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ABSTRACT  
With the unprecedented increase in the size of genomic datasets, the quantification and protection of 
privacy-sensitive information is a vital issue to be addressed for protection of anonymity of the 
participants of the scientific studies.  In this paper, we present a comprehensive framework for 
quantification and analysis of sensitive information in the gene expression datasets. We present a 
general scenario where the gene expression datasets can be exploited to predict eQTL genotypes to link 
independently distributed anonymized datasets by an adversary to re-identify individuals. First we 
propose measures for studying the tradeoff between quantification of the leakage of individual 
identifying information and predictability of eQTL genotypes. Next we present a general framework that 
consists of 3-steps for individual identification and utilize it in a generalized setting to show that 
significant fraction of individuals can become vulnerable to identification. Finally, we present a simple 
genotype prediction method and utilize it in our framework to show in a simple practical setting that a 
significant fraction of the samples can be re-identified. Our study is awesome. 

1 BACKGROUND 
 [[Define sensitive information: Anything that the individuals do not want leaked]] 

[[Previous work: Homer, Schadt, Erlich, …]] 

[[GTex Project eQTLs are accessible with gradient, significance information, and 
even the joint distribution of expression and genotypes]] 

[[Genetic leakage protection: Several of these: De-identification based (removal 
of names), Encryption based, more complicated de-identification techniques (k-
anonymization), differential privacy based (makes a very high compromise of 
utility for privacy’s sake). Last two are active field of research.]] 

[[Previous approaches: Differential privacy, different types of attacks, model 
inversion attack, linking attack]] 



 [[It has been shown previously that differential privacy formality, which is 
theoretically the most complete data protection scheme, for releasing genomic 
information may lead to very poor utility~\cite{XX,XX}. It is therefore necessary to 
analyze where the sensitive information exists in different datasets and how 
protection of the sensitive data affects data utility. To accomplish this, This study 
furthers the understanding of the predictable sensitive genetic information from 
gene expression datasets.]] 

[[In this paper, we analyze identifiability of SNP genotypes and identifiability of 
individuals in the context of linking attacks. These are the most prevalent attacks 
that can affect the currently generated genomics datasets.]] 

[[RSeqTools based anonymization is useful but not enough.]] 

[[First, we present an analysis framework that formalizes and decomposes the 
analysis of genetic leakage in the context of linking attacks. Our framework 
decomposes the linking attack into 3 steps that we study in detail.  

-- We make the assumption that the attacker recovers the conditional 
probabilities perfectly, which enables us to be as stringent about what the 
attacker can predict as possible. 

-- We evaluate the incorporation of auxiliary information. 

This framework can be used for leakage analysis in the future studies. 

We finally present a practical attack for prediction of genotypes from gene 
expression levels.]] 

[[The paper is organized as follows: We first analyze the predictability of the SNPs 
and evaluate the tradeoff between the amount of identifying information 
recovered versus the predictability of the eQTLs using expression datasets. Next 
we present the 3 step individual identification framework and study different 
aspects of vulnerability using the framework. In the last section, we present a 
novel and simple but effective genotype prediction method, which can be 
employed in most scenarios, and use it in our framework.]] 



2 RESULTS 

2.1 Overview of the Privacy Breaching Scenario by Linking Attacks 
Figure 1 illustrates the privacy breaching scenario that is considered. The breach occurs by linking two 
datasets such that one of the datasets contains the individual identities and corresponding genotypes 
and the second dataset contains the gene expression levels and sensitive information (e.g. disease 
status) about each individual. The second dataset is assumed to be anonymized by removal of the 
individual identities to protect the individuals. The adversary gains access to both datasets and links the 
datasets to associate the sensitive information to individuals. While performing the linking attack the 
adversary utilizes publicly available databases. In the considered scenario, the eQTL databases are 
utilized which enable linking the expression levels to the genotypes.  

 [[We first present the notations]]  

