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ABSTRACT  
With the unprecedented increase in the size of genomic datasets, the quantification and protection of 
privacy-sensitive information is a vital issue to be addressed for protection of anonymity of the 
participants of the scientific studies.   

[[Previous approaches: Differential privacy, different types of attacks, inversion attack, linking attack]] 

 [[It has been shown previously that differential privacy formality, which is theoretically the most 
complete data protection scheme, for releasing genomic information may lead to very poor 
utility~\cite{XX,XX}. It is therefore necessary to analyze where the sensitive information exists in 
different datasets and how protection of the sensitive data affects data utility. To accomplish this, This 
study furthers the understanding of the predictable sensitive genetic information from gene expression 
datasets.]] 

In this paper, we present a comprehensive framework for analysis of sensitive information in the gene 
expression datasets. We present a general scenario where the gene expression datasets can be 
exploited to predict eQTL genotypes to link independently distributed anonymized datasets by an 
adversary to re-identify individuals.  

[[1st act::First we present quantification of the predictability of eQTL genotypes from gene expression 
and the leakage of individual identifying information in the predicted genotypes. Using the 
quantifications, we study the tradeoff between the predictability of the genotypes and the amount of 
identifying information leakage.]] 

[[2nd act::We next present a 3-step general framework for individual identification. This analysis can 
bring important insight into the extent of vulnerability of individuals and what can be predicted, which is 
important for designing differentially private release algorithms for analysis of gene expression datasets. 
In addition, the framework that we are presenting can be utilized for the analysis of vulnerability in the 
future eQTL studies.]] 

 [[We also analyze the cross-population analysis of leakage]] 

[[We need to say somewhere that we are concentrating on linking type of attacks]] 

[[We also do a cross-dataset analysis of the reproducibility of genetic leakage attack using different 
datasets.]] 



[[3rd act::We finally propose a practical linking attack method. (Extremity attack) An example for the 
practicality of all the analysis.]] 

[[This is also the first time a systematic analysis of genetic leakage is analyzed with respect to prediction 
from gene expression. ]] 

1 BACKGROUND 
 [[Define sensitive information: Anything that the individuals do not want leaked]] 

[[Previous work: Homer, Schadt, Erlich, …]] 

[[Genetic leakage protection: Several of these: De-identification based (removal 
of names), Encryption based, more complicated de-identification techniques (k-
anonymization), differential privacy based (makes a very high compromise of 
utility for privacy’s sake). Last two are active field of research.]] 

[[In this paper, we analyze identifiability of SNP genotypes and identifiability of 
individuals in the context of linking attacks. These are the most prevalent attacks 
that can affect the currently generated genomics datasets.]] 

[[First, we present an analysis framework that formalizes and decomposes the 
analysis of genetic leakage in the context of linking attacks. Our framework 
decomposes the linking attack into 3 steps that we study in detail.  

-- We make the assumption that the attacker recovers the conditional 
probabilities perfectly, which enables us to be as stringent about what the 
attacker can predict as possible. 

-- We evaluate the incorporation of auxiliary information. 

-- Simulate suboptimal conditional probabilities: Relax the assumption that the 
attacker can build the posterior probabilities of genotypes given expressions. How 
much vulnerability exist? 

This framework can be used for leakage analysis in the future studies. 

We finally present a practical attack for prediction of genotypes from gene 
expression levels.]] 



[[The paper is organized as follows: We first analyze the predictability of the SNPs 
and evaluate the tradeoff between the amount of identifying information 
recovered versus the predictability of the eQTLs using expression datasets. Next 
we present the 3 step individual identification framework and study different 
aspects of vulnerability using the framework. In the last section, we present a 
novel and simple but effective genotype prediction method, which can be 
employed in most scenarios, and use it in our framework.]] 

