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ABSTRACT

With the unprecedented increase in the size of genomic datasets, the quantificatioNand protection of

personanQfg OyLi iHadkissye to be addressed for protection of privacy. In this paper, we
ompreyt = 4@& tion and analysis of sensitive information in the gene

expression datasets. We preSe

sensitive

present a

datasets in conjunction with expgg

high-dimensional personalize ic” data being generated [2]. Many large consortia, like GTex [3],
ENCODE [4], 1000 Genomes [5], and TCGA [6], are generating large amount of high dimensional —omics
datasets. Coupled with the generated data, the sophisticated analysis methods are being developed to
discovery complex biological correlations between the molecular signatures and phenotypes, which can
contain sensitive information about individuals like disease status. It is therefore necessary for the
models for sharing these datasets to keep up with the analysis methods so as to control the leakage of

the predictable sensitive information in each study.

Several previous studies have demonstrated the possibility of individual identification in different
specific scenarios by exploiting different statistical and genomic attributes of the generated datasets. A
review of breaches of genomic privacy can be found [7]. In [8] authors propose a novel statistical
analysis methodology for testing whether an individual is in a pool of samples, where only the allele
frequencies are known. In [9], the authors identify the identities of several male participants of 1000



Genomes [5] project by exploiting that the short tandem repeats on Y-chromosome can be used as an
individual identifying biomarker. In [10], the authors demonstrate that one can build a model for

predicting genotypes for eQTLs using gene expression levels and use the modg sqividuals

differential privacy [11] estapl resauagds on the leakage on sensitive information in statistical
databases. The main issue Wl. that there is a stringent tradeoff between utility and
privacy. Thus, it has been showsthat diffefential privacy mechanisms ca(decrease the utility of the
biological information [12]. In addition, homomorphic encryption [13], which enable performing
operations on encrypted data directly, are possible approaches that can offer protection of sensitive
information as the real data is never seen by the information processors. These approaches require from
very high computational complexity and storage requirements for encrypted data. Another well-
established formality is k-anonymization [14]. In this formality, the released dataset is anonymized by
different data perturbation techniques for ensuring that no combination of features in the dataset can
be shared by less than k individuals. This approach, however, is computationally very high complexity
with large features and usually not practical for high dimensional biomedical datasets. Several variants
have been proposed that extend k-anonymity framework [15, 16]. As the size and nature of the
biomedical datasets change, it is necessary to build analysis frameworks that can quantify the
correlations between different data types that can lead to sensitive information leakage.

In this paper, we are proposing metrics and an analysis framework for quantification of sensitive
information in gene expression datasets that can be used for re-identification of individuals. The
expression datasets generated by RNA-sequencing [17] can be utilized directly for identification of
personal variants directly from the reads. This can, however, be easily remedied by removing the
nucleotide information in the datasets [18] or by releasing the gene expression levels in the publicly
accessible datasets. Another information that can be utilized for genotype identification from gene
expression datasets is the expression quantitative trait loci (eQTLs) datasets. Each eQTL contains a
common genetic variant and a gene expression such that the genotype of the variant is significantly
correlated with the expression level of the gene. Each eQTL entry contains typically the strength of the
correlation and a gradient information that tells which genotype is associated with higher or lower
expression level. The eQTLs are especially useful since there are large eQTL datasets that are publicly
available online. For example, GTex project hosts approximately 30 million
eQTLs whose gradient and significance information can be viewed freely through eQTL Browser [[\cite
GTex Browser]].

We concentrate on the linking attack scenario. In this scenario, the attacker gains access to an
expression dataset where the expression levels of participants are stored with sensitive information. The
attacker also gains access to a genotype dataset where the genotypes of a set of individuals are stored
with their identities. The aim of the attacker is to match the individuals in a gene expression dataset to



individuals in a genotype dataset where each match enables the attacker to link the identity of an
individual in the genotype dataset to the sensitive information in expression dataset.

The paper is organized as follows: We first analyze the predictability of the SNPs and evaluate the
tradeoff between the amount of identifying information recovered versus the predictability of the eQTLs
using expression datasets. Next we present the 3 step individual identification framework and study
different aspects of vulnerability using the framework. In the last section, we present a novel and simple
but effective genotype prediction method, which can be employed in most scenarios, and use it in our
framework.

