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Abstract 
Biological systems are complex. In particular, the interactions between molecular components 
often form inscrutable hairballs. While important progress has been made, quite a bit of criticism 
and concerns have also been raised. Here we argue that one way of untangling these hairballs is 
through cross-disciplinary network comparison, comparing biological networks with those from 
other disciplines. On the one hand, such comparison allows the transfer of mathematical 
formalism between disciplines, precisely describing the abstract associations between entities. 
This allows us to directly apply sophisticated formalism developed elsewhere to biology (e.g. 
related to network growth and scaling).  On the other hand, by examining in detail the mechanistic 
interactions in systems for which we have much day-to-day experience and then drawing 
analogies to more abstruse biological networks, network comparison allows us to leverage 
intuition from these systems to biology (e.g. applying social intuitions about management 
hierarchies to understand transcriptional regulatory networks). 
 
  



Introduction 
A signature of biology in the “omic” era is the shift of attention from a few individual components 
to a collection of constituents [1]. In the past structural biologists studied protein complexes 
consisting of a dozen of proteins, but now proteomic methods are able to probe the interactions 
between thousands of proteins. Similarly, geneticists who would previously manipulate a single 
gene for functional characterization can now employ high-throughput functional genomic 
techniques to study the relationships between all genes in an organism. In many cases, genome-
scale information describing how components interact is captured by a network representation 
[2]. However, given the size and complexity of the cellular molecular networks probed by 
genomics and systems biology, gaining intuition or novel insights about biology from these 
hairballs is not always easy [3].  
 
What approaches might help in deciphering hairballs? Throughout the history of science, many 
advances in biology were catalyzed by discoveries in other disciplines. For instance, the 
maturation of X-ray diffraction facilitated the discovery of the double helix and, later on, the 
characterization of structures of thousands of different proteins. Thus, one may wonder whether 
ideas in other areas of science could help us with the “hairball challenge”. In this essay, we argue 
that, while the influx of ideas in the age of reductionism mostly originated from subfields of 
physics and chemistry, to understand biology via a systems perspective, we can further benefit 
from new catalysts coming from disciplines as diverse as engineering, behavioral science and 
sociology. These new ideas are centered on the concept of network.  
 
Comparisons and analogies are not new to biology. For instance, to illustrate the principles of 
selection Dawkins came up with the idea of a meme, which is a unit carrying cultural information 
analogous to the gene in biology and which undergoes a similar form of selection [4]. This 
comparison has been further elaborated in the proto-field of phylomemetics, which concerns itself 
with phylogenetic analysis of non-genetic data [5]. Nevertheless, comparing a bio-molecular 
network with a complex network from a disparate field, say sociology, may sound like comparing 
apples to oranges. What kinds of comparison can truly deepen our understanding? The key lies 
at an appropriate level of abstraction and simplification. 
 
Given the complexity of the cell, a certain level of simplification is necessary for useful discussion. 
The description of cellular systems can be seen as a spectrum (Figure 1). On one extreme, there 
is a complete three or four-dimensional picture of how cellular components and molecules 
interact in space and time. On the other extreme, there is a simple parts list that enumerates each 
component without specifying any relationships. However currently neither extreme leads to a full 
understanding and intuition for the system as a whole. It is widely appreciated that the 
characteristics of a cellular system cannot be explained by the properties of individual 
components – the whole is greater than the sum of its parts. On the other hand, a complete 
picture of biological systems in three or four-dimensions remains far too ambitious goal for the 
current state-of-the-art in data acquisition. 
 
