PrivaSeq Updates

January 26, 2015

Datasets [[Figure accompanies]]

- *N_i* individuals.
- Genotype data is stored in a $N_v \times N_i$ matrix denoted by v.
 - $v_{l,j}$ represents the genotype $(v_{l,j} \in \{0,1,2\})$ of l^{th} variant for j^{th} individual.
 - Let $\{v_{l,j}\}$ be a realization of the random variable $V_{(l)}$
- Expression data is stored in a $N_e \times N_i$ matrix denoted by e.
 - $e_{k,j}$ represents the expression of the k^{th} gene for j^{th} individual.
 - Let $\{e_{k,j}\}$ be a realization of the random variable $E_{(k)}$
- The eQTL dataset contains N_q eQTLs as a set of gene and variant RV pairs { $(E_{(k_i)}, V_{(l_i)})$ }, $i < N_q$, $k_i < N_e$, $l_i < N_v$
 - There is significant correlation between $E_{(k_i)}$ and $V_{(l_i)}$
 - Correlation between $E_{(k_i)}$ and $V_{(l_i)}$: $\rho(E_{(k_i)}, V_{(l_i)})$.

Datasets

III Leakage: Attacker wants to identify an individual

 Main assumption: The attacker can predict the conditional probability distribution of the genotypes given the gene expression levels

•
$$p(V_{(l_i)} \mid E_{(k_i)} = e)$$

Conditional (Posterior):

III Leakage: 3 Level Process

- The attacker uses the conditional probability distribution to perform estimation
- Thus, identification is a 3-level process:
 - 1. Selection of the eQTLs to be used
 - Entropy of the conditional distribution of genotypes
 - Allele Frequency
 - 2. The prediction of the genotypes for the selected eQTLs
 - Probabilistic:
 - Attacker assigns genotype randomly with respect to conditional distribution
 - Maximum *a posteriori* estimate:
 - Attacker assigns the genotype that has the highest value
 - 3. Linking of the Predicted Genotypes
 - Identify nearest genotype: Given the predicted genotypes, identify the individual that matches best to the predicted genotypes

III Leakage (linking attack): 3 Level Process

III Leakage: Step 1: SNP Selection

- Attacker goes over all the eQTLs and evaluates whether he will use the eQTL for prediction
- Different criteria:
 - Entropy of the conditional distribution
 - Allele frequency of the SNP
 - Strength of the reported association, i.e., absolute value of the correlation coefficient
- For an individual j, eQTL i is used in prediction if $H(V_{(l_i)} | E_{(k_i)} = e_{k_i,j}) < \gamma$
- Attacker gathers all the eQTLs that satisfy above for prediction

III Leakage: Step 1: SNP Selection

III Leakage: Step 1: SNP Selection

- Select the genotype that has the highest aposteriori (a-priori) probability
- Take j^th individual:

Number and accuracy of SNPs with Changing Entropy Thresholds

- Using the predicted genotypes, select the genotype to match the predicted individual to.
 - Perfect matching: Attacker tries to match all the predicted genotypes
 - Nearest neighbor matching: Attacker identifies the individual with genotypes that matches closest to the predicted genotypes
 - Given set of predicted genotypes for individual j, $\{v'_{l,i}\}$;
 - $pred_j = \underset{a}{\operatorname{argmax}} \{\sum_{b} I(v'_{b,j}, v_{b,a})\}$
 - If $pred_j = j$; j is vulnerable

Genotype Distances

III Leakage: Step 3: Linking: Average MAP Genotype Accuracy

III Leakage: Step 3: Linking: Leaking III Rank

III Leakage: Step 3: Linking: Estimated Predictability

III Leakage: Step 3: Linking: Population Confusion

III Leakage: Step 3: Linking (YRI eQTLs)

Genotype Distances

III Leakage: Step 3: Linking (YRI Only eQTLs)

Anonymization

 # of associations to anonymize depends on the number of associations between the top matching individual and second top matching individual.

Anonymization