2 RESULTS 

2.1 Overview of the Privacy Breaching Scenario by Linking Attacks 
Figure 1 illustrates the privacy breaching scenario that is considered. The breach occurs by linking two 
datasets such that one of the datasets contains the individual identities and corresponding genotypes 
and the second dataset contains the gene expression levels and sensitive information (e.g. disease 
status) about each individual. The second dataset is assumed to be anonymized by removal of the 
individual identities to protect the individuals. The adversary gains access to both datasets and links the 
datasets to associate the sensitive information to individuals. While performing the linking “attack” the 
adversary utilizes publicly available databases. In the considered scenario, the eQTL databases are 
utilized which enable linking the expression levels to the genotypes.  

[[Present GEUVADIS dataset]] 

[[We first present the notations]] The gene expression and genotype datasets are stored in 
𝑁𝑞 ×𝑁𝑖𝑒  and 𝑁𝑞 × 𝑁𝑖𝑣 matrices 𝑒 and 𝑣, respectively, where 𝑁𝑖𝑒 and 𝑁𝑖𝑣 denotes the number of 
individuals in gene expression and genotype datasets, respectively; 𝑁𝑞 denote the number of variants 
and genes, respectively, in the eQTL dataset. 𝑘𝑡ℎ row of 𝑒, 𝑒𝑘, contains the expression values for 𝑘𝑡ℎ 
gene and 𝑒𝑘,𝑗 represents the expression of the 𝑘𝑡ℎ gene for 𝑗𝑡ℎ individual. Similarly, 𝑙𝑡ℎ row of 𝑣, 𝑔𝑙, 
contains the genotypes for 𝑙𝑡ℎ variant and 𝑣𝑙,𝑗 represents the genotype (𝑣𝑙,𝑗 ϵ {0,1,2}) of 𝑙𝑡ℎ variant for 
𝑗𝑡ℎ individual.  We will denote the random variables (RVs) whose values represent that the gene 
expression of 𝑘𝑡ℎ gene and the variant genotypes for 𝑙𝑡ℎ variant with {𝐸𝑘}  and {𝑉𝑙}, respectively. The 
rows of the expression and genotype dataset matrices are matched to each other such that the gene 
and genotype RV pairs {(𝐸𝑘 ,𝑉𝑘)}, 𝑘 < 𝑁𝑞 , are highly correlated. We will denote the correlation with 
ρ(𝐸𝑘 ,𝑉𝑘). In many of the eQTL studies, this correlation is reported with the statistical significance and 
several other information (for example, population of individuals for which the correlation is observed) 
in a table. The sign of ρ(𝐸𝑘 ,𝑉𝑘) represents the direction of association, i.e., which genotype corresponds 
to higher expression  and the magnitude represents the strength of the association. 

[[Nature of eQTL gene expression correlations: Extremity based associations 
(extremities in both the genotypes and in the gene expression levels associate 



with each other) are identified in eQTL studies. This is the main point of leakage of 
genetic information from gene expression datasets, which are identified generally 
via a linear model.]] 

[[For generalization of the analysis, we assume that the attacker can predict with 
high certainty the posterior probabilities. Previous studies have presented 
different approaches for predicting a-posteriori probabilities of genotypes given 
gene expression levels.]]  

2.2 Quantification of Tradeoff between Predictability of the SNP Genotypes 
and Individual Identification 

[[Predictability of the eQTL genotypes, individual identification information. This is the analysis where the attacker is to match with no database 
at hand by just predicting all the SNPs he chooses to predict.]] 

In the linking attack, the attacker aims to identify the correct individual among 𝑁𝑖  individuals. In order to 
identify an individual, if the attacker can predict the genotypes for a set of eQTLs such that the joint 
probability of the genotypes is 1/𝑁𝑖, the attacker can distinguish the individual from other individuals 
with certainty. In other words, if the attacker can gain access to log2(𝑁𝑖) bits of information using the 
genotypes predicted from expression data, the individual is vulnerable. To quantify the identifying 
information, we introduce individual identifying information (III): 

𝐼𝐼𝐼({𝑉1 = 𝑔1,𝑉2 = 𝑔2, … ,𝑉𝑁 = 𝑔𝑁}) = −� log�𝑝(𝑉𝑘 = 𝑔𝑘)�

𝑁𝑞

𝑘=1

. 

where 𝑉𝑘 is the kth  eQTL and 𝑔𝑖 is a specific genotype for the eQTL (Refer to Methods Section 3.1 for 
more details) and III denotes the individual identifying information. Practically, the individual identifying 
information can be interpreted as a quantification of how rare the genotypes are. If the list contains 
many rare genotypes, it contains significant amount of identifying information. The attacker aims to 
predict as many eQTLs as possible such that III is at least log(𝑁𝑖).  

