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Mutations in CSPP1 Lead to Classical Joubert Syndrome

Naiara Akizu,1,2 Jennifer L. Silhavy,1,2 Rasim Ozgur Rosti,1,2 Eric Scott,1,2 Ali G. Fenstermaker,1,2

Jana Schroth,1,2 Maha S. Zaki,3 Henry Sanchez,4 Neerja Gupta,5 Madhulika Kabra,5 Majdi Kara,6

Tawfeg Ben-Omran,7 Basak Rosti,1,2 Alicia Guemez-Gamboa,1,2 Emily Spencer,1,2 Roger Pan,1,2 Na Cai,1,2

Mostafa Abdellateef,1,2 Stacey Gabriel,8 Jan Halbritter,2,9 Friedhelm Hildebrandt,2,9

Hans van Bokhoven,10 Murat Gunel,11 and Joseph G. Gleeson1,2,*

Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malfor-

mation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the

liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a

protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and

nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further,

screening of a large cohort of individualswithnephronophthisis demonstrated nomutations.CSPP1 is broadly expressed in neural tissue,

and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein

levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia.
Joubert syndrome (JBTS [MIM 213300]) and related disor-

ders (JSRDs) are a group of congenital conditions character-

ized by the presence of a unique brainstem and cerebellar

malformation, including cerebellar vermis hypoplasia

and/or dysplasia, elongated superior cerebellar peduncles,

and deepened interpeduncular fossa, which together are

recognized as the ‘‘molar tooth sign’’ on brain imaging

(MTI).1 The most common clinical features comprise cere-

bellar ataxia, hypotonia, oculomotor apraxia, abnormal

respiratory patterns in the neonatal periods, and delayed

psychomotor development. Neurological findings are

frequently accompanied by additional major-organ abnor-

malities, such as retinal degeneration, cystic kidney, liver

fibrosis, and polydactyly.2,3

To date, biallelic mutations in 20 genes, all involved

in primary cilium biology, are known to compose the

genetic spectrum of JSRDs. The primary cilium is a micro-

tubule-based organelle that protrudes from most epithe-

lial-derived cells in animals to act as a sensory hub and

coordinate intracellular responses to morphogens and

signaling molecules.4 All cilia arise from the mother

centriole, the older centriole inherited during mitosis,

which after docking to the plasma membrane protrudes

a microtubule extension apically to form the ciliary

axoneme.5 Protein modules located at the base of the

cilium form a specialized region (termed the transition

zone) that functions as a ciliary gate and tightly regulates

the molecular composition of the ciliary compartment.

This region is prone to JSRD-related mutations that often
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associate with tissue-specific defects in a protein-module-

dependent manner.6 However, genetic causes of nearly

50% of JSRD-affected individuals are still unknown.

In order to uncover further genetic causes of JSRDs, we

recruited a worldwide cohort of 526 unique probands on

the basis of neurological findings from regions with high

consanguinity rates and focused on those individuals

whose brain MRI documented MTI as the major anomaly.

Of those, we evaluated a total of 287 individuals for muta-

tions in protein-coding genomic regions by using whole-

exome sequencing of at least one, but often two (when

available), affected members in a family (or in some in-

stances, parents or unaffected siblings) for a total of 426

sequenced individuals. Recruitment of affected individuals

was focused in parts of the world with the highest consan-

guinity, and overall, 72% of the families had documented

parental consanguinity. The study was approved by the

institutional review board at the University of California,

San Diego, and the families provided age-dependent and

cognition-appropriate informed consent or assent.

Coding genomic regions (exons) were captured from

blood DNA with the use of the NimbleGen Exome

44 Mb Library 2.0 or Agilent SureSelect Human All Exome

50 Mb Kit and were subsequently sequenced on an Illu-

mina HiSeq2000 instrument, resulting in ~94% recovery

at >103 coverage. Raw paired-end sequencing data were

processed according to the Broad Institute’s Genome

Sequencing and Analysis Program recommendations.

