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ABSTRACT 
[bookmark: _GoBack]With the unprecedented increase in the size of genomic datasets, the quantification and protection of privacy-sensitive information is a vital issue to be addressed for protection of anonymity of the participants of the scientific studies.  In this paper, we present a comprehensive framework for quantification and analysis of sensitive information in the gene expression datasets. We present a general scenario where the gene expression datasets can be exploited to predict eQTL genotypes to link independently distributed anonymized datasets by an adversary to re-identify individuals. First we propose measures for studying the tradeoff between quantification of the leakage of individual identifying information and predictability of eQTL genotypes. Next we present a general framework that consists of 3-steps for individual identification and utilize it in a generalized setting to show that significant fraction of individuals can become vulnerable to identification. Finally, we present a simple genotype prediction method and utilize it in our framework to show in a simple practical setting that a significant fraction of the samples can be re-identified. Our study is awesome.
BACKGROUND
 [[Define sensitive information: Anything that the individuals do not want leaked]]
[[Previous work: Homer, Schadt, Erlich, …]]
[[GTex Project eQTLs are accessible with gradient, significance information, and even the joint distribution of expression and genotypes]]
[[Genetic leakage protection: Several of these: De-identification based (removal of names), Encryption based, more complicated de-identification techniques (k-anonymization), differential privacy based (makes a very high compromise of utility for privacy’s sake). Last two are active field of research.]]
[[Previous approaches: Differential privacy, different types of attacks, model inversion attack, linking attack]]
 [[It has been shown previously that differential privacy formality, which is theoretically the most complete data protection scheme, for releasing genomic information may lead to very poor utility~\cite{XX,XX}. It is therefore necessary to analyze where the sensitive information exists in different datasets and how protection of the sensitive data affects data utility. To accomplish this, This study furthers the understanding of the predictable sensitive genetic information from gene expression datasets.]]
[[In this paper, we analyze identifiability of SNP genotypes and identifiability of individuals in the context of linking attacks. These are the most prevalent attacks that can affect the currently generated genomics datasets.]]
[[RSeqTools based anonymization is useful but not enough.]]
[[First, we present an analysis framework that formalizes and decomposes the analysis of genetic leakage in the context of linking attacks. Our framework decomposes the linking attack into 3 steps that we study in detail. 
-- We make the assumption that the attacker recovers the conditional probabilities perfectly, which enables us to be as stringent about what the attacker can predict as possible.
-- We evaluate the incorporation of auxiliary information.
This framework can be used for leakage analysis in the future studies.
We finally present a practical attack for prediction of genotypes from gene expression levels.]]
[[The paper is organized as follows: We first analyze the predictability of the SNPs and evaluate the tradeoff between the amount of identifying information recovered versus the predictability of the eQTLs using expression datasets. Next we present the 3 step individual identification framework and study different aspects of vulnerability using the framework. In the last section, we present a novel and simple but effective genotype prediction method, which can be employed in most scenarios, and use it in our framework.]]
RESULTS
Overview of the Privacy Breaching Scenario by Linking Attacks
Figure 1 illustrates the privacy breaching scenario that is considered. The breach occurs by linking two datasets such that one of the datasets contains the individual identities and corresponding genotypes and the second dataset contains the gene expression levels and sensitive information (e.g. disease status) about each individual. The second dataset is assumed to be anonymized by removal of the individual identities to protect the individuals. The adversary gains access to both datasets and links the datasets to associate the sensitive information to individuals. While performing the linking attack the adversary utilizes publicly available databases. In the considered scenario, the eQTL databases are utilized which enable linking the expression levels to the genotypes. 
 [[We first present the notations]] 
The gene expression and genotype datasets are stored in  and  matrices  and , respectively, where  and  denotes the number of individuals in gene expression dataset and individuals in genotype dataset, respectively and  denotes the number of entries in the eQTL dataset, where each entry is a gene and a variant such that the gene expression is correlated with variant genotypes.  row of , , contains the expression values for  gene and  represents the expression of the  gene for  individual. Similarly,  row of , , contains the genotypes for  variant and  represents the genotype ( ϵ {0,1,2}) of  variant for  individual.  We will denote the random variables (RVs) whose values represent that the gene expression of  gene and the variant genotypes for  variant with {}  and {}, respectively. The rows of the expression and genotype dataset matrices are matched to each other such that the gene and genotype RV pairs {}, , are highly correlated. We will denote the correlation with . In many of the eQTL studies, this correlation is reported with the statistical significance and several other information (for example, population of individuals for which the correlation is observed) in a table. The sign of  represents the direction of association, i.e., which genotype corresponds to higher expression  and the magnitude represents the strength of the association.
[[Nature of eQTL gene expression correlations: Extremity based associations (extremities in both the genotypes and in the gene expression levels associate with each other) are identified in eQTL studies. This is the main point of leakage of genetic information from gene expression datasets, which are identified generally via a linear model.]]
[[For generalization of the analysis, we assume that the attacker can predict with high certainty the posterior probabilities. Previous studies have presented different approaches for predicting a-posteriori probabilities of genotypes given gene expression levels.]] 
Quantification of Tradeoff between Predictability of the SNP Genotypes and Individual Identification
[[Predictability of the eQTL genotypes, individual identification information. This is the analysis where the attacker is to match with no database at hand by just predicting all the SNPs he chooses to predict.]]
In the linking attack, the attacker aims to identify the correct individual among  individuals. In order to identify an individual, the attacker should select a set of eQTLs that he believes he can predict correctly. Next, given the individual’s expression levels for genes that are correlated with the selected eQTL genotypes, the attacker should predict the genotypes correctly such that the predicted set of genotypes should not be shared by more than 1 individual, i.e., the vulnerable individual. In other words, the frequency of the set of predicted genotypes for the selected eQTLs should be at most . We can rephrase this condition as following in information theoretic terms: If the attacker can reliably predict  bits of information using the genotypes predicted from expression data for an individual, the individual is vulnerable. It should be noted that, assuming the independence of the genotypes for different eQTLs, we can decompose the amount of individual identifying information that is leaked for a set of correctly predicted eQTL genotypes: 