The network representation sits conveniently between these extremes. It captures some of the 
relationships between the components on the parts list in a flexible fashion, especially those 
where connectivity rather than exact spatial location determines the consequence. There are two 
thought processes in thinking about networks. The first focuses on mathematical formalisms and 
algorithmic aspects for practical problems. While physical associations between components can 
be viewed as a graph, mathematical thinking of networks goes beyond that by constructing 
networks via statistical association. This is exemplified by disease networks [6] in which a gene 
(genotype) and a disease (phenotype) are connected via the statistical association between the 
existence of genomic variants and the occurrence of the disease. Networks derived from co-
expression relationships provide another example [7]. The second way of thinking about networks 
assumes the underlying network is the backbone of a complex system, and understanding the 
networks is a key to deciphering the organization principles behind the system. This is particularly 
the case for networks that capture the mechanistic interactions within systems, for instance, the 
cellular networks resulting from protein-protein interactions and transcriptional regulation. 
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Thinking of networks in a mechanistic way is a process of concretization – as opposed to the 
approach in abstract, association networks. Instead of moving away from the complete 4D-
picture, concrete mechanistic networks aim to get closer to the picture. They are intended to 
describe and integrate many of the physical processes happening inside a living system-- for 
instance, the processing of information, the chemistry of metabolites and the assembly of 
molecular machines-- and therefore focus on incorporating various details of interactions. Adding 
further mechanistic detail onto a simple nodes-and-edges skeleton can be visualized as 
decorating edges with directionality, color, thickness etc. However, incorporating too much detail 
makes the description intractable. That is, the network formalism breaks down if we try to load 
spatial or temporal information as well as higher-order interactions onto the diagram. At a certain 
point, the actual four-dimensional picture is required. 
 
The two network approaches essentially complement each other. On one hand, thinking in an 
abstract fashion allows one to transfer mathematical formalism readily between disciplines. This 
can be beneficial for the biological sciences, in that it allows the application of formalism 
developed elsewhere to find fruitful application in biology. On the other hand, thinking 
mechanistically focuses more on the conceptual resemblances between networks.  Comparison 
of appropriately matched networks may provide additional intuition into the interactions between 
molecular components of cells by examining analogous interactions in complex systems for which 
we have more day-to-day experience.  
 
Abstract approach: comparison leverages mathematical formalism 
Let us first focus on abstract-association approach to biological networks. The power here of the 
network formalism lies in its simplicity. In the era of Big Data, the network is a very useful data 
structure with a wide variety of applications in both biology and other data intensive disciplines 
like computational social science.  
 
A key comparison between various complex systems focuses on network topology. The earliest 
and probably most important observation is that many networks organize themselves into scale-
free architectures in which a majority of the nodes contain very few connections (edges) while a 
few (also called hubs) are highly connected [8]. A surprisingly large number of networks that one 
comes into contact with have a scale-free architecture – e.g. the Internet, air transport routes and 
many social networks [9].  
 
Another important notion is that of a small-world network, which has a short average path length 
between any two nodes. A scale-free network is a kind of small-world network because hubs 
ensure that the distance between any two nodes is small [10][11]. For example, the presence of 
hubs in the airport network makes it possible to travel between any two cities in the world within a 
short interval of time. However, not every small-world network is scale-free. An example of this is 
the mammalian cerebral cortex. The cortical neuronal network is subdivided into more than 100 
distinct, highly modular, areas [12] that are dominated by connections internal to each area, with 
only ~20% of all connections being between neurons in different areas [13]. Each area is 
considered to have a primary feature, for example in processing sensory or cognitive signals. The 
cortical architecture has a high degree of clustering and a small average path-length yet exhibits 
an exponential degree-distribution [14].  
 
The behavior of scale-free networks is dominated by a relatively small number of nodes and this 
ensures that such networks are resistant to random, accidental failures but are vulnerable to 
coordinated attacks at hub nodes [15]. In other words, just as the Internet functions without any 
major disruptions even though hundreds of routers malfunction at any given moment, different 
individuals belonging to the same biological species remain healthy in spite of considerable 
numbers of random deleterious mutations in their genomic information. However, a cell is not 
likely to survive if a hub protein is knocked out. For example, highly connected proteins in the 
yeast protein-protein interaction network are 3-fold more likely to be essential than proteins with 
only a small number of links [16]. 
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There are more elaborate approaches to determining centrality than just counting neighbors – 
e.g. most famously, the original PageRank algorithm, underlying the Google search approach 
(see BOX). Besides, one can try to define centrality via network paths using such quantities as 
“betweenness” (See BOX, influence & bottleneck). It has been reported that bottlenecks (nodes 
with high betweenness) in biological networks are more sensitive to mutations than the rest of the 
network, even more so than hubs for regulatory networks [17][18]. Apart from properties of 
individual nodes, it is important to define medium-scale structures called communities (See BOX, 
modularity). A quantity dubbed modularity attempts to measure this, comparing the number of 
intra and inter module links in a network [19]. 
 