Readswere aligned toNCBIGenome build 37 of the human
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Figure 1. CSPP1 Is Recurrently Mutated in JBTS
(A) Whole-exome sequencing results summarized for 287 unique probands indicate genes demonstrating evidence of mutations. The
most commonly mutated genes were CEP290, C5orf42, and AHI1. Six unique probands displayed mutations in CSPP1 (light green).
In more than half of affected individuals, a causative mutation could not be identified.
(B)CSPP1mutation locations relative to the genomic exon locations in hg19. Compound-heterozygousmutations are shown on the top,
and homozygous mutations are shown on the bottom.
(C) CSPP1 alteration locations relative to the predicted protein. Blocks represent coiled-coil domains, green indicates the nuclear local-
ization signal, and asterisks indicate predicted phosphorylation sites.
reference genome with the Burrows-Wheeler Aligner

(BWA) with standard parameters. PCR duplicates were

removed, scored for quality, and recalibrated with Picard.

The Genome Analysis Toolkit (GATK) software (version

2.12) was used for realigning around indels for repairing

any misalignment by the BWA. Single-nucleotide variants,

genotypes, and quality scores were identified, called, and

recalibrated, respectively, with GATK. Variants were anno-

tated with SeattleSeq, OMIM, Phastcons, and PolyPhen-2

and profiled in a custom mySQL database for integrating

data across multiple sequencing batches.7 Standard variant

filters, including SNP quality (R20), proximity to indels

(R5 bp away), and read depth (>43), were applied.

Variants were analyzed by an automated prioritization

workflow taking into account familial inheritance patterns,

variant severity (nonsense, splice, and indel > missense),

homozygous haplotypes, and allele frequency in ethnically

matched control data sets for identifying possible homo-

zygous and compound-heterozygous deleterious candi-

dates, which were then analyzed for the most likely

deleterious. For families affected by obvious deleterious

mutations in known JSRD-associated genes, the single

variant was tested for segregation in the family. For other

families, a list of all possible deleterious variants passing

the threshold of GERP score > 4 or Phastcon score > 0.8

were tested for segregation (average of four alleles per
The A
family), and only those in which a single deleterious

variant segregated were marked as potentially causative.

Each potentially causative mutation was tested by Sanger

sequencing in the whole family for excluding exome

sequencing error or variants not passing segregation anal-

ysis (i.e., according to a recessive inheritance model).

Approximately 40% of the 287 evaluated families were

found to be affected by mutations in genes already

associated with JSRDs. With 22, 20, and 18 identified bial-

lelic mutations, CEP290 (MIM 610142), C5orf42 (MIM

614571), and AHI1 (MIM 608894), respectively, were the

most recurrent (Figure 1A). Most of these were predicted

to alter splice sites and/or generate premature stop codons.

With a few exceptions, where renal and retinal findings

were documented, individuals with CEP290, C5orf42,

and AHI1 mutations did not show overt extraneural find-

ings other than the typical JSRDmid-hindbrain malforma-

tion, supporting the finding that mutations in these genes

associate with cerebello-oculo or cerebello-oculo-renal syn-

drome. Two individuals with AHI1 mutations had corpus

callosum hypoplasia on brain MRI, and one showed an

abnormally thin brainstem. Mutations in CC2D2A (MIM

612013) (11 individuals) and TMEM67 (MIM 609884)

(ten individuals) were also quite prevalent in our cohort,

and despite lower representation, most of the already

known JSRD-associated genes—including TCTN2 (MIM
merican Journal of Human Genetics 94, 80–86, January 2, 2014 81
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Figure 2. Brain Imaging Demonstrates Molar Tooth Sign in Individuals with CSPP1 Muations
Axial MRI (upper panels) and parasagittal MRI (lower panels, where available). Images showmolar tooth sign (red circle) with elongated
superior cerebellar peduncles, deepened interhemispheric fossa, and cerebellar vermis hypoplasia. Lower panels show thick and horizon-
tally oriented superior cerebellar peduncles in all affected children (red arrows) and thin corpus callosum in MTI-136, MTI-1561, and
MTI-2109.
613846) (five individuals), INPP5E (MIM 613037), MKS1

(MIM 609883), TMEM237 (MIM 614423), and NPHP8

(MIM 610937) (four individuals each), TMEM138 (MIM

614459) (three individuals), KIF7 (MIM 611254), OFD1

(MIM 300170), TCTN1 (MIM 609863), and TCTN3 (MIM

613847) (two individuals each), and NPHP1 (MIM

607100) (one individual)—were also present in our cohort.

