eQTLs.) 
Figure 2b and 2c also shows the average leakage for the randomized eQTL dataset where the genes and 
eQTLs are shuffled to generate a background model. The leakage is significantly smaller compared to the 
original eQTL dataset; at an average predictability of 12.4%, the average leakage is approximately 3.5 
bits. These results show the extent of leakage of identifying information from the gene expression 
datasets. 

2.3 A Generalized Framework for Analysis of Individual Identification 
[[We decompose the linking attack into 3-steps to study different variations and parameterizations of the linking attack.]] 

Following the results in the previous section, we present a 3 step framework for individual identification. 
Figure 3a summarizes the steps in the individual identification for each individual. The input is the gene 
expression levels for jth individual in the expression dataset, 𝑒𝑗. The aim of the attacker is correctly 
identifying each of the 𝑛𝑒 individuals in the expression dataset in genotype dataset. In the first step, the 
attacker selects the eQTLs (among 𝑛𝑞 eQTLs) that will be used in linking jth individual. The selection of 
eQTLs can be based on different criteria. As described in the previous section, the most accessible 
criterion is selecting the eQTLs for which absolute value of the reported correlation coefficient, 
|ρ(𝐸𝑘 ,𝑉𝑘)|, is greater than a predefined threshold. In our analysis, we evaluate the effect of changing 
correlation coefficient. Another criterion is to use the estimated conditional entropy of the genotype 
given the gene expression level, which is a measure of the predictability of the eQTL genotype. The 
second step is genotype prediction for the selected eQTLs using a prediction model. For general 
applicability of our analysis we are assuming that the attacker’s prediction model can reliably construct 
the posterior probability distribution of the genotypes given the gene expression levels. The attacker 
then uses the posterior probabilities of the genotypes to identify the maximum a posteriori (MAP) 
genotype for each eQTL. In this prediction, the attacker assigns the genotype that has the highest a 
posteriori probability given the expression level (Refer to Methods Section 4.3). The third and final step 
of individual identification is comparison of the predicted genotypes to the genotypes of the  𝑛𝑣 
individuals in genotype dataset to identify the individual that matches best to the predicted genotypes. 
In this step,  the attacker links the predicted genotypes to the individual in the genotype dataset with 
the smallest number of mismatches compared to the predicted genotypes (Refer to Methods Section 
4.4). 

2.3.1 Individual Identification Accuracy 
 [[We assume that the attacker selects the eQTLs using 2 different criteria: (1) Absolute value of the gradient of correlation reported in the eQTL resource, (2) Estimated predictability of the genotype: Entropy of the conditional distribution of genotypes for each individual]] 

We assume that the attacker uses the absolute value of the reported correlation between the variant 
genotypes and gene expression levels to select the eQTLs. Fig SXX shows the distribution of the absolute 
correlation levels for the eQTL dataset. The genotypes for the selected eQTLs are predicted using MAP 
prediction (Refer to Methods Section 4.3). Figure 4a shows the number of selected eQTLs and the 
fraction correctly predicted MAP genotypes with changing absolute correlation thresholds.  



[[Fraction of vulnerable individuals]] 

Using the list of predicted eQTL genotypes selected at each absolute correlation cutoff, the attacker 
performs the 3rd step in the attack and links the predicted genotypes to the genotype dataset to identify 
individuals (Refer to Methods Section 4.4). Figure 5a shows the fraction of vulnerable individuals. The 
fraction of vulnerable individuals increase as the absolute correlation threshold increases and fraction is 
maximized at around 0.35. At this value, 95% of the individuals are vulnerable. This can be explained by 
the increase in identifying information leakage as the accuracy of the predicted genotypes increase 
while there is a balancing decrease in the identifying information leakage with decreasing number of 

eQTL genotypes predicted. [[This illustrates the tradeoff having more correct eQTLs 
versus the accuracy of predictions]] 

 [[Auxiliary Information: Gender and/or Population]] 

We also evaluate the case when the attacker gains access to auxiliary information. As the sources of 
auxiliary information, we use the gender and population information that is available for all the 
participants of 1000 Genomes Project on the project web site. We assume that the attacker either gains 
access to or predicts the gender and/or the population of the individuals and uses the information in the 
3rd step of the attack (Refer to Methods Section 4.4). Figure 5a shows the fraction of vulnerable when 
the auxiliary information is available. When the auxiliary information is available, more than 95% of the 
individuals are vulnerable to identification for all the eQTL selections up to when the absolute 
correlation threshold is 0.6. These results show that a significant fraction of individuals are vulnerable 
for most of the correlation thresholds that the attacker can utilize. 