2 RESULTS W
B

2.1 Overview of the Privacy Breachi
Figure 1a illustrates the privacy breaching sc

enario by Linking Attacks

ario that is considered. In the context of breach, there are
two datasets. First dataset contains gene gxpression levels and certain sensitive information (e.g.,
disease status) for n, individuals. The gghe expression dataset is de-identified by removal of the names.
This dataset is release for public accesy. The second dataset contains the genotypes and the identities
for n, individuals. We assume that this dataset is released with restricted access. It should be noted that
the number of individuals in genotype dataset is assumed to be larger than the number of individuals in
expression dataset. The adversary gains access to both datasets and intends to identify the identities of
each of the n, individuals in the gene expression dataset. For this, attacker predicts the genotypes of
the variants for each individual in gene expression dataset and links the individuals in the expression
dataset to the individuals in the genotype dataset. The linking process is basically comparison of the
predicted genotypes for each individual and identifying the best matching individual. In the genotype
prediction, the attacker concentrates on expression quantitative trait loci (eQTL) in the attack. The
attacker aims at exploiting the correlation between the eQTL variant genotypes and eQTL gene
expression levels for predicting eQTL variant genotypes with high accuracy.

Figure 1b illustrates the eQTL, expression, and genotype datasets. The eQTL dataset is composed of a list
of gene-variant pairs such that the gene expression levels and variant genotypes are significantly
correlated. We will denote the number of eQTL entries with n,. The eQTL (gene) expression levels and
eQTL (variant) genotypes are stored in n, X n, and n, X n,, matrices e and v, respectively, where n,
and n, denotes the number of individuals in gene expression dataset and individuals in genotype
dataset. k" row of e, ej,, contains the gene expression values for kt" eQTL entry and ey,j represents
the expression of the k' gene for jt* individual. Similarly, k row of v, v, contains the genotypes for
kt" eQTL variant and vy, j represents the genotype (v ; €{0,1,2}) of k variant for jt" individual. We
assume that the variant genotypes and gene expression levels for the kt"* eQTL entry are distributed
randomly over the samples in accordance with random variables (RV) which we denote with E}, and V¢,
respectively. As explained earlier, these random variables are correlated with each other. We denote



the correlation with p(Ey, V). In most of the eQTL studies, the value of the correlation is reported in the
eQTL dataset. The absolute value of p(Ey, V;) indicates the strength of association between the eQTL
genotype and the eQTL expression level. The sign of p(Ey, Vi) represents the direction of association,
i.e., which genotype corresponds to higher expression and the magnitude represents the strength of the
association. This forms the basis for correct predictability of the eQTL genotypes using eQTL expression
expression levels: The homozygous genotypes associate with the extremes of the gene expression

levels, i.e., the highest of the lowest levels of expression and the heterozygous genotypes associate with
moderate levels of expression. Most of the eQTL studies utilize complicated linear models to identify
this association between the genotypes and the gene expression levels.

For generalization of the analysis, we assume that the attacker can utilize a prediction model that can
estimate the a posteriori distribution of the eQTL genotypes given the eQTL expression levels, i.e.,
p(Vi|Ey). This allows us to quantify the individual identifying information and also analyze the fraction
of individuals that are vulnerable to linking attack in different settings, without making any assumptions
on the prediction model that is utilized by the attacker.

2.2 Quantification of Tradeoff between Predictability of the SNP Genotypes
and Individual Identification

In the context of the linking attack introduced in Section 2.1, the attacker aims to correctly identify n, \/
individuals in the expression dataset among n,, individuals in the genotype dataset. In order to identify

an individual, the attacker should select a set of eQTLs that he believes he can predict correctly. Next,

given the individual’s expression levels, the attacker should predict the genotypes for the selected eQTLs

correctly such that the predicted set of genotypes are not shared by more than 1 individual, i.e., the

predicted genotypes identify the individual. In other words, the frequency of the set of predicted

genotypes for the selected eQTLs should be at most ni We can rephrase this condition as following in

v

information theoretic terms: If the attacker can reliably predict log,(n,,) bits of information using the -
genotypes predicted from expression data for an individual, the individual is vulnerable. It should be

