Logical cooperativity of TFs with time delays

DW&TG 2015-3-4

Application of Loregic to worm embryonic expression

- -- Expression profiles of ~20K protein-coding genes across 25 time points (30 min each)
- -- **520** (TF1, TF2, Target) triplets
- For each triplet consider all combinations of TF1_delay = 0 .. max_delay and TF2_delay = 0 .. max_delay, such as (for max_delay = 3):

TF1_delay = 0, TF2_delay = 2

TF1 TF2 Target	X0 0 0 0	X0.5 0 0 0	X1 0 0 0	X1.5 0 0 0	X2 0 0 0	X2.5 1 0 0	X3 1 0 0	X3.5 1 0 0	X4 1 0 0	X4.5 1 0 0	X5 1 1 1	X5.5 1 1 1	X6 1 0 0	X6.5 1 1 0	X7 1 1 1	X7.5 1 1 1	X8 1 1 1	X8.5 1 1 1	X9 0 1 1	X9.5 0 1 1	X10 X 0 1 1	10.5 0 1 1	X11 > 0 1 1	(11.5 0 1 1	X12 0 0 0
																тг				~	TC 0			~	
																	1_0	lelay	/ =	3,	11-2	_de	elay	= 2	
	X0	X0.5	X1	X1.5	X2	X2.5	X3	X3.5	X4	X4.5	X5	X5.5	X6	X6.5	X7	I⊢ X7.5	Т_С _{X8}	x8.5	× = ×	З, х9.5	X10 X	d€ 10.5	21 ay x11 >	= 2 (11.5	X12
TF1	X0 0	X0.5 0	X1 0	X1.5 0	X2 0	X2.5 1	X3 1	X3.5 1	X4 1	X4.5 1	X5 1	X5.5 1	X6 1	X6.5 1	X7 1	X7.5	T_C X8 1	X8.5 1	× = ×9 0	3, X9.5 0	1F2 X10 X 0	d€ 10.5 0	x11 > 0	= 2 (11.5 0	X12 0
TF1 TF2	X0 0 0	X0.5 0 0	X1 0 0	X1.5 0 0	X2 0 0	X2.5 1 0	X3 1 0	X3.5 1 0	X4 1 0	X4.5 1 0	X5 1 1	X5.5 1 1	X6 1 0	X6.5 1 1	X7 1 1	X7.5 1	T_C X8 1 1	X8.5 1 1	<pre>/ = X9 0 1</pre>	3, X9.5 0 1	1F2 X10 X 0 1	2_d€ 10.5 0 1	×11 > 0 1	= 2 (11.5 0 1	X12 0 0

TF1_delay = 0, TF2_delay = 0

	X0	X0.5	X1	X1.5	X2	X2.5	Х3	X3.5	X4	X4.5	X5	X5.5	X6	X6.5	X7	X7.5	X8	X8.5	X9	X9.5	X10 X	10.5	X11 >	(11.5	X12
TF1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
TF2	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0
Target	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1	0

25 – max_delay

Find maximum Loregic-scores for each triplet across all logic-gates and ___ all (TF1_delay, TF2_delay) combinations

all gates, score>=0.4; max_delay=2

OR only, score>=0.4; max_delay=2

all gates, score>=0.4; max_delay=3

72

most of the high-scored triplets have either

(TF1_delay=0,TF2_delay=max_delay or (TF1_delay=max_delay,TF2_delay=0

2,1

all gates, score>=0.4; max_delay=4

2h delay ??

all gates, score>=0.4; max_delay=5

2.5 h delay ??

-- Delay vs no delay

What is the proper significance test for increase in scores with delays in TF activity?

Simulate many randomly shuffled (within rows) expression matrices and compare *P* values from t-test?

Highest (across all logic gates) scores for each triplet with (TF1_delay=0,TF2_delay=0) Highest (across all logic gates and all TF1_delay>0,TF2_delay>0) scores for each triplet

Trying other methods

Information theory

METHODOLOGY ARTICLE

BMC Bioinformatics Open Access

TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach

Pietro Zoppoli^{1,2}, Sandro Morganella^{1,2} and Michele Ceccarelli*^{1,2}

• Cross-correlation, LASSO

Inferring Time-Delayed Gene Regulatory Networks Using Cross-Correlation and Sparse Regression

Piyushkumar A. Mundra¹, Jie Zheng^{1,5}, Niranjan Mahesan², Roy E. Welsch^{3,4}, and Jagath C. Rajapakse^{1,3,6}

 ¹ BioInformatics Research Centre, School of Computer Engineering, Nanyang Technological University, Singapore 639798
 ² School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
 ³ Computation and Systems Biology, Singapore-MIT Alliance, Nanyang Technological University, Singapore 637460
 ⁴ Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
 ⁵ Genome Institute of Singapore, Biopolis Street, Singapore 138672
 ⁶ Department of Biological Engineering, Massachusetts Institute of Technology, USA