2.4 Anonymization 
[[How many eQTL associations should be removed to make vulnerability small?]] 

An important aspect of analysis of privacy is anonymization. Here we assess how much the gene 
expression dataset should be anonymized for ensuring that there are no vulnerable individuals. We 
assume that the anonymization of a gene expression level is performed by censoring, i.e., replacing the 
reported value for gene expression level with ‘Not Available’ value in the dataset. After an eQTL gene 
expression level is anonymized, we assume that the attacker cannot reliably estimate the eQTL 
genotype, which decreases the chance that the individual is vulnerable. Given a vulnerable individual, it 
is useful to estimate the minimum number of genes expression levels to be anonymized to make the 
individual non-vulnerable. For this, we compute the genotype distance for all the individuals then sort 
the distances in increasing order and store it in a list. The number of expression levels to be anonymized 
is then given by following: 

Number expression levels to be anonymized = Genotype distance of the 2nd closest Individual 

− Genotype distance of 1st closest Individual 
 [[How do we anonymize gene expression levels: Just remove the expression level]] 

Figure XX shows the average number of expression values to be anonymized per individual with 
different absolute correlation thresholds. It can be seen that the total number of expression levels to be 
anonymized is maximum for |ρ(𝐸𝑘 ,𝑉𝑘)|, i.e., when all the eQTLs are utilized for individual identification. 



[[Auxiliary information?]] 

We also evaluated the number of gene expression levels to be anonymized when auxiliary information is 
available. [[TBA]] 

[[When those eQTLs are removed, how are the correlations affected?]] 

In order to evaluate how the biological utility of the eQTLs are affected after the expression levels are 
anonymized, we computed the spearman correlations of the eQTL genotypes and the associated gene 
expression levels. Fig XX shows the distribution of the absolute correlations between genotypes and 
gene expression levels before and after the gene expression dataset is anonymized. It can be seen that 
there is a significant decrease in the correlation levels of a significant number of the eQTLs.  

[[This is probably just an underestimate of how much we need to remove before 
anonymization]] 

2.5 Individual Identification with Extremity Attack 
In previous sections, we presented quantification of leakage in individual identifying information and a 
general framework for analysis of vulnerability and studied the number of expression levels that should 
be anonymized to decrease vulnerability. In this section, we propose a simple genotype prediction 
methodology, extremity attack, and demonstrate the extent vulnerability when the attack is utilized in 
the individual identification framework. 

Extremity attack utilizes a statistic we termed 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦, which quantifies how extreme an individual’s 
gene expression level is among the expression levels of all the samples. For the gene expression level, 
𝑒𝑘, 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 is defined as: 

𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒𝑘) =
rank of 𝑒𝑘in {𝑒1, 𝑒2, … , 𝑒𝑛𝑒}

𝑛𝑒
− 0.5 

where 𝑒𝑘 is the expression level of 𝑘th individual. Extremity is bounded between -0.5 and 0.5. Figure SXX 
shows the mean absolute extremity distribution of all the gene expression levels for all the individuals. 
The average absolute extremity per individual is around 0.25. 

Figure XX illustrates the extremity attack. Extremity attack utilizes the fact that the more extreme gene 
expression levels most likely coincide with one of the extreme genotypes, i.e., homozygous genotypes 
(Refer to Methods Section 4.7). For example, if the gradient of association between eQTL genotype and 
expression levels is positive, the individuals that have high positive extremity are most likely to have 
genotype value of 2 and the individuals with high negative extremity are most likely to have eQTL 
genotype value of 0 and vice versa when the gradient is negative. One aspect of the extremity attack is 
that it predicts only homozygous (i.e., most extreme) genotypes. Figure XX shows the accuracy of 
genotypes predictions with extremity attack. As expected the accuracy of genotype predictions increase 
with increasing correlation threshold. 

We next used the extremity based prediction in the individual identification framework (Fig 2). Fig XX 
shows the fraction of vulnerable individuals. We utilized the correlation based eQTL selection in step 1, 



then extremity based genotype prediction in step 2. In step 3 the individual is assigned as the individual 
whose genotype matches closest to the predicted genotypes. More than 95% of the individuals are 
vulnerable for most of the parameter selections. In addition, when the gender and/or population 
information is present as auxiliary information (red and green colored plots), the fraction of vulnerable 
individuals increases to 100% for most of the eQTL selections. These results suggest that extremity 
based linking attack, although technically simple, can be utilized to generate a significant amount of 
vulnerability. 