A broad class of algorithms applied in biological and other data science maps properties or 
features to the nodes in a network (Figure 2) [20][21]. Apart from visualization, this mapping 
provides ways to organize the features. For instance, it has been reported that mapping somatic 
mutations to gene networks allow for stratification of cancer into subtypes [22]. Another important 
example is the inference of missing data using “guilt by association” -- the idea that nodes having 
similar associations in the network tend to be similar in properties. In a social context, if your 
friends in an online social network use a particular product, you are more likely to use this product 
and the advertisements you view online are personalized based on these recommendation 
systems [23]. In a biological context, it has been observed that cellular components within the 
same network module are more closely associated with the same set of phenotypes than 
components belonging to different modules [24]. As a result, one can infer the function of a gene 
or a non-coding element based on its neighbors. The so-called diseases comorbidity network 
[25][26][27] makes use of a similar idea. In such networks, a node represents a disease and two 
diseases are connected if they are carried by a same patient as shown in medical claims data. 
Diseases (phenotypes) found in the same module in the network may operate similarly on a 
molecular level. 
 
Particularly informative network analyses have utilized ‘seed’ genes, a form of biological prior, to 
drive network creation. Instead of identifying hub genes based on connectivity, these hub genes 
are defined from the literature as being known to be causally implicated in a particular disease or 
phenotype. In one such example, genes implicated through copy-number variation in autism were 
used to cluster an expression network in healthy brain development in order to identify larger sets 
of putative autism-related genes as candidates for future investigation and diagnosis [28]. Such 
approaches are attractive as they maintain the power and flexibility of a network-based 
organizational scheme, but are grounded from the start in a particular biological context. 
 
We can further exploit the structure of a network with data on underlying dynamical processes. In 
social science, online retailers are interested in using purchase records to study how customers 
influence each other [29]. The same question is extremely common in biology, under the term 
“reverse engineering”. For example, how can we infer the developmental gene regulatory network 
from temporal gene expression dynamics? Ideally, one could write differential equations to fit the 
temporal data. However, most functional genomics experiments do not contain enough time-
points. To overcome this drawback, data mining techniques such as matrix factorization are 
employed. For instance, given the genome-wide expression profile at different time-points, one 
could project the high-dimensional gene expression data to low dimensional space and write 
differential equations to model the dynamics of the projections [30].  
 
In addition to the actual dynamic processes occurring on a network, one can explore evolutionary 
dynamics by comparing networks. In a biological context, pairs of orthologous genes (nodes) can 
be used to define conserved edges, called interologs and regulogs for the protein-protein 
interaction and regulatory networks, respectively. Furthermore, these can be used to align 
networks from different species [31] and to detect conserved and specific functional modules [32] 
across species. Based on a large collection of aligned networks between species, a mathematical 
formalism has been developed to measure the evolutionary rewiring rate between networks using 
methods analogous to those quantifying sequence evolution. In this context, it was shown that 
metabolic networks rewire at a slower rate compared to regulatory networks [33].  
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Despite an increasing number of studies applying networks in an abstract mathematical context, 
concerns have been raised. A major concern of network analysis comes from the criticism that 
statistical patterns (e.g. the scale-free degree distribution mentioned above) offer limited insights. 
Other examples of these patterns include the enrichment of network motifs (small recurrent 
subgraphs in a network). The statistical pattern suggests that the structures are potentially 
interesting; nevertheless, understanding the actual functions requires studying the detailed 
dynamics of the constituents [34]. While this is a fair comment, it is worthwhile to point out that 
such patterns could be used as features in various machine-learning frameworks for all sorts of 
biological and clinical predictions.  
 
More fundamentally, depending on their background, different researchers may have different 
understanding on the meaning of “understanding” [3]. To some mathematical proof implies 
understanding, for others it is statistical significance, and for a third group it is molecular 
mechanism. For this last group, in particular, networks have often prove frustrating because their 
abstract patterns don’t always yield easily to precise molecular description.  
As an illustration, many stress that systems biology is the study of the behavior of complex 
biological organization and processes in terms of underlying their molecular constituents [35]. 
However, the mechanistic approach to networks provide a way out of this situation allowing one 
to leverage the more abstract network representation to try to get it some of desired mechanistic 
interpretation. 
 