These results compose a reliable representation of the dis-

tribution of disease-associated genes in the general JSRD

population and validate our recruitment strategy.

Of the remaining screened cases, we were able to

identify causative mutations in genes previously not asso-

ciated with JSRDs in 5%. For the unidentified 55%, we

anticipate that either mutations fall in poorly covered

exonic regions (with null or low numbers of reads) or non-

coding genomic regions (thus not accessible to exome

sequencing) or these individuals display multiple potential

candidates or more subtle exomic mutations that are

not distinguishable with the prediction tools we applied.

From the 5% in which we identified mutations, 3% (eight

probands) were in families affected by a single rare most

likely deleterious variant, were in genes predicted to be

involved in ciliary function, were validated by Sanger

sequencing, and segregated with the disease in the fam-

ilies. By far, the most highly mutated gene was CSPP1

(RefSeq accession number NM_024790.6) (six probands),

which had eight unique mutations. Four were homozy-

gous mutations occurring within blocks of homozygosi-

ty8 in each of three consanguineous families from India,

Libya, and Egypt and one nonconsanguineous Mexican

family (Figure S1, available online). The additional four

mutations were present in compound heterozygosity in

two nonconsanguineous families from the United States

and China (Figures 1B and 1C).

The clinical phenotype of the affected children included

hypotonia, developmental delay, intellectual disability,

hyperpnea, and apnea episodes in the neonatal period
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and the MTI (Figure 2). Half of the affected children also

had ataxia (3/6) and variable ophthalmologic findings

such as retinopathy (1/6), oculomotor apraxia, nystagmus,

and bilateral ptosis (4/6), as well as hypoplasia of the

corpus callosum and the brain stem (3/6) (Table1). Hepatic

fibrosis, nephronophthisis, and polydactyly were not pre-

sent in any individual with CSPP1 mutations. Coexistent

obesity, which is linked to ciliopathies, was only observed

in MTI-136. The fact that there was little extra-CNS

involvement suggests that CSPP1 mutations primarily

associate with the classical form of JBTS.9

A finding that merits attention in our otherwise classical

JBTS is the mild to moderate sensorineural hearing loss

(SNHL) that was present in two of the affected children

(MTI-136 and MTI-1561). The presence of hearing loss as

a feature of JBTS was assessed in 22 Dutch individuals,10

and in only three cases (aged 17–26 years) was there mild

SNHL with no compelling evidence of significant impair-

ment. Previously, hearing thresholds were reported to be

subclinically increased in a group of adolescent individuals

with the ciliopathy Bardet-Biedl syndrome.11 Contrary to

these two groups, children with CSPP1 mutations were

fairly young when hearing loss was detected (5 years old

and 6 months old). As more cases of CSPP1-linked JBTS

are reported, it should be possible to determine whether

this association is greater than expected by chance.

We confirmed CSPP1 mutations in all the affected

individuals by Sanger sequencing and validated segrega-

tion on the basis of a strict recessive model of inheritance

with full penetrance by sequencing the whole family

(Figure S2). Twowere substitutions of conserved first nucle-

otides of splice donor sites, twowere deletions of one or two

nucleotides, and the remaining four were nonsense muta-

tions; all were predicted to result in premature stop codons.

With the exception of CSPP1 c.2243_2244delAA, which

was found in heterozygosity in the National Heart, Lung,

and Blood Institute (NHLBI) Exome Sequencing Project
14



Table 1. Clinical Features of Individuals with CSPP1 Mutations in the Indicated Families

Family ID

MTI-136 MTI-159 MTI-1342 MTI-1561 MTI-2109 MTI-2201

Country of origin Mexico United States India China Libya Egypt

Gender male female male male male female

Consanguinity � � þ � þ þ

cDNA mutation c.652C>T c.[950þ1G>C];
[3205þ1G>A]

c.2243_2244delAA c.[2260C>T];
[457delA]

c.2773C>T c.448C>T

Protein alteration p.Gln218* splice; splice p.Glu750Glyfs*30 p.[Arg754*];
[Arg153Glyfs*35]