3 CONCLUSION AND DISCUSSION 
In this paper we present a framework for quantification and analysis of sensitive individual identifying 
information leakage from the gene expression datasets. The premise of sharing genomic information is 
that there is always an amount of leakage in the sensitive information. We believe that this 
quantification methodology can be utilized for more extensive analysis of the leakage in sensitive 
information in the genomic datasets.  

The predictability vs III-leakage tradeoff analysis that we performed can be generalized in two ways in 
future studies: First, the information theoretic measures that we proposed for measuring predictability 
versus the III leakage can be utilized for analyzing the tradeoff in other biomedical datasets where 
correlations can be exploited in linking attacks. Second, the analysis that we performed can be used to 
extrapolate the number of vulnerable individuals in a large dataset at different predictability levels. For 
example, in Figure XX, at 5% predictability level there is 11 bits of III leakage, which can identify on 
average 2000 individuals. At 1% predictability, there is around 18 bits of III, which can identify on 
average approximately 64000 individuals. Depending on the privacy leakage that can be tolerated, the 
predictability versus III leakage can be utilized to propose new metrics for quantifying the risk of 
individual identification. 

 [[How does this framework compare to other formalities? For example differential privacy? Differential privacy is about release mechanisms in statistical databases. Firstly, our analysis is about release of datasets. It is similar but differential privacy does not enable quantification of the leakage.]] 

 [[There is also utility satisfying differential privacy: Our study is useful for understanding which utility to hide and which to reveal.]] 

Compared to other formalities, our study aims more to characterize the leakage of individual identifying 
information. Differential privacy formality, for example, aims at proposing release mechanisms for 
statistical databases where the mechanism guarantees that queries return results such that the 
probability of identifying a specific individual’s contribution to the result is vanishingly small. In order to 
maximize the utility of the biological data, it is, however, necessary to analyze the points of sensitive 
information leakage so that one can design the utility maximizing release mechanisms [19].  Our study 
contributes to quantifying the individual identifying information leakage. 

[[As the eQTL studies are done on larger and larger datasets, new (probably population specific) eQTLs are going to be identified which will increase leaking identifying information.]]  [[The leakage of individual identification from gene expression datasets is rather complicated to analyze: The quantification method that we presented here is an underestimation of the leakage since it 
utilizes perfect matching of the predicted genotypes to the individual genotypes. With increasing efforts to identify the correlation of the genetic variation to quantifiable phenotypes.]] [[External information: 1 bits of gender information can be easily predicted from ; how does this change vulnerability; this justifies the fact that we need “buffering” in anonymization to protect 
against unaccounted external information that may cause increased vulnerability.]] 

We also introduced a simple yet effective approach for identification of individuals. The approach 
utilizes extremity based genotype prediction. When employed in the individual identification 
framework, this simple approach renders a very significant number of individuals vulnerable. This 
illustrates the amount the viability of individual identification from gene expression datasets. 



4 METHODS 

4.1 Quantification of Individual Identifying Information and Predictability 
To quantify the individual identifying information, we use surprisal, measured in terms of self-
information of the genotypes: 

𝐼𝐼𝐼�𝑉𝑘 = 𝑔𝑘,𝑗� = 𝐼�𝑉𝑘 = 𝑔𝑘,𝑗� = −log (𝑝�𝑉𝑘 = 𝑔𝑘,𝑗�) 

where 𝑉𝑘 is an eQTL genotype RV and 𝑔 (𝑔𝜖{0,1,2}) is a specific genotype for 𝐺, 𝑝(𝐺 = 𝑔) is the 
probability (frequency) of the genotype in the sample set and 𝐼𝐼𝐼 denotes the individual identifying 
information.  Assessing this relation, the genotypes that have low frequencies have high identifying 
information, as expected. Given multiple eQTL genotypes, assuming that they are independent, the total 
individual identifying information is simply summation of those: 

𝐼𝐼𝐼�{𝑉1 = 𝑔1,𝑗,𝑉2 = 𝑔2,𝑗, … ,𝑉𝑁 = 𝑔𝑁,𝑗}� = −� log �𝑝�𝑉𝑘 = 𝑔𝑘,𝑗��
𝑁

𝑘=1

. 