In order to maximize the amount of III, the attacker will aim at predicting as many eQTL genotypes as 
possible. The predictability of the eQTLs from gene expression, however, is not uniform as some of them 
are more highly correlated with the gene expression levels compared to others, given in |ρ(𝐸𝑘 ,𝑉𝑘)|. 
Thus, the attacker will try to select the most predictable eQTLs genotypes that are most correctly 
predictable so as to maximize the amount of leaked identifying information.  To quantify predictability 
of eQTL genotypes from expression levels, we use exponential of the conditional distribution of 
genotype given gene expression level as a measure of predictability. Given the gene expression levels for  
𝑗𝑡ℎ individual, the predictability of all the eQTL genotypes is computed as 

𝜋�{𝑉𝑘}, �𝐸𝑘 = 𝑒𝑘,𝑗�� = exp �−�𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗)

𝑁𝑞

𝑘=1

� 



where 𝜋 denotes the predictability of  𝑉𝑘 given the gene expression level 𝑒𝑘,𝑗. Given a list of eQTLs, the 
joint entropy is used, which (Refer to Methods Section 3.1 for more details). This measure can be 
interpreted as the average probability of correct prediction of the genotypes given the expression levels.  

We assume that the attacker will sort the eQTLs in terms of their predictability. For this, we assume the 
attacker uses the absolute value of the correlation between the genotype and the expression, i.e., 
|ρ(𝐸𝑘 ,𝑉𝑘)|. In order to evaluate the tradeoff between the identifying information of the top predictable 
eQTLs and their predictabilities, we plotted average III versus average 𝜋 in Fig 2.  We first sorted the 
eQTLs with respect to the reported ρ(𝐸𝑘 ,𝑉𝑘) then for the top 20 eQTLs, we estimated mean \pi and 
mean III for all the samples. Figure 2a shows that there is significant leakage of III at 20% average 
predictability, there is approximately 7 bits of leakage and at 5% predictability, there is around 11 bits of 
leakage, which is enough to identify, on average, all the individuals in the dataset. (At 12.4% 
predictability, the leakage is approximately 9 bits for 6 top eQTLs.) Figure 2b and 2c also shows the 
average leakage for the randomized eQTL dataset where the genes and eQTLs are shuffled to generate a 
background model. The leakage is significantly smaller compared to the original eQTL dataset (At an 
average predictability of 12.4%, the average leakage is approximately 3.5 bits.) 

2.3 A Generalized Individual Identification Model 
[[We decompose the linking attack into 3-steps to study different variations and parameterizations of the linking attack.]] 

Following the results in the previous section, we present a 3 step model for individual identification. 
Figure 3a summarizes the steps in the individual identification. In the first step, the attacker selects the 
eQTLs that will be used in the linking attack. The selection of eQTLs can be based on different criteria. As 
described in the previous section, the most accessible criterion is filtering the eQTLs based on absolute 
value of the reported correlation coefficient with a predefined threshold. Another criterion is to use the 
estimated conditional entropy of the genotype given the gene expression level, which is a measure of 
the predictability of the eQTL genotype (See Fig 3b). The second step is the prediction of the selected 
eQTLs. The attacker uses a predefined prediction model. In this step we are assuming that the attacker 
can reliably predict the posterior probabilities of the genotypes given the gene expression levels as 
illustrated in Fig 3b. The attacker uses the posterior probabilities of the genotypes to predict the 
maximum a-posteriori (MAP) genotype. In this prediction, the attacker assigns the genotype that has the 
highest a-posteriori probability (Refer to Methods Section 4.3). The third and final step of individual 
identification is comparison of the predicted genotypes to the genotypes database to identify the 
individual that matches the predicted genotypes. We assume that the attacker links the predicted 
genotypes to the individual in the genotype dataset with the smallest number of mismatches compared 
to the predicted genotypes. 