p.Arg925* p.Gln150*

Neurological Findings

Hypotonia þ þ þ þ þ þ

Ataxia þ þ þ � � �

Psychomotor delay þ þ þ þ þ þ

Intellectual disability þ þ þ � þ þ

Breathing abnormalities � þ þ � þ þ

Seizures � � � � � �

Macrocephaly � � � � � �

Ophthalmologic Findings

Retinopathy þ � � � � �

Coloboma � � � � � �

Oculomotor apraxia þ þ þ � � þ

Nystagmus þ þ � � þ þ

Other bilateral ptosis � � bilateral ptosis bilateral ptosis
and exotropia

bilateral ptosis

Miscellaneous Findings

Nephronophthisis � � � NA � �

Hepatic fibrosis NA � � NA � �

Polydactyly � � � � � �

Obesity þ � � � � �

Other mild SNHL � exitus due to
pneumonia

moderate SNHL vesicoureteral
reflux

�

Cranial MRI Findings

Molar tooth sign þ þ þ þ þ þ

Cerebellar vermis dysgenesis þ þ þ þ þ þ

Hypoplasia of the brainstem þ þ � þ � �

Occipital meningocele � � � � � �

Thin corpus callosum þ � NA þ þ NA

The following abbreviations are used: NA, not available; and SNHL, sensorineural hearing loss.
Exome Variant Server with an allele frequency less than

0.001, none of the other mutations were present in any

publically available data set or in our in-house exome

sequences of 2,500 individuals. These data suggest that bial-

lelic CSPP1 loss-of-function mutations result in JSRDs.

CSPP1 generates two well-documented splice variants

that differ by the transcriptional start site and the alterna-
The A
tive splicing of an exon, resulting in both long and short

isoforms (Figure 1B). Five mutations occur within the cod-

ing exons of the two isoforms, whereas the three most up-

streammutations alter coding exons of the longer isoform;

these latter coding exons correspond to the 50 UTR of

the shorter isoform. Previous work has suggested that the

two isoforms show largely redundant activity; however,
merican Journal of Human Genetics 94, 80–86, January 2, 2014 83
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Figure 3. CSPP1 Is Expressed Predominantly in Neural Tissues Localized to Cilia, and the TruncatingMutation Abrogates Ciliogenesis
(A) RNA from human tissue RNA collection (Clontech) was retrotranscribed to cDNA with the SuperScript III First-Strand Synthesis
System for RT-PCR (Invitrogen) with oligodT. PCRwith primers specific toCSPP1 demonstrated that human neural tissues, and especially
the cerebellum, have the highest expression.
(B) Immunoblot with CSPP1 antibody (Proteintech) (arrow) in MTI-2109 control and affected fibroblasts showed severely reduced
protein levels in the presence of the mutation. GAPDH (Millipore) was used as a loading control.
(C) CSPP1 immunostaining (red) in human-embryonic-stem-cell-derived neural rosettes showed localization in the apical region (close
to the lumen), suggestive of colocalization with primary cilium.
(D) CSPP1 (red) localized to the base of the primary cilium (green) in control fibroblasts and was absent in MTI-2109 affected fibroblasts.
The scale bar represents 5 mm.
(E) Acetylated tubulin (AcTUB) (Sigma) immunostaining (upper panel, green) and ARL13B immunostaining (middle panel, red) in
MTI-2109 control and affected fibroblasts indicated a ciliary defect in mutated cells. g-tubulin (g-TUB) immunostaining (lower panel,
red) indicated that the centrosome was equally present in affected and control cells. Graphs show the percentage of fibroblasts (n ¼
105–256) with AcTUB-positive (upper panel) and ARL13B-positive (middle panel) cilia and a g-TUB-positive centrosome (lower panel).
Scale bars represent 25 mm. DAPI (blue) was used for labeling DNA.
with the exception of some variability in the expression of

the two isoforms along the cell cycle, the longer isoform is

the more abundant in all tested cell lines.12 These data

indicate that the long isoform could be the more physio-

logically relevant. Although we do not know how muta-

tions in the 50 UTR might affect protein levels of the short

isoform, the similar clinical features of children with

CSPP1 mutations suggest that all the mutations equally

affect protein function.