where  is the kth  eQTL and  is a specific genotype for the eQTL (Refer to Methods Section 3.1 for more details),  denote the genotype frequency , and III denotes the total individual identifying information. Practically, the individual identifying information can be interpreted as a quantification of how rare the predicted genotypes are. For example, if the list contains many rare genotypes, it contains significant amount of identifying information. The attacker aims to predict as many eQTLs as possible such that III for the predicted genotypes is at least . 
In order to maximize the amount of III, the attacker will aim at predicting as many eQTL genotypes as possible. The predictability of the eQTLs from gene expression, however, is not uniform as some of them are more highly correlated with the gene expression levels compared to others, given in . Thus, the attacker will try to select the most predictable eQTLs genotypes that are most correctly predictable so as to maximize the amount of leaked identifying information.  To quantify predictability of eQTL genotypes from expression levels, we use exponential of the conditional distribution of genotype given gene expression level as a measure of predictability. Given the gene expression levels for   individual, the predictability of all the eQTL genotypes is computed as

where  denotes the predictability of  given the gene expression level . Given the list of eQTLs, the joint conditional entropy is estimated as the summation of the conditional entropies  (Refer to Methods Section 4.1 for more details). The conditional entropy given the gene expression is a measure for the randomness that is left in genotypes when the expression level is known. When the conditional entropy is small, the genotypes can be predicted easily given the gene expression level. The exponential of negative of the entropy converts the entropy to average probability of prediction of the genotype. The exponential of the negative entropy is maximized when the conditional entropy is minimized and vice versa for high conditional entropy.
[[Say sth about the allele frequency, predictability, and information content: The eQTLs are common variants, thus are not very informative]]
It is useful to note that there is a natural tradeoff between the predictability of eQTLs and the leaking individual identifying information. For example, the eQTLs that have the highest individual identifying information, i.e., high –log(p(V_k=g_k)), must have small genotype frequency in the population. The low frequency genotypes, however, are most likely not highly correlated with the gene expression levels, i.e., they have lower predictability.
We assume that the attacker will sort the eQTLs in terms of their predictability. For this, we assume the attacker uses the absolute value of the correlation between the genotype and the expression, i.e., . In order to evaluate the tradeoff between the identifying information of the top predictable eQTLs and their predictabilities, we plotted average III versus average  in Fig 2.  We first sorted the eQTLs with respect to the reported  then for the top 20 eQTLs, we estimated mean  and mean III for all the samples. Figure 2a shows that there is significant leakage of III at 20% average predictability, there is approximately 7 bits of leakage and at 5% predictability, there is around 11 bits of leakage, which is enough to identify, on average, all the individuals in the dataset. (At 12.4% predictability, the leakage is approximately 9 bits for 6 top eQTLs.) Figure 2b and 2c also shows the average leakage for the randomized eQTL dataset where the genes and eQTLs are shuffled to generate a background model. The leakage is significantly smaller compared to the original eQTL dataset (At an average predictability of 12.4%, the average leakage is approximately 3.5 bits.)
A Generalized Individual Identification Model
[[We decompose the linking attack into 3-steps to study different variations and parameterizations of the linking attack.]]