noted that, assuming the independence of the genotypes for different eQTLs, we can decompose the

quantity of individual identifying information that is leaked for a set of n correctly predicted eQTL [\lg \Q

genotypes:
. (0 Af
92.---,‘/;1=gn})=—Zlog( \J \[< 8

more i W € genotype frequency of g, within the population, and /// denotes
the total individUusteerrtitying information. Evaluating the above formula, /ll increases as the frequency

of the variant’s genotype g; decreases. In other words, the more rare genotypes contribute higher to /Il

compared to the more common ones. Thus, individual identifying information can be interpreted as a



guantification of how rare the predicted genotypes are. The attacker aims to predict as many eQTLs as
possible such that /Il for the predicted genotypes is at least log(n,,).

In order to maximize the amount of ///, the attacker will aim at predicting as many eQTL genotypes
correctly as possible. The (correct) predictability of the eQTL genotypes from expression levels, however,
varies over the eQTL dataset as some of the eQTL genotypes are more highly correlated with #&
expression levels compared to others, given in |p(Ek, Vi.)|- Thus, the attacker will try to select the eQTLs

whose genotypes are the mo Q_maximize /Il Ieakage AIthough p(Ek, Vi)isa

we use annformation th

gbretic measure. We use the exponential of the entropy of the conditional
distributiof of genotyp€ given gene expression level as a measure of predictability. Given the expression

levels for ual, we compute the predictability of the k" eQTL genotypes as

Randomness left in V,
given Ex=ey,j
————
(VielEx = ek,j) =exp(—1 x H(Vi|Ex = ey ) )

Convert the entropy to
average probability

where 7 _denotes the predictability of V; given the gene expression level e ;. T can be interpreted as

the afrevage probability T

levAl. In the equation for 1, the conditional entropy of the genotypes given the gene expression level is a
geasure for the randomness that is left in genotype distribution when the expression level is known. In

at the attacker can correctly predict the eQTL genotype given the expression

the case of high predictability, the conditional entropy is close to 0, and there is little randomness left in
.< the genotype distribution. Taking the exponential of negative of the entropy converts the entropy to

average probability of correct prediction of the genotype. In the most predictable case (conditional
entropy close to 0), 7 is close to 1, indicating very high predictability. In order to extend the
predictability measure to multiple of eQTLs, we use exponential of the negative of joint conditional
entropy. (Refer to Methods Section 4.1 for more details).

At this point, it is useful to note that there is a natural tradeoff between the correct predictability of
eQTLs and the leaking individual identifying information. For example, the eQTLs that have the highest
individual identifying information, i.e., high —log(p(Vk = gk)), must have small genotype frequency in
the population. The low frequency genotypes, however, are most likely not highly correlated with the
gene expression levels, i.e.,  is smaller for those variants.

As discussed earlier, the attacker will aim at predicting the largest number of eQTL genotypes given the
expression levels. For this, we assume the attacker will sort the eQTLs with respect to absolute
correlation then predict the eQTL genotypes starting from the first eQTL. Within this scenario, in order
to evaluate the tradeoff between the identifying information of the top predictable eQTLs and their
predictabilities, we plotted average //l versus average  in Fig 2. For this, we first sorted the eQTLs with



respect to the reported |p(Ey, Vi )|. Then for top n=1,2,3,...,20 eQTLs, we estimated mean 7 and mean ///
over all the samples. We then plotted mean i versus mean I/l for each n which is shown in Fig 2a. There

is significant leakage of /Il at 20% ere is apprgximately 7 bits of leakage and at

5% predictability, there is arount$i=s v is enough to identify, on average, all the
individuals in the dataset. (At 12.4% predlctab|l|t the leakage is approximately 9 bits for 6 top eQTLs.)
Figure 2b and 2c also shows the average leakagé for the randomized eQTL dataset where the genes and
eQTLs are shuffled to generate a background/model. The leakage is significantly smaller compared to the
original eQTL dataset; at an average predigfability of 12.4%, the average leakage is approximately 3.5

bits. These results show the extent of ledkage of identifying information from the gene expression

GRAMMAA

2.3 A Generalized Framework for Analysis of Individual Identification

| ov A

resent a 3 step fr\Z‘rework for individual identification.

datasets.

xpression dataset, e;. The aim of the attacker is correctly

the expression dataset in genotype dataset. In the first step, the
7 €QTLs) that will be used in linking j*" individual. The selection of
eQTLs can be based on different criteria. As described in the previous section, the most accessible
criterion is selecting the eQTLs for which absolute value of the reported correlation coefficient,

|p(Ey, Vi)|, is greater than a predefined threshold. In our analysis, we evaluate the effect of changing
correlation coefficient.