Mechanistic approach: comparison gives intuition into biological complexity 
The previous sections discussed universal frameworks and insights gained by applying the same 
formalism to biological networks as well as to various social and technological ones. Such wide-
ranging insights were possible only because in the abstract approach, the detailed 
characterization of the nodes in the network was neglected. On the other hand, if details are 
added to this picture, insights about a system become more specific, and in a sense, more 
meaningful. However, it is typically harder to apply the same formalism equivalently to two 
different networks, characterized in this more detailed fashion. This situation is manifest when 
one tried to explain the scale-free degree distribution of various networks described above. 
 
It is well known that the scale-free network topology can be arrived by two mathematically similar 
but conceptually different models. The first is the celebrated preferential attachment model [8]. 
The scenario can be illustrated by the airline network. Every time a new airport is created, the 
airlines have to balance available resources and customer satisfaction, i.e., the cost of adding a 
new flight and customer comfort due to connectivity between the new airport and a larger number 
of other airports. The most efficient use of these limited resources occurs if the new airport 
connects to pre-existing hubs in the network as it reduces the average travel time to any airport in 
the entire system. The reason why the model is called preferential attachment is because the 
newly created nodes prefer to connect to pre-existing hubs in the network. The second is the 
duplication-divergence model that explains the evolution and growth of the World Wide Web.  
Here, a random pre-existing node and its associated edges are duplicated -- for example, to 
make a webpage for a new product listed on Amazon.com, one could use a template shared by 
an existing product [36]. After duplication, the content of two nodes and their connections diverge 
but a proportion of their edges are likely to be shared [37]. Such a duplication-divergence model 
is mathematically equivalent to the preferential attachment model since it is more likely for a hub 
to increase its connectivity, simply because it is easier for the hub to find a neighbor getting 
duplicated. However, it provides more intuition to biological network through comparison. As gene 
duplication is one of the major mechanisms for the evolution of protein families, scale-free 
behavior in the protein-protein interaction network was proposed to arise via duplication-
divergence [38]. Of course, no model is perfect. Upon analyzing the structural interfaces involved 
in each protein-protein interaction, one observes that there are great differences in hubs that 
interact with many proteins by reusing the same interface versus those that simultaneously use 
many different interaction interfaces. The duplication-divergence model only applies to the former 
situation  (with the duplicated protein reusing the same interface as its parent) [39]. Nevertheless, 
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the example shows how intuition on biological networks can be obtained through comparison to 
the more commonplace network, which is conceptually much easier to understand.  
 
More intuition from social networks 
The ability to gain intuition about the often-arcane world of molecular biology by comparison to 
commonplace systems is even more evident in comparisons involving social networks, where 
people have very strong intuition for how a "system" can work. Transferring understanding of 
organizational hierarchy to biology is a good example of this (Figure 3). Many biological networks, 
such as those involved in transcriptional regulation, have an intrinsic direction of information flow, 
forming a natural but loose hierarchy. Likewise, society has many hierarchical structures -- e.g. a 
militarily command chain or a corporate "org-chart" [40]. In the purest form of the military 
hierarchy, multiple individuals of lower rank each report to a single individual of a higher rank and 
there are fewer and fewer individuals on the upper levels, eventually culminating in a single 
individual commanding an entire army. This structure naturally leads to information flow 
bottlenecks as all the orders and information related to many low-rank privates must flow through 
a limited number of mid-level majors. In a biological hierarchy of TFs, one sees a similar pattern, 
with bottlenecks in the middle, and in many cases, the bottlenecks create vulnerabilities. Indeed, 
it has been shown in knockout experiments that many of the bottleneck nodes in biological 
networks are essential [17]. Structurally, hierarchies can insulate themselves somewhat from mid-
level bottleneck vulnerability by allowing middle managers to co-regulate those under them. This 
eases information flow bottlenecks in an obvious way -- if one major gets knocked out, the 
privates under him can receive orders from a second major. Moreover, many commenters have 
pointed out that, in order to function smoothly, it is imperative for corporate hierarchies to have 
middle managers working together [41]. Strikingly, biological regulatory networks employ a similar 
strategy by having two mid-level TFs co-regulate targets below them, and this degree of co-
regulation increases with overall organism complexity [42]. Thus, one can get an intuition for the 
reason behind a particular biological structure through analogies to a commonplace social 
situation. 
 