The gene expression and genotype datasets are stored in 𝑁𝑞 × 𝑁𝑖𝑒 and 𝑁𝑞 × 𝑁𝑖𝑣 matrices 𝑒 and 𝑣, 
respectively, where 𝑁𝑖𝑒 and 𝑁𝑖𝑣 denotes the number of individuals in gene expression dataset and 
individuals in genotype dataset, respectively and 𝑁𝑞 denotes the number of entries in the eQTL dataset, 
where each entry is a gene and a variant such that the gene expression is correlated with variant 
genotypes. 𝑘𝑡ℎ row of 𝑒, 𝑒𝑘, contains the expression values for 𝑘𝑡ℎ gene and 𝑒𝑘,𝑗 represents the 
expression of the 𝑘𝑡ℎ gene for 𝑗𝑡ℎ individual. Similarly, 𝑙𝑡ℎ row of 𝑣, 𝑔𝑙, contains the genotypes for 𝑙𝑡ℎ 
variant and 𝑣𝑙,𝑗 represents the genotype (𝑣𝑙,𝑗 ϵ {0,1,2}) of 𝑙𝑡ℎ variant for 𝑗𝑡ℎ individual.  We will denote 
the random variables (RVs) whose values represent that the gene expression of 𝑘𝑡ℎ gene and the variant 
genotypes for 𝑙𝑡ℎ variant with {𝐸𝑘}  and {𝑉𝑙}, respectively. The rows of the expression and genotype 
dataset matrices are matched to each other such that the gene and genotype RV pairs {(𝐸𝑘 ,𝑉𝑘)}, 
𝑘 < 𝑁𝑞 , are highly correlated. We will denote the correlation with ρ(𝐸𝑘 ,𝑉𝑘). In many of the eQTL 
studies, this correlation is reported with the statistical significance and several other information (for 
example, population of individuals for which the correlation is observed) in a table. The sign of ρ(𝐸𝑘 ,𝑉𝑘) 
represents the direction of association, i.e., which genotype corresponds to higher expression  and the 
magnitude represents the strength of the association. 

[[Nature of eQTL gene expression correlations: Extremity based associations 
(extremities in both the genotypes and in the gene expression levels associate 
with each other) are identified in eQTL studies. This is the main point of leakage of 
genetic information from gene expression datasets, which are identified generally 
via a linear model.]] 

[[For generalization of the analysis, we assume that the attacker can predict with 
high certainty the posterior probabilities. Previous studies have presented 
different approaches for predicting a-posteriori probabilities of genotypes given 
gene expression levels.]]  



2.2 Quantification of Tradeoff between Predictability of the SNP Genotypes 
and Individual Identification 

[[Predictability of the eQTL genotypes, individual identification information. This is the analysis where the attacker is to match with no database 
at hand by just predicting all the SNPs he chooses to predict.]] 

In the linking attack, the attacker aims to identify the correct individual among 𝑁𝑖  individuals. In order to 
identify an individual, the attacker should select a set of eQTLs that he believes he can predict correctly. 
Next, given the individual’s expression levels for genes that are correlated with the selected eQTL 
genotypes, the attacker should predict the genotypes correctly such that the predicted set of genotypes 
should not be shared by more than 1 individual, i.e., the vulnerable individual. In other words, the 
frequency of the set of predicted genotypes for the selected eQTLs should be at most 1/𝑁𝑖. We can 
rephrase this condition as following in information theoretic terms: If the attacker can reliably predict 
log2(𝑁𝑖) bits of information using the genotypes predicted from expression data for an individual, the 
individual is vulnerable. It should be noted that, assuming the independence of the genotypes for 
different eQTLs, we can decompose the amount of individual identifying information that is leaked for a 
set of correctly predicted eQTL genotypes:  

𝐼𝐼𝐼({𝑉1 = 𝑔1,𝑉2 = 𝑔2, … ,𝑉𝑁 = 𝑔𝑁}) = −� log�𝑝(𝑉𝑘 = 𝑔𝑘)�

𝑁𝑞

𝑘=1

 

where 𝑉𝑘 is the kth  eQTL and 𝑔𝑘 is a specific genotype for the eQTL (Refer to Methods Section 3.1 for 
more details), 𝑝(𝑉𝑘 = 𝑔𝑘) denote the genotype frequency 𝑔𝑘, and III denotes the total individual 
identifying information. Practically, the individual identifying information can be interpreted as a 
quantification of how rare the predicted genotypes are. For example, if the list contains many rare 
genotypes, it contains significant amount of identifying information. The attacker aims to predict as 
many eQTLs as possible such that III for the predicted genotypes is at least log(𝑁𝑖).  

In order to maximize the amount of III, the attacker will aim at predicting as many eQTL genotypes as 
possible. The predictability of the eQTLs from gene expression, however, is not uniform as some of them 
are more highly correlated with the gene expression levels compared to others, given in |ρ(𝐸𝑘 ,𝑉𝑘)|. 
Thus, the attacker will try to select the most predictable eQTLs genotypes that are most correctly 
predictable so as to maximize the amount of leaked identifying information.  To quantify predictability 
of eQTL genotypes from expression levels, we use exponential of the conditional distribution of 
genotype given gene expression level as a measure of predictability. Given the gene expression levels for  
𝑗𝑡ℎ individual, the predictability of all the eQTL genotypes is computed as 