2.3.1 Individual and Population Identification Accuracy 
 [[We assume that the attacker selects the eQTLs using 2 different criteria: (1) Absolute value of the gradient of correlation reported in the eQTL 
resource, (2) Estimated predictability of the genotype: Entropy of the conditional distribution of genotypes for each individual]] 

We assume that the attacker uses the absolute value of the reported correlation between the variant 
genotypes and gene expression levels to select the eQTLs. Fig SXX shows the distribution of the absolute 
correlation levels for the eQTL dataset. The genotypes for the selected eQTLs are predicted using MAP 



prediction (Refer to Methods Section 4.3). Figure 4a shows the the number of selected eQTLs and the  
fraction correctly predicted MAP genotypes with changing absolute correlation thresholds.  

[[Fraction of vulnerable individuals]] 

Using the predicted eQTL genotype selected at each absolute correlation cutoff, the attacker performs 
the 3rd step in the attack and links the predicted genotypes to the genotype dataset to identify 
individuals (Refer  to Methods Section 4.4). Figure 5a shows the fraction of vulnerable individuals. The 
fraction of vulnerable individuals increase as the absolute correlation threshold increases and fraction is 
maximized at around 0.35. At this value, 95% of the individuals are vulnerable. This illustrates that the 
power of vulnerability is maximized at absolute correlation threshold of 0.35. This can be explained by 
the increase in identifying information leakage as the accuracy of the predicted genotypes increase 
while there is a balancing decrease in the identifying information leakage with decreasing number of 
eQTL genotypes predicted. 

 [[Auxiliary Information: Gender and/or Population]] 

We also evaluate the case when the attacker gains access to auxiliary information. As the sources of 
auxiliary information, we use the gender and population information that is available for all the 
participants of 1000 Genomes Project on the project web site. We assume that the attacker either gains 
access to or predicts the gender and/or the population of the individuals and uses the information in the 
3rd step of the attack (Refer to Methods Section 4.4). Figure 5a shows the fraction of vulnerable when 
the auxiliary information is available. When the auxiliary information is available, more than 95% of the 
individuals are vulnerable to identification for all the eQTL selections up to when the absolute 
correlation threshold is 0.6. 

 [[Population stratification of vulnerable individuals to populations: It is important 
to predict the probabilities from the correct population for diverse populations.]] 

 [[Population confusion matrix and accuracy statistics; YRIs get confused with 
other populations; this is most probably caused by the fact that at the expression 
levels of YRI’s, the MAP estimates push them to the wrong genotype. This 
illustrates that matching of the target population and the training population is 
vital in individual identification.]] 

 [[To follow this up, we generate population specific posteriors learned on 
different populations. How does this change population prediction accuracy?]] 

2.3.2 Effect of Posterior Probability Distributions based Identification Accuracy 
In this section, we relax the assumption that the attacker can predict the posterior distribution of eQTL 
genotype given the expression values. We assume that the attacker predicts a mixture of the posterior 
and prior distributions of eQTL genotypes based on the predictability measure.  



[[The bottomline is that when the posterior is not well built, the vulnerability decreases significantly, but 
there is still substantial vulnerability.]] 

2.3.3 [[OPTIONAL]] Cross Study Individual Identification Accuracy 
[[Stranger et al eQTLs on GEUVADIS expression data results: ~35% with Stranger 
et al eQTLs]] 

2.4 Genotype Prediction by Extremity Attack 
This analysis is useful for getting quantification of leaked genetic information from gene expression 
datasets. To predict the eQTL genotypes from gene expression levels, we propose using a method that 
we name “extremity attack”. In this attack, given one gene whose expression level correlates with a 
variant. The prediction utilizes a statistic we termed 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 of gene expression level which 
quantifies how extreme an individual’s gene expression level is away from the mean of the distribution. 
Given the gene expression level, 𝑒, for a 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 is defined as following: 

𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒) =
𝑟𝑎𝑛𝑘 𝑜𝑓 𝑒

𝑁
− 0.5. 