Following the results in the previous section, we present a 3 step model for individual identification. Figure 3a summarizes the steps in the individual identification. In the first step, the attacker selects the eQTLs that will be used in the linking attack. The selection of eQTLs can be based on different criteria. As described in the previous section, the most accessible criterion is filtering the eQTLs based on absolute value of the reported correlation coefficient with a predefined threshold. Another criterion is to use the estimated conditional entropy of the genotype given the gene expression level, which is a measure of the predictability of the eQTL genotype (See Fig 3b). The second step is the prediction of the selected eQTLs. The attacker uses a predefined prediction model. In this step we are assuming that the attacker can reliably predict the posterior probabilities of the genotypes given the gene expression levels as illustrated in Fig 3b. The attacker uses the posterior probabilities of the genotypes to predict the maximum a posteriori (MAP) genotype of the individual. In this prediction, the attacker assigns the genotype that has the highest a posteriori probability (Refer to Methods Section 4.3). The third and final step of individual identification is comparison of the predicted genotypes to the genotypes database to identify the individual that matches the predicted genotypes. We assume that the attacker links the predicted genotypes to the individual in the genotype dataset with the smallest number of mismatches compared to the predicted genotypes.
Individual Identification Accuracy
 [[We assume that the attacker selects the eQTLs using 2 different criteria: (1) Absolute value of the gradient of correlation reported in the eQTL resource, (2) Estimated predictability of the genotype: Entropy of the conditional distribution of genotypes for each individual]]
We assume that the attacker uses the absolute value of the reported correlation between the variant genotypes and gene expression levels to select the eQTLs. Fig SXX shows the distribution of the absolute correlation levels for the eQTL dataset. The genotypes for the selected eQTLs are predicted using MAP prediction (Refer to Methods Section 4.3). Figure 4a shows the the number of selected eQTLs and the  fraction correctly predicted MAP genotypes with changing absolute correlation thresholds. 
[[Fraction of vulnerable individuals]]
Using the predicted eQTL genotype selected at each absolute correlation cutoff, the attacker performs the 3rd step in the attack and links the predicted genotypes to the genotype dataset to identify individuals (Refer  to Methods Section 4.4). Figure 5a shows the fraction of vulnerable individuals. The fraction of vulnerable individuals increase as the absolute correlation threshold increases and fraction is maximized at around 0.35. At this value, 95% of the individuals are vulnerable. This illustrates that the power of vulnerability is maximized at absolute correlation threshold of 0.35. This can be explained by the increase in identifying information leakage as the accuracy of the predicted genotypes increase while there is a balancing decrease in the identifying information leakage with decreasing number of eQTL genotypes predicted.
 [[Auxiliary Information: Gender and/or Population]]
We also evaluate the case when the attacker gains access to auxiliary information. As the sources of auxiliary information, we use the gender and population information that is available for all the participants of 1000 Genomes Project on the project web site. We assume that the attacker either gains access to or predicts the gender and/or the population of the individuals and uses the information in the 3rd step of the attack (Refer to Methods Section 4.4). Figure 5a shows the fraction of vulnerable when the auxiliary information is available. When the auxiliary information is available, more than 95% of the individuals are vulnerable to identification for all the eQTL selections up to when the absolute correlation threshold is 0.6.
Anonymization
[[How many eQTL associations should be removed to make vulnerability small?]]
[[When those eQTLs are removed, how are the correlations affected?]]
Individual Identification with Extremity Attack
In previous sections, we presented quantification of leakage in individual identifying information and a general framework for analysis of vulnerability. In this section, we propose a simple genotype prediction methodology, extremity attack, and demonstrate the vulnerability when the attack is utilized in the individual identification framework.
Extremity attack utilizes a statistic we termed , which quantifies how extreme an individual’s gene expression level is among the expression levels of all the samples. For the gene expression level, ,  is defined as:

where  is the expression level of  individual. Extremity is bounded between -0.5 and 0.5. Figure SXX shows the mean absolute extremity distribution of all the gene expression levels for all the individuals. The average absolute extremity per individual is around 0.25.
Figure XX illustrates the extremity attack. Extremity attack utilizes the fact that the more extreme gene expression levels most likely coincide with one of the extreme genotypes, i.e., homozygous genotypes (Refer to Methods Section 4.7). For example, if the gradient of association between eQTL genotype and expression levels is positive, the individuals that have high positive extremity are most likely to have genotype value of 2 and the individuals with high negative extremity are most likely to have eQTL genotype value of 0 and vice versa when the gradient is negative. One aspect of the extremity attack is that it predicts only homozygous (i.e., most extreme) genotypes. Figure XX shows the accuracy of genotypes predictions with extremity attack. 
We next used the extremity based prediction in the individual identification framework (Fig 2). Fig XX shows the fraction of vulnerable individuals. More than 95% of the individuals are vulnerable for most of the parameter selections. In addition, when the gender and/or population information is present as auxiliary information, the vulnerability increases to 100% for most of the eQTL selections.
CONCLUSION AND DISCUSSION
In this paper we present a framework for quantification and analysis of sensitive individual identifying information leakage from the gene expression datasets. The premise of sharing genomic information is that there is always an amount of leakage in the sensitive information. We believe that this quantification methodology can be utilized for more extensive analysis of the leakage in sensitive information in the genomic datasets. The quantification can be further developed for guaranteeing bounds on anonymized datasets.
[[As the eQTL studies are done on larger and larger datasets, new (probably population specific) eQTLs are going to be identified which will increase leaking identifying information.]]
[[How does this framework compare to other formalities? For example differential privacy? Differential privacy is about release mechanisms in statistical databases. Our analysis is about release of datasets. It is similar but differential privacy does not enable quantification of the leakage.]]
[[There is also utility satisfying differential privacy. Our study enables understanding which utility to hide and which to reveal.]]
 [[External information: 1 bits of gender information can be easily predicted from ; how does this change vulnerability; this justifies the fact that we need “buffering” in anonymization to protect against unaccounted external information that may cause increased vulnerability.]]
We also presented a simple approach for identification of individuals that utilizes extremity based genotype prediction. When employed in the individual identification framework, this simple approach renders a very significant number of individuals vulnerable. This illustrates the amount the viability of individual identification from gene expression datasets.
METHODS
Quantification of Individual Identifying Information and Predictability
To quantify the individual identifying information, we use surprisal, measured in terms of self-information of the genotypes:

where  is an eQTL variant and  is a specific genotype for ,  is the probability (frequency) of the genotype in the sample set and  denotes the individual identifying information.  Assessing this relation, the genotypes that have low frequencies have high identifying information, as expected. Given multiple eQTL genotypes, assuming that they are independent, the total individual identifying information is simply summation of those:

 [[Predictability: Exponential of the conditional distribution given the gene expression levels]]
We measure the predictability of eQTL genotypes using an entropy based measure. Given the eQTL, , and the correlated gene expression 

where  denotes the predictability of   given the gene expression level , and  denotes the entropy of  given gene expression level  for  . The extension to multiple eQTLs is straightforward. For the j^th individual, given the expression levels   for all the eQTLs, the total predictability is computed as 


[[Cite and show that this measure is in [1/3,1] for one genotype. The interpretation of this measure is that the prediction process is converted to random guessing with uniform probability distribution where average correct prediction probability is \pi. This is the reciprocal of Shannon diversity; the average number of genotype predictions that you can randomly equally likely choose from.]]
In addition, this measure is guaranteed to be between 0 and 1 such that 0 represents no predictability and 1 representing perfect predictability. The measure can be thought as mapping the prediction process to a uniform random guessing where the average correct prediction probability is measured by .
Estimation of Genotype Entropy for Quantification of Predictability 
[[How did we estimate the genotype entropy and conditional specific entropies?]]
[[We bin the expression values to log_2(N_i) different bins \cite{…}]]
MAP (Maximum a-posteriori) Genotype Prediction
[[Describe the binning and MAP selection of genotypes]]
Linking of the Predicted Genotypes to Genotype Dataset
Given set of predicted genotypes for individual j, ;

If ; j is vulnerable
[[Formulate when the auxiliary information is available?]]

Extremity Attack
[[Define the extremity attack: Correlation and extremity parameters]]
Datasets
[[GEUVADIS dataset, and eQTLs, 1000 genomes dataset]]
[[Other eQTL datasets?]]

