PAWG-15: Mitochondria and HLA

- Leader
 - Han Liang
 - Hidewaki Nakagawa
- Members
 - Japan
 - Seiya Imoto, Shinichi Mizuno, Akihiro Fujimoto, Tatsuhiko Tsunoda, Rui Yamaguchi, Satoru Miyano,
 - Korea
 - Kwang-Sung Ahn, Hyun Sub Cheong, Jung Kyoon Choi, Yeun-Jun Chung, Jongsun Jung, Hyung-Lae Kim, Youngil Koh, Ji Wan Park, Keunchil Park, Sungsoo Yoon, Youngwook Kim
 - USA
 - Chad Creighton, Leng Han, Jun Li, Yuan Yuan, Li Zhang, Mike McLellan, Matt Bailey, John Weinstein, Cathy Wu, Sachet, Gad Getz

Mitochondria and Cancer

- Motivation
 - Cells' powerhouse and suicidal weapon store
 - Dysregulated in cancer cells:
 Warburg effect

Goals and planned analyses

- <u>Somatic mutations in mitochondrial DNA (mtDNA)</u>
- Copy number variations of mtDNAs
- Co-evolution and co-expression in mitochondrial genes with nuclear genes
- Clinical relevance of mtDNA variations
- Energy metabolism of mtDNA variations

Mutation Callers

- MuTect: SNV
- VarScan: SNV and indel
- GATK Unified Genotyper: SNV and indel

Running time

- MuTect: ~10 mins
- VarScan: ~ 1 hour
- GATK: > 6 hours

mtDNA benchmark dataset

- Somatic mtDNA calls made on the TCGA KICH (chrCC) cases
 - <u>53</u> samples verified by long-range PCR (LR-PCR)
- <u>37</u> Samples shared between ICGC Train2 and benchmark dataset
 - <u>96</u> events by LR-PCR: <u>70</u> SNVs, <u>26</u> indels

Events detected by Mutect

Events detected by VarScan

Events detected by GATK

Varscan shows the highest sensitivity and precision

ΤοοΙ	Total events	True positive	Sensitivity (Total events = 96)	Precision
MuTect	11	4	4%	36%
VarScan	57	54	56%	95%
GATK	49	38	40%	78%

Most of the 96 events have low heteroplasmy

Heteroplasmy

VarScan was able to capture most (22/25) of the **top events**

SNV/indel	POS	REF	ALT	Sample	heteroplasmy	Region	Mutect	GATK	VarScan
indel	11866	А	AC	TCGA-KL-8326	0.82	ND4			Yes
indel	65	Т	TG	TCGA-KL-8327	0.59	D-Loop			Yes
SNV	16426	С	А	TCGA-KL-8331	0.50	D-Loop			
SNV	5767	С	Т	TCGA-KL-8333	0.73	С		Yes	Yes
SNV	14159	С	А	TCGA-KL-8341	0.81	ND6		Yes	Yes
indel	3565	А	AC	TCGA-KL-8343	0.79	ND1			Yes
indel	13127	AC	А	TCGA-KL-8344	0.86	ND5		Yes	Yes
SNV	4569	G	А	TCGA-KM-8438	0.82	ND2			Yes
SNV	5738	G	С	TCGA-KM-8438	0.86	OLR			Yes
indel	65	Т	TG	TCGA-KM-8438	0.93	D-Loop			Yes
indel	13230	CA	С	TCGA-KM-8441	0.90	ND5		Yes	Yes
indel	3105	AC	А	TCGA-KM-8442	0.93	16s rRNA			
SNV	16426	С	А	TCGA-KM-8476	0.51	D-Loop			
indel	12384	TC	Т	TCGA-KM-8477	0.76	ND5		Yes	Yes
SNV	10806	G	А	TCGA-KM-8477	0.98	ND4		Yes	Yes
SNV	4429	G	А	TCGA-KM-8477	0.99	Μ			Yes
SNV	4969	G	С	TCGA-KM-8477	0.99	ND2		Yes	Yes
indel	12417	С	CA	TCGA-KN-8419	0.72	ND5			Yes
indel	65	Т	TG	TCGA-KN-8422	0.71	D-Loop			Yes
SNV	1900	А	G	TCGA-KN-8428	0.93	16s rRNA			Yes
SNV	6490	Т	С	TCGA-KN-8432	0.95	COI	Yes	Yes	Yes
SNV	3922	G	А	TCGA-KN-8434	0.67	ND1		Yes	Yes
SNV	9651	С	Т	TCGA-KN-8434	0.76	COIII			Yes
SNV	16156	G	А	TCGA-KN-8435	0.51	D-Loop		Yes	Yes
indel	13230	CA	С	TCGA-KN-8437	0.89	ND5		Yes	Yes 12