𝜋�𝑉𝑘 |  𝐸𝑘 = 𝑒𝑘,𝑗� = exp �−𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗)� 

where 𝜋 denotes the predictability of 𝑉𝑘 given the gene expression level 𝑒𝑘,𝑗. Given the list of eQTLs, the 
joint conditional entropy is estimated as the summation of the conditional entropies 𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗) 
(Refer to Methods Section 4.1 for more details). The conditional entropy given the gene expression is a 
measure for the randomness that is left in genotypes when the expression level is known. When the 
conditional entropy is small, the genotypes can be predicted easily given the gene expression level. The 



exponential of negative of the entropy converts the entropy to average probability of prediction of the 
genotype. The exponential of the negative entropy is maximized when the conditional entropy is 
minimized and vice versa for high conditional entropy. 

[[Say sth about the allele frequency, predictability, and information content: The eQTLs are common variants, thus are not very informative]] 

It is useful to note that there is a natural tradeoff between the predictability of eQTLs and the leaking 
individual identifying information. For example, the eQTLs that have the highest individual identifying 
information, i.e., high –log(p(V_k=g_k)), must have small genotype frequency in the population. The low 
frequency genotypes, however, are most likely not highly correlated with the gene expression levels, 
i.e., they have lower predictability. 

We assume that the attacker will sort the eQTLs in terms of their predictability. For this, we assume the 
attacker uses the absolute value of the correlation between the genotype and the expression, i.e., 
|ρ(𝐸𝑘 ,𝑉𝑘)|. In order to evaluate the tradeoff between the identifying information of the top predictable 
eQTLs and their predictabilities, we plotted average III versus average 𝜋 in Fig 2.  We first sorted the 
eQTLs with respect to the reported ρ(𝐸𝑘 ,𝑉𝑘) then for the top 20 eQTLs, we estimated mean 𝜋 and 
mean III for all the samples. Figure 2a shows that there is significant leakage of III at 20% average 
predictability, there is approximately 7 bits of leakage and at 5% predictability, there is around 11 bits of 
leakage, which is enough to identify, on average, all the individuals in the dataset. (At 12.4% 
predictability, the leakage is approximately 9 bits for 6 top eQTLs.) Figure 2b and 2c also shows the 
average leakage for the randomized eQTL dataset where the genes and eQTLs are shuffled to generate a 
background model. The leakage is significantly smaller compared to the original eQTL dataset (At an 
average predictability of 12.4%, the average leakage is approximately 3.5 bits.) 

2.3 A Generalized Individual Identification Model 
[[We decompose the linking attack into 3-steps to study different variations and parameterizations of the linking attack.]] 

Following the results in the previous section, we present a 3 step model for individual identification. 
Figure 3a summarizes the steps in the individual identification. In the first step, the attacker selects the 
eQTLs that will be used in the linking attack. The selection of eQTLs can be based on different criteria. As 
described in the previous section, the most accessible criterion is filtering the eQTLs based on absolute 
value of the reported correlation coefficient with a predefined threshold. Another criterion is to use the 
estimated conditional entropy of the genotype given the gene expression level, which is a measure of 
the predictability of the eQTL genotype (See Fig 3b). The second step is the prediction of the selected 
eQTLs. The attacker uses a predefined prediction model. In this step we are assuming that the attacker 
can reliably predict the posterior probabilities of the genotypes given the gene expression levels as 
illustrated in Fig 3b. The attacker uses the posterior probabilities of the genotypes to predict the 
maximum a posteriori (MAP) genotype of the individual. In this prediction, the attacker assigns the 
genotype that has the highest a posteriori probability (Refer to Methods Section 4.3). The third and final 
step of individual identification is comparison of the predicted genotypes to the genotypes database to 
identify the individual that matches the predicted genotypes. We assume that the attacker links the 
predicted genotypes to the individual in the genotype dataset with the smallest number of mismatches 
compared to the predicted genotypes. 



2.3.1 Individual Identification Accuracy 
 [[We assume that the attacker selects the eQTLs using 2 different criteria: (1) Absolute value of the gradient of correlation reported in the eQTL 
resource, (2) Estimated predictability of the genotype: Entropy of the conditional distribution of genotypes for each individual]] 

We assume that the attacker uses the absolute value of the reported correlation between the variant 
genotypes and gene expression levels to select the eQTLs. Fig SXX shows the distribution of the absolute 
correlation levels for the eQTL dataset. The genotypes for the selected eQTLs are predicted using MAP 
prediction (Refer to Methods Section 4.3). Figure 4a shows the the number of selected eQTLs and the  
fraction correctly predicted MAP genotypes with changing absolute correlation thresholds.  