 [[Predictability: Exponential of the conditional distribution given the gene expression levels]] 

We measure the predictability of eQTL genotypes using an entropy based measure. Given the genotype 
RV, 𝑉𝑘, and the correlated gene expression RV, 𝐸𝑘, 

𝜋(𝑉𝑘|𝐸𝑘 = 𝑒) = exp (−𝐻(𝑉𝑘|𝐸𝑘 = 𝑒)) 

where 𝜋 denotes the predictability of  𝑉(𝑙𝑖) given the gene expression level 𝑒, and 𝐻 denotes the entropy 
of 𝑉𝑘 given gene expression level 𝑒 for 𝐸𝑘 . The extension to multiple eQTLs is straightforward. For the 
j^th individual, given the expression levels  𝑒𝑘,𝑗 for all the eQTLs, the total predictability is computed as  

𝜋�{𝑉𝑘}, �𝐸𝑘 = 𝑒𝑘,𝑗�� = exp�𝐻�−{𝑉𝑘} | �𝐸𝑘 = 𝑒𝑘,𝑗��� 

= exp �−�𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗)
𝑘

� 

[[Cite and show that this measure is in [1/3,1] for one genotype. The interpretation of this measure is that the prediction process is converted to random guessing with uniform probability distribution where average correct prediction probability is \pi. This is the reciprocal of Shannon diversity; the average number of genotype predictions that you can randomly equally likely 
choose from.]] 

In addition, this measure is guaranteed to be between 0 and 1 such that 0 represents no predictability 
and 1 representing perfect predictability. The measure can be thought as mapping the prediction 
process to a uniform random guessing where the average correct prediction probability is measured by 
𝜋. 

4.2 Estimation of Genotype Entropy for Quantification of Predictability  
[[How did we estimate the genotype entropy and conditional specific entropies?]] 

[[We bin the expression values to log_2(N_i) different bins \cite{…}]] 



4.3 MAP (Maximum a-posteriori) Genotype Prediction 
[[Describe the binning and MAP selection of genotypes]] 

[[Must include SNP selection such that some of the genotypes are not assigned 
any genotype bc of the selection]] 

4.4 Linking of the Predicted Genotypes to Genotype Dataset 
Given a set of predicted eQTL genotypes for individual 𝑗, 𝑣�∙,𝑗 = {𝑣�𝑙,𝑗}, the attacker links the predicted 
genotypes to the individual whose genotypes have the smallest distance to the predicted genotypes: 

𝑝𝑟𝑒𝑑𝑗 = argmin
𝑎

{𝑑(𝑣�∙,𝑗,𝑣∙,𝑎)} . 

𝑝𝑟𝑒𝑑𝑗 denotes the index for the linked individual and 𝑑(𝑣�∙,𝑗,𝑣∙,𝑎) represents the distance between the 
predicted eQTL genotypes and the genotypes of the a^th individual: 

𝑑�𝑣�∙,𝑗, 𝑣∙,𝑎� = �(1 − 𝐼�𝑣�𝑘,𝑗, 𝑣𝑘,𝑗�)

𝑛𝑞

𝑘=1

 

where 𝐼(𝑣�𝑘,𝑗, 𝑣𝑘,𝑗) is the match indicator: 

𝐼�𝑣�𝑘,𝑗, 𝑣𝑘,𝑗� = �1 if 𝑣�𝑘,𝑗 = 𝑣𝑘,𝑗 
0 otherwise

 

Finally, 𝑗𝑡ℎ individual is vulnerable if 𝑝𝑟𝑒𝑑𝑗 = 𝑗. When auxiliary information is available, the attacker 
constrains the set of individuals while computing 𝑑�𝑣�∙,𝑗, 𝑣∙,𝑎� to the individuals with matching auxiliary 
information. For example, if the gender of the individual is known, the attacker excludes the individuals 
whose gender does not match while computing 𝑑�𝑣�∙,𝑗, 𝑣∙,𝑎�. This way the auxiliary information 
decreases the search space of the attacker. 

4.5 Extremity Attack 
[[Define the extremity attack: Correlation and extremity parameters]] 

4.6 Anonymization 
[[How many gene expression values should be anonymized on average so that closest match to the predicted genotypes is not the correct individual.]] 

Given that 𝑗𝑡ℎ individual is vulnerable; we would like to estimate (Results Section 2.4) the number of 
genes expression levels to be anonymized to make the individual non-vulnerable. For this, we compute 
the distances 𝑑(𝑣�∙,𝑗, 𝑣−,𝑎) for all the individuals then sort the distances in increasing order and store it in 
a list. Let 𝑑(𝑘)(𝑣�∙,𝑗) denote the number of mismatching genotypes for the k^th individual in the sorted 
list. The number of expression levels to be anonymized is then given by following: 

# genes to anonymize =  𝑑(1)�𝑣�∙,𝑗� −  𝑑(2)(𝑣�∙,𝑗) 



[[How do we anonymize gene expression levels: Just remove the expression 
level]] 

5 DATASETS 
[[GEUVADIS dataset, and eQTLs; 1000 genomes dataset]] 
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