Summary

- Focused on shared samples between the benchmark dataset and ICGC Train2
- Compared performance of three popular mutation callers
- VarScan showed the best performance

Future directions

 Apply the best performing tool (VarScan) to all Train2 samples

Cancer ImmunoGenomics

- Immunological surveillance in carcinogenesis and immunological response to cancer treatment are now an important issue in cancer research and clinics.
- Hematological tumors are inflammation-related cancers are involved with genetic alterations of many immunology-related genes

HLA/KIR genotyping and mutation Mutations and expression of immunology-related genes Neo-antigens

HLA and Immunogenomics

- ✓ They are located at Chr 6p21 and most polymorphic regions
- Their variants are related with immune response and immune diseases
- ✓ The IMGT/HLA Database is a central repository for sequences of HLA
 - Genomic approach to cancer immuno-editing in human through pan-cancer analysis (Imoto Seiya, Shin-ichi Mizuno, Satoru Miyano, University of Tokyo)
 - Defining genomic alterations underlying "immunologic tumor" using whole genome sequencing data of various tumor types (Jongsun Jung, Youngil Koh, Sung-Soo Yoon, Seoul National University)
 - Characterization of DNA copy number variation in HLA region in the human genome (Li Zhang, MDACC)
 - Sachet, Cathy Wu , Gad Getz

datasets

IMGT from EBI Allele Frequency Net Database

 IPD IMGT/HLA – 12,672 alleles from Class I, Class II, and Class II–DRB genes

IPD KIR – 753 alleles from 17
 KIR genes (15 protein genes, 2
 pseudo genes) – 27 fully
 sequenced KIR haplotypes

HLA Pilot: 10 WGS data (x30) of RIKEN liver cancers

HLA Genotyping from WGS Data

Shuto Hayashi¹, Rui Yamaguchi¹, Shinichi Mizuno², Mitsuhiro Konuma¹, Hidewaki Nakagawa³, Satoru Miyano¹, Seiya Imoto¹

¹Human Genome Center, The Institute of Medical Sciences, The University of Tokyo
²Division of Cancer Research, Center for Advanced Medical Innovation, Kyushu University
³Laboratory for Genome Sequencing Analysis, Center for Integrative Medical Sciences, Riken

Accuracy Rate for HLA Typing

We have evaluated our newly developed HLA typing method (a Bayesian model and MCMC procedure for selecting HLA using 20 pilot samples of Japanese liver cancer.

Table 1. The rate at which true HLA types are matched to the **best** output candidates.

Resolution	HLA-A	HLA-B	HLA-C
2-digit	1.000 (40/40)	0.975 (39/40)	1.000 (40/40)
4-digit	1.000 (40/40)	0.900 (36/40)	0.825 (33/40)
(6-digit)	(0.975 (39/40))	(0.875 (35/40))	(0.825 (33/40))

Note: the HLA typing kit is guaranteed to 4-digit and the results of 6-digit is just for reference.

Table 2. The rate at which true HLA types are included in the output candidates.

Resolution	HLA-A	HLA-B	HLA-C
2-digit	1.000 (40/40)	1.000 (40/40)	1.000 (40/40)
4-digit	1.000 (40/40)	0.975 (39/40)	0.975 (39/40)
(6-digit)	(0.975 (39/40))	(0.950 (38/40))	(0.975 (39/40))

Note: the HLA typing kit is guaranteed to 4-digit and the results of 6-digit is just for reference.