Moreover, further comparison provides easy intuition into the biological characteristics of 
regulators at different levels in the hierarchy. Conventionally, one expects the CEOs of 
companies to gather information from all their sources and make the widest ranging and 
influential decisions in the company. One also stereotypically expects people at the top of 
conventional social hierarchies to be the most “conservative” and resistant to change. Likewise, 
TFs at the top of the hierarchy tend to be more connected in the protein-protein interaction 
network as they modulate gene expression based upon internal and external stimuli through 
these interactions [40][43], to be more influential in driving gene expression and to be more 
evolutionarily conserved [44]. Rewiring the TF network at its upper levels also tend to have a 
larger effect on cell proliferation and survival [45].  
 
More intuition from technological systems 
Lying at the heart of deciphering biological networks is the mapping between architecture and 
function. As it is often hard to define “function” in complex biological settings, comparison with 
simple technological or engineered components that possess basic and well-defined functions is 
particularly insightful [46]. For example, consider the phosphorylation and dephosphorylation 
reactions of a protein by a pair of kinase/phosphatases. While the mathematical description of 
Michaelis-Menten kinetics can be a bit complicated, the reaction essentially sets up a sigmoidal 
signal-response curve that is analogous the thresholding behavior of transistors in analog 
electronic circuits [47]. Thus, the comparison allows us to potentially map some aspects of the 
logical gate structure of digital electronics to the phosphorylation network. It also helped the 
design of synthetic biological circuits capable of logarithmic computation [48]. Similar ideas have 
been employed to map a transcriptional regulatory pathway to a combination of logic gates [49]. 
 
A decade ago, Uri Alon pointed out several common design principles in biological and 
engineering networks such as modular organization and robustness to perturbation [50]. 
Robustness is a preferred design objective because it makes a system tolerant to stochastic 
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fluctuations, from either intrinsic or external sources. Modularity, on the other hand, makes a 
system more evolvable. For instance in software design, modular programming that separates 
the functionality of a program into independent parts connected by interfaces is widely practiced 
[51]. The same is true for biological networks because modules can be readily reused to adapt 
new functions. To shed light on how biological and technological systems share the common 
design principles, it is important to think about how biological and technological networks change 
as both are adaptive. Manmade networks like roadways and electronic circuits are thought to 
change according to the plan of rationale designers. In contrast, biological networks are thought 
to change in response to random mutations and then for the successful changes to be selected. 
This is analogous to the work of a tinkerer, rather than an intelligent designer. Nevertheless, the 
distinction is not clear-cut. There are plenty of examples showing that many of man's great 
innovations are the result of trial and error, and all technological systems are subjected to 
selection such as user requirements. In a recent review, Wagner summarized nine key 
commonalities between biological and technological innovation, including descent with 
modification, extinction and replacement, and horizontal transfer [52]. 
 
In a sense, we could picture that both the engineer and tinkerer are working on an optimization 
problem with similar underlying design objectives, but take different views when balancing 
constraints. For example, in biological networks, more connected components (as measured by 
their degree or betweenness) tend to be under stronger constraint than less connected ones. This 
is evident in numerous studies that have analyzed the evolutionary rate of genes in many 
networks (e.g. protein interaction and transcription regulatory networks) in many organisms (e.g 
humans, worms, yeast, E. coli) using many different metrics of selection (e.g. variation within a 
population or dN/dS for fixed differences) [53][54][55][56]. One's intuition here is obvious: 
biological systems seek to decentralize functionality, minimizing average connectivity on nodes 
and making the system robust to a random mutation. However, this architecture requires a few 
hubs to connect everything up and these more connected components are particularly vulnerable. 
Is this finding true in general? And if not, why? Comparison can provide insight. 
 