The
second step is genotype prediction for the selected eQTLs using a prediction model. For general
applicability of our analysis we are assuming that the attacker’s prediction model can reliably construct
the posterior probability distribution of the genotypes given the gene expression levels. The attacker
then uses the posterior probabilities of the genotypes to identify the maximum a posteriori (MAP)
genotype for each eQTL. In this prediction, the attacker assigns the genotype that has the highest a
posteriori probability given the expression level (Refer to Methods Section 4.3). The third and final step
of individual identification is comparison of the predicted genotypes to the genotypes of the n,,
individuals in genotype dataset to identify the individual that matches best to the predicted genotypes.
In this step, the attacker links the predicted genotypes to the individual in the genotype dataset with
the smallest number of mismatches compared to the predicted genotypes (Refer to Methods Section
4.4).

2.3.1 Individual Identification Accuracy

We assume that the attacker uses the absolute value of the reported correlation between the variant
genotypes and gene expression levels to select the eQTLs. Fig SXX shows the distribution of the absolute
correlation levels for the eQTL dataset. The genotypes for the selected eQTLs are predicted using MAP
prediction (Refer to Methods Section 4.3). Figure 4a shows the number of selected eQTLs and the
fraction correctly predicted MAP genotypes with changing absolute correlation thresholds.



individuals (Refer to Methods Section 4727:
fraction of vulnerable individuals increase as the absolute correlation threshold increases and fraction is t
maximized at around 0.35. At this value, 95% of the individuals are vulnerable. This can be explained by
the increase in identifying information leakage as the accuracy of the predicted genotypes increase

while there is a balancing decrease in the identifying information leakage with decreasing number of

eQTL genotyp?s predicted. [[This illustrates the tradeoff having more correct eQTLs

versus the accuracy of predictions]] ‘\/\ \6\]

We also evaluate the case when the attacker gains access to auxiliary information. As the sources of

auxiliary information, we use the gender and population information that is available for all the %
participants of 1000 Genomes Project on the project web site. We assume that the attacker either gains
access to or predicts the gender and/or the population of the individuals and uses the information in the

3" step of the attack (Refer to Methods Section 4.4). Figure 5a shows the fraction of vulnerable when

the auxiliary information is available. When the auxiliary information is available, more than 95% of the
individuals are vulnerable to identification for all the eQTL selections up to when the absolute

correlation threshold is 0.6. These results show that a significant fraction of individuals are vulnerable

for most of the correlation thresholds that the attacker can utilize. ]

.

2.4 Anonymization

An important aspect of analysis of privacy is anonymization. Here we assess how much the gene
expression dataset should be anonymized for ensuring that there are no vulnerable individuals. We
assume that the anonymization of a gene expression level is performed by censoring, i.e., replacing the
reported value for gene expression level with ‘Not Available’ value in the dataset. After an eQTL gene
expression level is anonymized, we assume that the attacker cannot reliably estimate the eQTL
genotype, which decreases the chance that the individual is vulnerable. Given a vulnerable individual, it
is useful to estimate the minimum number of genes expression levels to be anonymized to make the
individual non-vulnerable. For this, we compute the genotype distance for all the individuals then sort
the distances in increasing order and store it in a list. The number of expression levels to be anonymized
is then given by following:

Number expression levels to be anonymized = Genotype distance of the 2" closest Indivi

— Genotype distance of 15 closest Individual

Figure XX shows the average number of expression values to be anonymized per j
different absolute correlation thresholds. It can be seen that the total numbgrof expression levels to be
ed for |nd|V|duaI |dent|f|cat|o

e*i C”ﬂ d

anonymized is maximum for |p(Ey, V)|, i.e., when all the eQTLs are uti)j
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We also evaluated the number of gene expression levels to be anonymized when auxiliary information is
available. [[TBA]]