In order to determine relative CSPP1 abundance in hu-

man tissues, we performed RT-PCR on a collection of RNA

from fetal brain, cortex, and cerebellum and adult brain

structures and nonneural major body organs by using

primers that overlap coding exons of both CSPP1 isoforms.
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After 30 cycles of amplification, neural tissue showed the

most abundant CSPP1 signal, which was clearly enriched

in the adult and fetal cerebellum (Figure 3A). These data

support CSPP1 relevance in human brain development,

especially in the developing cerebellum, which correlates

well with the specific mid-hindbrain malformation found

in children with CSPP1 mutations.

CSPP1, as the name denotes, is localized to the centro-

somes and mitotic spindle. The longer predicted isoform

is 1,221 amino acids and has five coiled-coil domains, a nu-

clear localization signal, and four serine phosphorylation

sites, but no other notable protein domains. Asmitosis pro-

gresses, it migrates from the spindle poles in metaphase to

the central spindle in anaphase.12,13 During this process,
14



CSPP1 interacts with Myo-GEF, and the depletion of either

protein results inmitotic furrow regressionandcell-cycle ar-

rest in a low but significant proportion of cultured HeLa

cells.14 In children with homozygous CSPP1 mutations,

however, normal body and brain size (Table 1 and Figure 2),

as well as unremarkable general organ size, argue against a

required role for CSPP1 in general cell proliferation and

rather suggest alternative physiological roles. To test this,

we cultured skin fibroblasts from the heterozygous father

(obligate carrier control) and affected children (homozy-

gousnullmutation) from familyMTI-2109 and foundunre-

markable proliferation rates (data not shown). Immunoblot

analysis showed the absence of CSPP1 in affected individ-

uals’ cells (Figure 3B). We conclude that CSPP1 depletion

does not grossly impair cell proliferation, although we

cannot exclude that CSPP1 regulates proliferation in spe-

cific cell types, such as, perhaps, in granule cells that

compose the cerebellar vermis.

CSPP1 was found to localize at the base and transition

zone of the primary cilium and to interact with RPGRIP1L

(NPHP8),15 a protein often associated with nephronoph-

thisis or JBTS. Although the clinical features of affected

individuals clearly suggest a defect in primary cilium func-

tion, none displayed clinically impaired renal function. In

addition, the screening of an additional 768 individuals

with a spectrum of nephronophthisis-related phenotypes

demonstrated no CSPP1 mutations, suggesting a tight

link specifically with JSRDs and neural-specific functions.

Consistent with the brain-specific phenotype of individ-

uals with CSPP1 mutations, the protein was found to

localize to the apical zone of neural progenitors in

human-embryonic-stem-cell-derived neural rosettes, the

site of the neuronal primary cilium16 (Figure 3C).

Finally, we assessed the effect of CSPP1 depletion on pri-

mary cilia biogenesis. We cultured fibroblasts from affected

children and controls under serum starvation for 24 hr and

immunostained them with acetylated tubulin antibody,

enriched in primary cilia. As expected, most of the control

fibroblasts displayed an evident primary cilium with

CSPP1 localized at the base (Figure 3D). In the few mutant

fibroblasts where we found structures resembling primary

cilia (longer than 1 mm), CSPP1 was absent, which corre-

lates with the immunoblot analysis. Furthermore, quanti-

fication demonstrated a defect in ciliogenesis by showing

less ciliary acetylated tubulin and ARL13B17 staining but

the same number of centrosomes labeled with g-tubulin

(Figure 3E). All together, our data suggest that CSPP1 is

required for proper primary cilium formation or stability

and that CSPP1 mutations result in abnormal mid-hind-

brain development.

In summary, we report that, in our cohort, CSPP1 is the

most commonly mutated gene not previously associated

with JSRDs. Although mutated in just six probands, this

gene ranks among the top handful of most commonly

mutated genes in our JSRD cohort, suggesting that it

should be considered especially in individuals with the

classical form of JBTS and in the setting of hearing loss.
The A
Clarifying a required role in mitosis and cell-cycle progres-

sion will require future work, but the clinical and cellular

phenotypes we uncovered suggest that CSPP1 plays a

role in cilia function, probably by interacting with other

ciliopathy proteins at the basal body and perhaps also at

the transition zone.
Supplemental Data

Supplemental Data include two figures and can be found with this

article online at http://www.cell.com/AJHG.
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