Consider software systems: software engineers tend to reuse certain bits of code, leading to the 
sharing of components between modules, arriving at highly connected components. Analysis of 
the evolution of a canonical software system, the Linux kernel, revealed that the rate of evolution 
of its functions (routines) is distributed in a bimodal fashion; the more central components in the 
underlying network (call graph) are updated often. These patterns seem to hold for other software 
systems. For instance, in package-dependency network of the statistical computing language ‘R’, 
packages that are called by many others are updated more often (Figure 4). In other words, 
unlike biological networks whose hubs tend to evolve slowly, hubs in the software system evolve 
rapidly. What’s the implication? As a piece of code is highly called by many disparate processes – 
i.e. modules tend to overlap -- intuitively one would expect that the robustness of software would 
decrease. Our first intuition is that an engineer should not meddle too much with highly connected 
components, However, there is another factor to consider: rational designers may believe that 
they can modify a hub without disrupting it (i.e. the road planner thinks construction is possible in 
Manhattan without too much disruption) -- in contrast to a situation where random changes 
dominate. Moreover, the central points in a system are often those in the greatest use and hence 
are in the most need of the designer's attention (and maintenance). This situation is again 
analogous to road networks: one sees comparatively more construction on highly used 
bottlenecks (e.g. the George Washington Bridge) compared to out-of-the-way thoroughfares. The 
discrepancy between tinkerer and engineer suggests that, as an optimization process, no 
approach optimizes all objectives (robustness and modularity in this case) and thus tradeoffs are 
unavoidable in both biological and technological systems. This is essentially the conventional 
wisdom – there’s no free lunch [57][58]. 
 
The propensity of evolution to seek decentralization is particularly evident in genes involved in 
metabolic pathways, in which the highly connected hub genes have more duplicated copies and 
are more tolerant to loss-of-function mutations [59]. However there are many highly-conserved 
genes that are very well connected in physical protein-protein and regulatory networks but do not 
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enjoy this level of redundancy.  Mutations in these genes are more likely to be deleterious, 
resulting in a loss-of-function, and it is therefore useful to prioritize these as potential disease 
drivers [60]. 
 
The concept of connectivity associating with constraint is also extremely useful for therapeutics, 
in which a drug targeting a highly connected target can have a very efficient effect on an entire 
cell, albeit often with the sacrifice of low specificity.  However, the measurement of 
connectivity/constraint depends on the cellular process. In regulatory networks and similar 
systems involving information transfer, this is often better conceptualized in terms of bottlenecks, 
while in protein-protein interactions and similar systems involved with signaling cascades it is 
often better to consider hubs.  An example of a chemically exploitable bottleneck in the regulatory 
network is the bacterial ribosome, which is the target of most antibiotics that broadly inhibit 
protein translation leading to the rapid death of the organism [61]. A subtler, but no less useful, 
route to the inhibition of protein translation is through hub proteins such as mTOR and other key 
gates in cellular signaling cascades that are actively exploited in therapies for ailments as diverse 
as breast cancer [62] to depression [63].  
 
Conclusion 
Biology is a subject with a strong tradition of utilizing comparative methods. One hundred years 
ago, biologists compared the phenotypes of different species. Since the discovery of DNA, 
biologists have been comparing the sequences of different genes, and then various ‘omes’ across 
species. Perhaps, it is a time to extend this tradition even further to compare networks in biology 
to those in other disciplines. In fact, efforts have already been made along this direction (Figure 
5). We have described how abstract approaches that focus on simple connections between 
entities could allow the application of mathematical formalisms across disciplines. We then 
showed how mechanistic details can be placed onto these simple networks and enable them to 
better explain a real process such as transcriptional regulation or software code development. In 
this case, the networks are often too detailed to allow for direct transfer of formalisms. 
Nevertheless, one can gain meaningful intuition about a biological system through comparing it to 
a more commonplace network such as a social system using a similar mechanistic description.  
 