[[Fraction of vulnerable individuals]] 

Using the predicted eQTL genotype selected at each absolute correlation cutoff, the attacker performs 
the 3rd step in the attack and links the predicted genotypes to the genotype dataset to identify 
individuals (Refer  to Methods Section 4.4). Figure 5a shows the fraction of vulnerable individuals. The 
fraction of vulnerable individuals increase as the absolute correlation threshold increases and fraction is 
maximized at around 0.35. At this value, 95% of the individuals are vulnerable. This illustrates that the 
power of vulnerability is maximized at absolute correlation threshold of 0.35. This can be explained by 
the increase in identifying information leakage as the accuracy of the predicted genotypes increase 
while there is a balancing decrease in the identifying information leakage with decreasing number of 
eQTL genotypes predicted. 

 [[Auxiliary Information: Gender and/or Population]] 

We also evaluate the case when the attacker gains access to auxiliary information. As the sources of 
auxiliary information, we use the gender and population information that is available for all the 
participants of 1000 Genomes Project on the project web site. We assume that the attacker either gains 
access to or predicts the gender and/or the population of the individuals and uses the information in the 
3rd step of the attack (Refer to Methods Section 4.4). Figure 5a shows the fraction of vulnerable when 
the auxiliary information is available. When the auxiliary information is available, more than 95% of the 
individuals are vulnerable to identification for all the eQTL selections up to when the absolute 
correlation threshold is 0.6. 

2.4 Anonymization 
[[How many eQTL associations should be removed to make vulnerability small?]] 

[[When those eQTLs are removed, how are the correlations affected?]] 

2.5 Individual Identification with Extremity Attack 
In previous sections, we presented quantification of leakage in individual identifying information and a 
general framework for analysis of vulnerability. In this section, we propose a simple genotype prediction 
methodology, extremity attack, and demonstrate the vulnerability when the attack is utilized in the 
individual identification framework. 



Extremity attack utilizes a statistic we termed 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦, which quantifies how extreme an individual’s 
gene expression level is among the expression levels of all the samples. For the gene expression level, 𝑒, 
𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 is defined as: 

𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒𝑖) =
𝑟𝑎𝑛𝑘 𝑜𝑓 𝑒𝑖𝑖𝑛 {𝑒1, 𝑒2, … , 𝑒𝑁𝑖𝑒}

𝑁𝑖𝑒
− 0.5 

where 𝑒𝑖 is the expression level of 𝑖th individual. Extremity is bounded between -0.5 and 0.5. Figure SXX 
shows the mean absolute extremity distribution of all the gene expression levels for all the individuals. 
The average absolute extremity per individual is around 0.25. 

Figure XX illustrates the extremity attack. Extremity attack utilizes the fact that the more extreme gene 
expression levels most likely coincide with one of the extreme genotypes, i.e., homozygous genotypes 
(Refer to Methods Section 4.7). For example, if the gradient of association between eQTL genotype and 
expression levels is positive, the individuals that have high positive extremity are most likely to have 
genotype value of 2 and the individuals with high negative extremity are most likely to have eQTL 
genotype value of 0 and vice versa when the gradient is negative. One aspect of the extremity attack is 
that it predicts only homozygous (i.e., most extreme) genotypes. Figure XX shows the accuracy of 
genotypes predictions with extremity attack.  

We next used the extremity based prediction in the individual identification framework (Fig 2). Fig XX 
shows the fraction of vulnerable individuals. More than 95% of the individuals are vulnerable for most of 
the parameter selections. In addition, when the gender and/or population information is present as 
auxiliary information, the vulnerability increases to 100% for most of the eQTL selections. 

3 CONCLUSION AND DISCUSSION 
In this paper we present a framework for quantification and analysis of sensitive individual identifying 
information leakage from the gene expression datasets. The premise of sharing genomic information is 
that there is always an amount of leakage in the sensitive information. We believe that this 
quantification methodology can be utilized for more extensive analysis of the leakage in sensitive 
information in the genomic datasets. The quantification can be further developed for guaranteeing 
bounds on anonymized datasets. 

[[As the eQTL studies are done on larger and larger datasets, new (probably 
population specific) eQTLs are going to be identified which will increase leaking 
identifying information.]] 

[[How does this framework compare to other formalities? For example 
differential privacy? Differential privacy is about release mechanisms in statistical 
databases. Our analysis is about release of datasets. It is similar but differential 
privacy does not enable quantification of the leakage.]] 



[[There is also utility satisfying differential privacy. Our study enables 
understanding which utility to hide and which to reveal.]] 