Extremity is bounded between -0.5 and 0.5. Figure 8a illustrates the extremity attack. The attacker 
utilizes the extremity and the gradient of association between the gene expression level to assign a 
genotype to the associated variant.  

[[Figure 3bc shows the accuracy of extremity attack with different extremity and 
correlation thresholds.]] 

2.5 Individual Identification with Extremity Attack 
[[Fig. 5a; Distribution of the maximum of absolute extremity over all the samples. How well does expression extremity identify individuals? It is 
mostly uniform except for some samples.]] 

To formalize the analysis using the low frequency multi-SNP genotypes, we utilize the k-anonymization 
framework. K-anonymization formalizes a way to identify the number of vulnerable individuals and also 
to ensure the anonymization, which is presented in Section 2.5. Briefly, in order to identify the 
individuals that are vulnerable to the linking attack, we identify the individuals that have the low 
frequency multiple SNP genotypes such that all the SNP genotypes are highly predictable using the 
expression dataset.  

[[External information: 1 bits of gender information can be easily predicted from ; 
how does this change vulnerability; this justifies the fact that we need “buffering” 
in anonymization to protect against unaccounted external information that may 
cause increased vulnerability.]] 



2.6 Anonymization 
[[Do anonymization for all possible parametrizations to decrease the privacy loss 
to minimum]] 

[[k-anonymization formality for guaranteeing anonymity]] 

3 CONCLUSION AND DISCUSSION 
In this paper we present a simple framework for quantification of the sensitive information leakage in 
the linking attack scenarios. The premise of sharing genomic information is that there is always an 
amount of leakage in the sensitive information. We believe that this quantification methodology can be 
utilized for more extensive analysis of the leakage in sensitive information for high level correlations in 
the genomic datasets. The quantification can be further developed for guaranteeing bounds on 
anonymized datasets. 

[[How does this framework compare to other formalities? For example 
differential privacy? Differential privacy is about release mechanisms in statistical 
databases. Our analysis is about release of datasets. It is similar but differential 
privacy does not enable quantification of the leakage.]] 

[[As the eQTL studies are done on larger and larger datasets, new (probably 
population specific) eQTLs are going to be identified which will increase leaking 
identifying information.]] 

We also presented a simple attack that is based on using extremity statistic to predict genotypes that 
can implicate the sensitive information. Compared to previous approaches, this statistic is very easy to 
compute.  

4 METHODS 

4.1 Quantification of Individual Identifying Information and Predictability 
To quantify the individual identifying information, we use surprisal, measured in terms of self-
information of the genotypes: 

𝐼𝐼𝐼�𝑉(𝑙𝑖) = 𝑔� = 𝐼�𝑉(𝑙𝑖) = 𝑔� = −log (𝑝�𝑉(𝑙𝑖) = 𝑔�) 

where 𝑉(𝑙𝑖) is an eQTL variant and 𝑔 (𝑔𝜖{0,1,2}) is a specific genotype for 𝐺, 𝑝(𝐺 = 𝑔) is the probability 
(frequency) of the genotype in the sample set and 𝐼𝐼𝐼 denotes the individual identifying information.  
Assessing this relation, the genotypes that have low frequencies have high identifying information, as 



expected. Given multiple eQTL genotypes, assuming that they are independent, the total individual 
identifying information is simply summation of those: 

𝐼𝐼𝐼�{𝑉(𝑙1) = 𝑔1,𝑉(𝑙2) = 𝑔2, … ,𝑉(𝑙𝑁) = 𝑔𝑁}� = −� log �𝑝�𝑉(𝑙𝑖) = 𝑔𝑖��
𝑁

𝑖=1

. 