Seeking comparison between biological networks, social networks and technological networks 
may echo the long-time fantasy of finding universality in all complex systems. Indeed, the 
discovery of the scale-free degree distribution in many different networks initially hinted at such 
direction. Very soon researchers argued that a universal model never exists: there are biological 
networks whose degree distributions do not follow a simple power-law [64][65]; there are simply 
too many ways to generate a network with a broad degree distribution [66]. Indeed, it is important 
to clarify certain myths for the advancement of network biology as a field [67][68]. While scale-
free distribution is not universal (and the lack of fundamental laws of networks in general) sounds 
like a bad news, we believe that one should not be disappointed or simply turn away from 
network biology. As suggested by some of the examples in this essay, understanding the 
differences between biological networks and networks from other disciplines may be as rewarding 
as finding the commonality. Nevertheless, discouraging the search of fundamental laws is not 
healthy for science. The concept of universality has a long tradition in statistical physics literature, 
and the perspective of characterizing the underlying mechanisms of complex systems by a few 
scaling or critical exponents should very much be appreciated. In fact, apart from the degree 
distribution, there are still many relatively open questions. For examples, as building blocks of 
networks, different network motifs exhibit different occurrence frequencies [69]. It is quite 
remarkable that under proper normalization, the transcriptional regulatory networks constructed 
by experiments in different cell lines as well as different species exhibit similar patterns [70][71]. 
Whether it is an interesting technical artifact or an insightful clue on cellular information 
processing is still unknown.  
 
What's next? We envision that these cross-disciplinary network comparisons will become 
increasingly common as a result of data growth. One area that is especially ripe for comparison is 
multiplex networks, which concatenate networks to form a multiplex structure [72][73]. This 
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framework is commonly used in social science in which an individual may participate in multiple 
social circles (e.g. family, friends, and colleagues), or in an online setting: Facebook, LinkedIn 
and Twitter; but it has not been very well explored in biology. Nevertheless, the fundamental 
structure of biological data now extends beyond a single network to multiplex structures: the 
multiple layers could be formed by different categories of relationships (co-expression, genetic 
interactions, etc.), Furthermore, biological regulation occurs at multiple levels: transcriptional, 
post-transcriptional, and post-translational regulation in a manner in analogous to a city with 
electrical networks, water pipes, and cell phone lines. We are looking forward to some of the 
methods developed in other contexts to be applied in biology. Apart from leveraging the ideas 
and methods developed in multiple disciplines through comparison, we can even imagine that 
comparisons will ultimately lead to real connections (i.e. not analogies) between biological 
networks and those in other disciplines. For instance, there is an increasing amount of attention 
among biologists and sociologists on the connection between genomics information and 
sociological information such as whether phenotypes or genotypes are correlated in friendship 
networks [74]. 
 
Figures Caption 
 
Figure 1.  
A spectrum of cellular descriptions. From left to right. Networks help reveal and convey the 
relationships between components of a biological system. Different levels of information can be 
represented using a network. At an abstract level, a network can denote associations between 
various nodes. More details, such as excitatory and inhibitory regulatory relationships, can then 
be layered on top of this basic network. As additional information about the nodes and the 
relationships between them is added, the network begins to resemble the real world entity it 
models. For example, the addition of 3D structural information and temporal dynamics onto a 
network of molecular machine components leads it to more closely resemble the molecular 
machine itself. 
 
Figure 2.  
Intuitions guide visualizations of a complex hairball. A mechanistic network with multiple kinds of 
edges (protein-protein interactions, metabolic reactions, transcription regulations, etc.) forms an 
ultimate hairball (left). The hairball is then visualized by scaling the size of nodes by the degree of 
genes (right). The red nodes are essential, and the blue nodes are loss-of-function-tolerant. The 
network layout was generated by Vaja Liluashvili and Zeynep H Gümüş, using iCAVE [21]. 
 
Figure 3. 
Comparison between the hierarchical organizations in social networks versus biological networks 
illustrates design principles of biological networks. The hierarchical organization in biological 
networks resembles the chain of command in human society, like in military context. The top 
panel shows a conventional autocratic military hierarchy. The structure is intrinsically vulnerable 
in the sense that if a bottleneck agent (star) is disrupted, information propagation breaks down. 
The introduction of cross-links (blue) avoids the potential problem (middle panel) because the 
private at the bottom can then take commands from two different superiors above. The bottom 
panel shows the hierarchical organization of a biological network, with the existence of cross-links 
between pathways. These observations reflect a democratic hierarchy as opposite to an 
autocratic organization. 
 
Figure 4. 
Different evolutionary patterns in biological networks versus technological networks. The left 
shows the protein-protein interactions network in human [75], whereas the right is the R package 
dependency network specifying the proper function of a package (node) depends on (edge) the 
installation of another. Central nodes in a PPI network are under strong selective constraints 
(slow rate of evolution), whereas central nodes in the R package dependency network evolve 
faster. In other words, network centrality and rate of evolution is negatively correlated in biological 
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networks (left), but positive correlated in technological networks (right). The R package 
dependency network consists of all the available packages (5711) via R studio at October 2014.  
 