A Key Task: Collecting HLA Reads

- I. A "Plan-A BAM file" is converted to FASTQ files.
- II. The reads in the FASTQ files are aligned to the IMGT/HLA Database using BWA-MEM.
- III. The mapped reads are filtered based on the following information:
 - 1) The number of mismatches and indels
 - 2) Base qualities
 - 3) Paired reads or single reads
- Criteria for collecting reads are carefully tuned:
 - If the criteria are too strict, the collected reads would be insufficient to determine the target HLA types. (low coverage)
 - If the criteria are too loose, the collected reads would include a lot of reads produced by homologous non-target HLA genes and pseudogenes, which would lead to mistyping. (many false positives)

HLA typing and mutation detection

POLYSOLVER

Pan-cancer HLA mutational spectrum

Recurrent mutation sites indicate positive selection

Mutations	Frame shift	In frame	
 O Missense ● Nonsense ○ Nonstop 	▼ Insertion ▲ Deletion	♥ Insertion ▲ Deletion	Splice site □

test

Killer Immunoglobulin-Like Receptors (KIR) Detect "Missing Self"

NK Normal Cell Tumor Cell Infected Cell Self HLA KIR Triggering NK-mediated natural cytotoxicity: KARs (meaning: Killer Activation Receptors)

KIRs (meaning: Killer Inhibitory Receptors).

It is the balance between these competing signals that determines whether or not the cytotoxic activity of the NK cell should get started. 25 xxx Copyright © 2014 Samsung SDS All rights reserved | Confidential

KIR genes (1)

+-----

- KIR genes vary in length from 4 to 16 Kb
- three groups according to their structural feature
 - Type I KIR2D genes
 - Type II KIR2D genes
 - KIR3D genes

14 KIR Based on Structure

• Family of 14 different receptors on surface of NK cells

KIR Genes (common)

These 5 Are most common in European Americans

. Centromeric

- cA01 3DL3~2DL3~2DL1
- cB01 3DL3~2DS2~2DL2~2DL5~2DS3~2DL1
- cB02 3DL3~2DS2~2DL2

<u>Telomeric</u>

- tA01 2DL4~3DL1~2DS4~3DL2
- tB01 2DL4~3DS1~2DL5~2DS5~2DS1~3DL2

KIR genes Statistics for Release 2.6.0 (October 2014)

KIR Alleles : 753

Gene	2DL1	2DL2	2DL3	2DL4	2DL5	2DS1	2DS2	2DS3	2DS4	2DS5	3DL1	3DS1	3DL2	3DL3	2DP1	3DP1	# of total
Alleles	48	30	55	52	48	16	22	15	31	18	110	30	112	111	28	27	753
Proteins	28	13	31	28	20	8	8	6	14	12	66	17	82	57	0	0	390
Nulls	1	0	1	0	0	0	0	1	0	0	2	1	1	0	0	0	7

ully Sequenced KIR Haplotypes

he graphic below illustrates the gene composition of a number of fully sequenced KIR haplotypes. Where possible the alleles sequenced at the genes are also listed. The allele designations will be displayed if you hower the mouse over the gene of terest. Clicking on the gene of interest will also take you to the entry page for the allele listed. Some genes are only partially sequenced and for these an allele designation is not provided. Clicking on the Source name will take you to the Cell Directory narry for the allelet designation for security for the all for security for the allelet designation for security for the allet designation for security for the allet designating for securit

Approach

Gene Mapping of Reads

Allele Inference with Alignment Score Matrix

KIR2DL4 gene alleles

	KIR2DL4*027	KIR2DL4*026		KIR2DL4*021	KIR2DL4*020
R ₁	187 (1)	187 (1)	187 (1)	182 (4)	176 (5)
R ₂	180 (2)	190 (1)	180 (2)	170 (4)	170 (4)
R ₃	(2)	(1)	(2)	(4)	(5)
R ₄	(1)	(1)	(3)	(4)	(4)
R ₅	(2)	(1)	(3)	(4)	(4)
R ₆	(2)	(1)	(3)	(4)	(5)
RankSum	10	6	14	24	27

Most Possible Allele

Each cell is filled with the alignment score and the rank within a row.

SNU 04 examples

Mapping at KIR coding regions

SNU 04 example	Paired end (PE1)	Paired end (PE2)		
Total # of reads	2,096,062	2,096,062		
Initial Reads (Unmapped or Mapped at KIR region)	8,356	8,238		
- PE1 and PE2 at the same time	6,	250		
- uniquely mapping at a specific KIR gene	1,567			
- mapping at two KIR genes	128			
- mapping at three KIR genes	2	29		
- unmapped (all blast score is below than cutoff)	4,	526		

of reads

Candidate alleles 2DL4*00601,2DL4*00602