The individual identifying information after the gene expression levels are revealed is basically the 
conditional 𝐼𝐼𝐼 given the gene expression levels: 

𝐼𝐼𝐼𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔({𝐺1 = 𝑔1,𝐺2 = 𝑔2, … } | {𝐸1 = 𝑒1,𝐸2 = 𝑒2, … }) = −� log (𝑝(𝐺𝑖 = 𝑔𝑖| 𝐸𝑖 = 𝑒𝑖))
𝑁

𝑖=1

 

where 𝐸𝑖  represents the gene expression level for the i^th gene, which is associated with the genotype 
of 𝐺𝑖. The leakage in 𝐼𝐼𝐼 is the remaining 𝐼𝐼𝐼 after expression levels are revealed: 

𝐼𝐼𝐼𝑙𝑒𝑎𝑘𝑒𝑑 = 𝐼𝐼𝐼 − 𝐼𝐼𝐼𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔. 

[[Predictability: Exponential of the conditional distribution given the gene expression levels]] 

We measure the predictability of eQTL genotypes using an entropy based measure. Given the eQTL, 
𝑉(𝑙𝑖), and the correlated gene expression 𝐸(𝑘𝑖) 

𝜋�𝑉(𝑙𝑖)�𝐸(𝑘𝑖) = 𝑒� = exp (−𝐻(𝑉(𝑙𝑖)|𝐸(𝑘𝑖) = 𝑒) 

where 𝜋 denotes the predictability of  𝑉(𝑙𝑖) given the gene expression level 𝑒, and 𝐻 denotes the entropy 
of 𝑉(𝑙𝑖) given gene expression level 𝑒 for 𝐸(𝑘𝑖) . The extension to multiple eQTLs is straightforward. For 
the j^th individual, given the expression levels  𝑒𝑘,𝑗 for all the eQTLs, the total predictability is computed 
as  

𝜋��𝑉(𝑙𝑖)�, �𝐸(𝑘𝑖) = 𝑒𝑘𝑖,𝑗�� = exp�𝐻�−�𝑉(𝑙𝑖)� | �𝐸(𝑘𝑖) = 𝑒𝑘𝑖,𝑗��� 

= exp �−�𝐻(𝑉(𝑙𝑖)|𝐸(𝑘𝑖) = 𝑒
𝑖

� 

[[Cite and show that this measure is in [1/3,1] for one genotype. The 
interpretation of this measure is that the prediction process is converted to 
random guessing with uniform probability distribution where average correct 
prediction probability is \pi.]] 

In addition, this measure is guaranteed to be between 0 and 1 such that 0 represents no predictability 
and 1 representing perfect predictability. The measure can be thought as mapping the prediction 
process to a uniform random guessing where the average correct prediction probability is measured by 
𝜋. 



4.2 Estimation of Genotype Entropy for Quantification of Predictability  
[[How did we estimate the genotype entropy and conditional specific entropies?]] 

[[We bin the expression values to log_2(N_i) different bins \cite{…}]] 

4.3 MAP (Maximum a-posteriori) Genotype Prediction 
[[Describe the binning and MAP selection of genotypes]] 

4.4 Linking of the Predicted Genotypes to Genotype Dataset 
Given set of predicted genotypes for individual j, {𝑣′𝑙,𝑗}; 

𝑝𝑟𝑒𝑑𝑗 = argmax
𝑎

{�𝐼(𝑣𝑏,𝑗
′ , 𝑣𝑏,𝑎 

 )
𝑏

}  

If 𝑝𝑟𝑒𝑑𝑗 = j; j is vulnerable 

[[Formulate when the auxiliary information is available?]] 

 

4.5 Population Specific Posterior Distributions 
[[Describe the binning and population based selection of genotypes.]] 

4.6 Suboptimal Posterior Generation 
[[Describe a-priori mixed posterior generation]] 

4.7 Extremity Attack 
[[Define the extremity attack: Correlation and extremity parameters]] 

4.8 K-Anonymization  
[[Define k-anonymization]] 

[[Present in detail the anonymization procedure that we propose]] 

5 Datasets 
[[GEUVADIS dataset, and eQTLs, 1000 genomes dataset]] 

[[Other eQTL datasets?]] 
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