In order to evaluate how the biological utility of the eQTLs are affected after the expression levels are
anonymized, we computed the spearman correlations of the eQTL genotypes and the associated gene
pression levels. Fig XX shows the distribution of the absolute correlations between genotypes and
gene expression levels before and after the gene expression dataset is anonymized. It can be seen that

thege is g significant decrease in the correlation levels of a significant number of the eQTLs.

anonymization]]

2.5 Individual Identification with Extremity Attack

methodology, extremity attack, and demonstrate the extent vulnerability when the attack is utilized in
the individual identification framework.

Extremity attack utilizes a statistic we termed extremity, which quantifies how extreme an individual’s
gene expression level is among the expression levels of all the samples. For the gene expression level,
ey, extremity is defined as:

rank of exin {ey, 5, ..., ep} e

extremity(ey) =
ne
where ey, is the gxpression level of k™ individual. Extremity is bounded between -0.5 and 0.5. Figure SXX
shows the mean absolute extremity distribution of all the gene expression levels for all the individuals.
The average absolute extremity per individual is around 0.25.

Figure XX illustrates the extremity attack. Extre.mity attack utilizes the fact that the more extreme gene
expression levels most likely coincide with one of the extreme genotypes, i.e., homozygous genotypes
(Refer to Methods Section 4.7). For example, if the gradient of association between eQTL genotype and
expression levels is positive, the individuals that have high positive extremity are most likely to have
genotype value of 2 and the individuals with high negative extremity are most likely to have eQTL
genotype value of 0 and vice versa when the gradient is negative. One aspect of the extremity attack is
that it predicts only homozygous (i.e., most extreme) genotypes. Figure XX shows the accuracy of
genotypes predictions with extremity attack. As expected the accuracy of genotype predictions increase
with increasing correlation threshold.

We next used the extremity based prediction in the individual identification framework (Fig 2). Fig XX
shows the fraction of vulnerable individuals. We utilized the correlation based eQTL selection in step 1,
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notype prediction in step 2. In step 3 the individual is assigned as the individual
genotypes. More than 95% of the individuals are

who ew-\atches closest to
g‘“ﬁﬁx of most of the parameter selections. In addition, when the gender and/or population

information is present as auxiliary information (red and green colored plots), the fraction of vulnerable
individuals increases to 100% for most of the eQTL selections. These results suggest that extremity
based linking attack, although technically simple, can be utilized to generate a significant amount of
vulnerability.

3 CONCLUSION AND DISCUSSION

In this paper we present a framework for quantification and analysis of sensitive individual identifying
information leakage from the gene expression datasets. The premise of sharing genomic information is
that there is always an amount of leakage in the sensitive information. We believe that this
guantification methodology can be utilized for more extensive analysis of the leakage in sensitive
information in the genomic datasets.

The predictability vs lll-leakage tradeoff analysis that we performed can be generalized in two ways in
future studies: First, the information theoretic measures that we proposed for measuring predictability
versus the /Il leakage can be utilized for analyzing the tradeoff in other biomedical datasets where
correlations can be exploited in linking attacks. Second, the analysis that we performed can be used to
extrapolate the number of vulnerable individuals in a large dataset at different predictability levels. For
example, in Figure XX, at 5% predictability level there is 11 bits of /Il leakage, which can identify on
average 2000 individuals. At 1% predictability, there is around 18 bits of ///, which can identify on
average approximately 64000 individuals. Depending on the privacy leakage that can be tolerated, the
predictability versus /Il leakage can be utilized to propose new metrics for quantifying the risk of
individual identification.

Compared to other formalities, our study aims more to characterize the leakage of individual identifying
information. Differential privacy formality, for example, aims at proposing release mechanisms for
statistical databases where the mechanism guarantees that queries return results such that the
probability of identifying a specific individual’s contribution to the result is vanishingly small. In order to
maximize the utility of the biological data, it is, however, necessary to analyze the points of sensitive
information leakage so that one can design the utility maximizing release mechanisms [19]. Our study
contributes to quantifying the individual identifying information leakage.