Figure 5.  
Interdisciplinary network comparison. A lot of papers have addressed the similarity and difference 
between biological networks (circle) and networks in social/technological systems (squares). Here 
we represent all these comparison in the form of a network, where an edge associated with 
references represents a network comparison in a specific context (color). Moreover, these 
comparisons can take place in terms of abstract approaches where formalism is used 
equivalently in two domains (dotted lines) or mechanistic approaches where one only seeks 
analogy between disciplines (solid lines). 
 
 
Box 1. Network centrality  
·      Degree number of neighbors of a node. The nodes with high degrees are important like a 
network’s hubs. 
·      Betweenness number of paths passing a node. Similar in spirit to heavily used bridges, 
highways, or intersections in transportation networks, a few centrally connected nodes funnel 
most of the paths between different parts of the network. High betweenness nodes are referred to 
as bottlenecks and removal of these nodes could reduce the efficiency of communication 
between nodes [76].  
·      Influence value measuring a node’s importance by taking into account the importance of its 
neighbors. The PageRank algorithm is a prominent example of this characteristic. Faced with a 
search query, Google must decide which set of results to rank higher and place on the first results 
page. Originally developed in social network analysis [77], PageRank utilizes an algorithm 
developed to rank relevant documents based on the rank of the websites that link to this 
document in a self-consistent manner - i.e. being linked to by higher ranking nodes has a larger 
impact on the document’s ranking. This algorithm has been applied to food webs to prioritize 
species that are in danger of extinction [78] and has also been used to rank marker genes and 
predict clinical outcome for cancers [79]. In biology, networks play an important role in gene 
prioritization, an essential process for disease-gene discovery because of limited validation and 
characterization resources [80]. For example, network properties (e.g. hubbiness) have been 
used to distinguish functionally essential and loss-of-function tolerant genes [59]. One could also 
prioritize uncharacterized genes based on how they are connected to characterized ones. If a 
gene, say, is one step away from a group of genes associated with a particular disease, it is very 
likely that it too is associated with this disease. The influence of a node may not be restricted to 
its nearest neighbors; network flow algorithms are widely used to examine long-range influence 
[81][82]. For instance, in a social science context, researchers use cascade-structured models to 
capture the information propagation on blog networks, predicting a blog’s popularity [83]. 
 
Box 2. Network topology 
·      Modularity value to measure strength of network division. Apart from measuring degrees and 
paths, one can easily observe that social networks tend to have communities within them due to 
the relatively larger number of interactions between people in the same neighborhood, school, or 
work place. People within the same social group naturally form strong ties and, in the extreme, 
constitute a single cohesive group (or a fully connected graph, or clique). Analogous to these 
closely-knit social groups, a large number of biological components can form a single functional 
macromolecular complex such as the ribosome. More generally, a common feature of a large 
number of social, technological and biological networks is that they are composed of modules 
such that nodes within the same module have a larger number of connections to each other 
compared to nodes belonging to different modules. A quantity dubbed modularity attempts to 
measure this, comparing the number of intra and inter module links in a network [19]. 
·      Missing links connections unobservable or missing. Another type of formalism making use of 
properties of nodes is link prediction. High-throughput experiments can be noisy, and the 
resultant networks may contain spurious links; missing data is also very common. Methods for 
link prediction and denoising are therefore useful. This can be done solely using network 
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structure. For instance, in a protein-protein interaction network, defective cliques can be used to 
find missing interactions and determine the parts required to form a functional macromolecular 
complex [84]. Moving beyond network structure, whether two nodes are connected often depends 
on their intrinsic properties (e.g. their gene-expression level, conservation, and subcellular 
localization, etc.). A number of machine learning methods (e.g. collaborative filtering [85], 
maximum likelihood [86], and probabilistic relational models [87]) have been proposed to combine 
various node and edge features for link prediction [88]. One method that has not been used much 
in biological sciences is stochastic block models [89]. These have been popular in computational 
social science for link prediction [90]. They require comprehensive gold-standards for validation 
and may catch-on more in the biological sciences as these develop. 
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