 [[External information: 1 bits of gender information can be easily predicted from ; 
how does this change vulnerability; this justifies the fact that we need “buffering” 
in anonymization to protect against unaccounted external information that may 
cause increased vulnerability.]] 

We also presented a simple approach for identification of individuals that utilizes extremity based 
genotype prediction. When employed in the individual identification framework, this simple approach 
renders a very significant number of individuals vulnerable. This illustrates the amount the viability of 
individual identification from gene expression datasets. 

4 METHODS 

4.1 Quantification of Individual Identifying Information and Predictability 
To quantify the individual identifying information, we use surprisal, measured in terms of self-
information of the genotypes: 

𝐼𝐼𝐼(𝑉𝑖 = 𝑔) = 𝐼(𝑉𝑖 = 𝑔) = −log (𝑝(𝑉𝑖 = 𝑔)) 

where 𝑉𝑖 is an eQTL variant and 𝑔 (𝑔𝜖{0,1,2}) is a specific genotype for 𝐺, 𝑝(𝐺 = 𝑔) is the probability 
(frequency) of the genotype in the sample set and 𝐼𝐼𝐼 denotes the individual identifying information.  
Assessing this relation, the genotypes that have low frequencies have high identifying information, as 
expected. Given multiple eQTL genotypes, assuming that they are independent, the total individual 
identifying information is simply summation of those: 

𝐼𝐼𝐼({𝑉1 = 𝑔1,𝑉2 = 𝑔2, … ,𝑉𝑁 = 𝑔𝑁}) = −� log�𝑝(𝑉𝑖 = 𝑔𝑖)�
𝑁

𝑖=1

. 

 [[Predictability: Exponential of the conditional distribution given the gene expression levels]] 

We measure the predictability of eQTL genotypes using an entropy based measure. Given the eQTL, 
𝑉(𝑙𝑖), and the correlated gene expression 𝐸(𝑘𝑖) 

𝜋�𝑉(𝑙𝑖)�𝐸(𝑘𝑖) = 𝑒� = exp (−𝐻(𝑉(𝑙𝑖)|𝐸(𝑘𝑖) = 𝑒) 

where 𝜋 denotes the predictability of  𝑉(𝑙𝑖) given the gene expression level 𝑒, and 𝐻 denotes the entropy 
of 𝑉(𝑙𝑖) given gene expression level 𝑒 for 𝐸(𝑘𝑖) . The extension to multiple eQTLs is straightforward. For 
the j^th individual, given the expression levels  𝑒𝑘,𝑗 for all the eQTLs, the total predictability is computed 
as  



𝜋��𝑉(𝑙𝑖)�, �𝐸(𝑘𝑖) = 𝑒𝑘𝑖,𝑗�� = exp�𝐻�−�𝑉(𝑙𝑖)� | �𝐸(𝑘𝑖) = 𝑒𝑘𝑖,𝑗��� 

= exp �−�𝐻(𝑉(𝑙𝑖)|𝐸(𝑘𝑖) = 𝑒
𝑖

� 

[[Cite and show that this measure is in [1/3,1] for one genotype. The 
interpretation of this measure is that the prediction process is converted to 
random guessing with uniform probability distribution where average correct 
prediction probability is \pi. This is the reciprocal of Shannon diversity; the 
average number of genotype predictions that you can randomly equally likely 
choose from.]] 

In addition, this measure is guaranteed to be between 0 and 1 such that 0 represents no predictability 
and 1 representing perfect predictability. The measure can be thought as mapping the prediction 
process to a uniform random guessing where the average correct prediction probability is measured by 
𝜋. 

4.2 Estimation of Genotype Entropy for Quantification of Predictability  
[[How did we estimate the genotype entropy and conditional specific entropies?]] 

[[We bin the expression values to log_2(N_i) different bins \cite{…}]] 

4.3 MAP (Maximum a-posteriori) Genotype Prediction 
[[Describe the binning and MAP selection of genotypes]] 

4.4 Linking of the Predicted Genotypes to Genotype Dataset 
Given set of predicted genotypes for individual j, {𝑣′𝑙,𝑗}; 

𝑝𝑟𝑒𝑑𝑗 = argmax
𝑎

{�𝐼(𝑣𝑏,𝑗
′ , 𝑣𝑏,𝑎 

 )
𝑏

}  

If 𝑝𝑟𝑒𝑑𝑗 = j; j is vulnerable 

[[Formulate when the auxiliary information is available?]] 

 

4.5 Extremity Attack 
[[Define the extremity attack: Correlation and extremity parameters]] 



5 Datasets 
[[GEUVADIS dataset, and eQTLs, 1000 genomes dataset]] 

[[Other eQTL datasets?]] 
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