We also introduced a simple yet effective approach for identification of individuals. The approach
utilizes extremity based genotype prediction. When employed in the individual identification
framework, this simple approach renders a very significant number of individuals vulnerable. This
illustrates the amount the viability of individual identification from gene expression datasets.



4 METHODS

4.1 Quantification of Individual Identifying Information and Predictability
To quantify the individual identifying information, we use surprisal, measured in terms of self-
information of the genotypes:

HI(Vie = gij) = 1(Vie = gkj) = —log(0(Vk = gi;))

where V}, is an eQTL genotype RV and g (ge{0,1,2}) is a specific genotype for G, p(G = g) is the
probability (frequency) of the genotype in the sample set and 11 denotes the individual identifying
information. Assessing this relation, the genotypes that have low frequencies have high identifying
information, as expected. Given multiple eQTL genotypes, assuming that they are independent, the total
individual identifying information is simply summation of those:

N
(V1 = g1,j,V2 = G2jp )V = gw,j}) = = Z log (p(Vic = gr.7) )
k=1

() H

7Ot eQTL gep iﬁi§ using an entropy based measure. Given the genotype

n(Vi|Ex = e) = exp(—H (Vi |Ey = e))

where 1 denotes the predictability of V(;,) given the gene expression level e, and H denotes the entropy
of I/, given gene expression level e for Ej, . The extension to multiple eQTLs is straightforward. For the
j*th individual, given the expression levels e ; for all the eQTLs, the total predictability is computed as

ﬂ({Vk}: {Ek = ek,j}) = EXP(H(—{Vk} | {Ek = ek,j}))

= exp (‘Z H(Vy|E, = ek.j)>
k

In addition, this measure is guaranteed to be between 0 and 1 such that 0 represents no predictability
and 1 representing perfect predictability. The measure can be thought as mapping the prediction

process to a uniform random guessing where the average correct prediction probability is measured by
TT.

4.2 Estimation of Genotype Entropy for Quantification of Predictability
[[How did we estimate the genotype entropy and conditional specific entropies?]]

[[We bin the expression values to log_2(N_i) different bins \cite{...}]]



4.3 MAP (Maximum a-posteriori) Genotype Prediction
[[Describe the binning and MAP selection of genotypes]]

[[Must include SNP selection such that some of the genotypes are not assigned
any genotype bc of the selection]]

4.4 Linking of the Predicted Genotypes to Genotype Dataset
Given a set of predicted eQTL genotypes for individual j, 7. ; = {ﬁl_j}, the attacker links the predicted

genotypes to the individual whose genotypes have the smallest distance to the predicted genotypes:

pred; = argmin{d(¥.;,v.4)}.
a

pred; denotes the index for the linked individual and d(7. j, v. ;) represents the distance between the
predicted eQTL genotypes and the genotypes of the a’th individual:

Nq
A(0,5,v,0) = Y (1 =17, v1,1))
k=1

where I(Ty j, vy ;) is the match indicator:

1 lfﬁk’] = Uk,j

I(Vk’j Vi) )= { 0 otherwise

FinaIIy,jth individual is vulnerable if predj = j. When auxiliary information is available, the attacker
constrains the set of individuals while computing d(ﬁ.,j, v.,a) to the individuals with matching auxiliary
information. For example, if the gender of the individual is known, the attacker excludes the individuals
whose gender does not match while computing d(ﬁ.,j, v.,a). This way the auxiliary information
decreases the search space of the attacker.

4.5 Extremity Attack
[[Define the extremity attack: Correlation and extremity parameters]]

4.6 Anonymization

Given thatj”‘ individual is vulnerable; we would like to estimate (Results Section 2.4) the number of
genes expression levels to be anonymized to make the individual non-vulnerable. For this, we compute
the distances d(7. j, v_ ) for all the individuals then sort the distances in increasing order and store it in

a list. Let d ) (V. ; mgumber of mismatching genotypes for the k”th individual in the sorted

list. The numbe elels to be anonymized is then given by following:



[[How do we anonymize gene expression levels: Just remove the expression
level]]

5 DATASETS
[[GEUVADIS dataset, and eQTLs; 1000 genomes dataset]]
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