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Abstract 
Biological systems are complex. In particular, the interactions between molecular components 
often form inscrutable hairballs. While important progress has been made, quite a few critics and 
concerns have been raised. Here we argue that one way of untangling these hairballs is through 
cross-disciplinary network comparison, comparing biological networks with those from other 
disciplines. On the one hand, such comparison allows the transfer of mathematical formalism 
between disciplines, precisely describing the abstract associations between entities. This allows 
us to directly apply sophisticated formalism developed elsewhere to biology (e.g. related to 
network growth and scaling).  On the other hand, by examining in detail the mechanistic 
interactions in systems for which we have much day-to-day experience and then drawing 
analogies to the more abstruse biological networks, network comparison allows us to leverage 
intuition from these systems to biology (e.g. leveraging intuitions about bottlenecks in 
management hierarchies to understand the structure of transcriptional regulatory networks). 
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Introduction 
A signature of biology in the “omic” era is the shift of attention from a few individual components 
to a collection of constituents [1]. In the past structural biologists studied protein complexes 
consisting of a dozen of proteins, but now proteomic methods are able to probe the interactions 
between thousands of proteins. Similarly, geneticists who would previously manipulate a single 
gene for functional characterization can now employ high-throughput functional genomic 
techniques to study the relationships between all genes in an organism. In many cases, genome-
scale information describing how components interact is captured by a network representation 
[2]. However, given the astonishing size and complexity of the cellular molecular networks probed 
by genomics and systems biology, gaining easy intuition or novel insights about biology from 
these hairballs is not guaranteed [3].  
 
What approaches might help in deciphering hairballs of data? Throughout the history of science, 
many advances in biology were catalyzed by discoveries in other disciplines. For instance, the 
maturation of X-ray diffraction facilitated the discovery of the double helix and, later on, the 
characterization of structures of thousands of different proteins. One may wonder if ideas in other 
areas of science could help us with the “hairball challenge”. In this essay, we argue that, while the 
influx of ideas in the age of reductionism mostly originated from subfields of physics and 
chemistry, to understand biology via a systems perspective, we can further benefit from new 
catalysts coming from disciplines as diverse as engineering, behavioral science and sociology. 
These new ideas are centered on the concept of network.  
 
Comparisons and analogies are not new to biology. For instance, to illustrate the principles of 
selection Dawkins came up with the idea of a meme, which is a unit carrying cultural ideas 
analogous to the gene in biology [4]. This comparison has been further elaborated in the proto-
field of phylomemetics, which concerns itself with phylogenetic analysis of non genetic data [5]. 
Nevertheless, comparing a bio-molecular network with a complex network from a disparate field, 
say sociology, may sound like comparing apples to oranges. What kinds of comparison can truly 
deepen our understanding? To address this, it is useful to put the various descriptions of a 
cellular system on a spectrum, in terms of abstraction and simplification. 
 
A spectrum of cellular descriptions 
Given the complexity of a cell, a certain level of simplification is necessary for useful discussion. 
The depth of description of cellular systems can be seen as a spectrum (Figure 1). On one 
extreme, there is a complete three or four-dimensional picture of how cellular components and 
molecules interact in space and time. On the other extreme, there is a simple parts list that 
enumerates each component without specifying any relationships. However neither extreme 
leads to a full understanding and intuition for the system as a whole. It is widely appreciated that 
the characteristics of a cellular system cannot be explained by the properties of individual 
components – the whole is greater than the sum of its parts. On the other hand, a complete 
picture of biological systems in three or four-dimensions remains a too ambitious goal for the 
current state-of-the-art in data acquisition. 
 
The network representation sits conveniently between these extremes. It captures some of the 
relationships between the components on the parts list in a flexible fashion, especially those 
where connectivity rather than exact location determines the consequence. There are two equally 
important thought processes in thinking about networks. The first way focuses on mathematical 
formalisms and algorithmic aspects for practical problems. While all networks we come across 
can be viewed as connected graphs, mathematical thinking of networks goes beyond that by 
constructing networks via statistical association. This is exemplified by disease networks [6] in 
which a gene (genotype) and a disease (phenotype) are connected via the statistical association 
between the existence of genomic variants and the occurrence of the disease. Networks derived 
from co-expression relationships provide another example [7]. The second way of thinking about 
networks assumes the underlying network is the skeleton of a complex system; understanding 
the networks is a key to deciphering the organization principles behind the complex system. This 
is particularly the case for networks that capture the mechanistic interactions within systems, for 
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instance protein-protein interactions network, transcriptional regulatory networks etc. Thinking of 
networks in a mechanistic way is a process of concretization. Instead of moving away from the 
complete 4D-picture, concrete mechanistic networks aim to more completely describe it. They are 
intended to describe and integrate many of the physical processes happening inside a living 
system-- for instance, the processing of information, the chemistry of metabolites and the 
assembly of molecular machines-- and therefore focus on incorporating various details of 
interactions. Adding further mechanistic detail onto a simple nodes-and-edges skeleton can be 
visualized as decorating edges with directionality, color, thickness etc. However, incorporating too 
much detail makes the description intractable. That is, the network formalism breaks down if we 
try to load spatial or temporal information as well as higher-order interactions onto the diagram. At 
certain point, the actual four-dimensional picture is required. 
 
The two network approaches essentially complement each other. On one hand, thinking in an 
abstract fashion allows one to transfer mathematical formalism readily between disciplines. This 
can beneficial for the biological sciences, in that it allows the application of formalism developed 
elsewhere to easily find fruitful application in biology. On the other hand, thinking mechanistically 
focuses more on the conceptual resemblances between networks.  Comparison of appropriately 
matched networks may provide additional intuition into the interactions between molecular 
components of cells by examining analogous interactions in complex systems for which we have 
more day-to-day experience.  
 
Comparison leverages mathematical formalism 
The power here of the network formalism lies in its simplicity. In the era of Big Data, the network 
is a very useful data structure with a wide variety of applications in both biology and other data 
intensive disciplines like computational social science.  
 
A key comparison between various complex systems focuses on the topology. The earliest and 
probably most important observation is that many networks organize themselves into scale-free 
architectures in which a majority of the nodes contain very few connections (edges) while a few 
(also called hubs) are highly connected [8]. A surprisingly large number of networks that one 
comes into contact with have a scale-free architecture – e.g. the Internet, air transport routes and 
many social networks [9].  
 
A scale-free network is a kind of small-world network because hubs ensure that the distance 
between any two nodes is small [10][11]. For example, the presence of hubs in the airport 
network makes it possible to travel between any two cities in the world within a short interval of 
time. However, not every small world network has to be scale-free. An example of a prominent 
small-world network that is not scale-free is the mammalian cerebral cortex. The cortical neuronal 
network is subdivided into more than 100 distinct, highly modular, areas [12] that are dominated 
by connections that are internal to each area, with only ~20% of all connections being between 
neurons in different areas [13]. Each area is considered to have a primary feature, for example in 
processing sensory or cognitive signals. The cortical architecture has a high degree of clustering 
and small path-length yet exhibits an exponential degree-distribution [14].  
 
The behavior of scale-free networks is dominated by a relatively small number of nodes and this 
ensures that such networks are resistant to random accidental failures but are vulnerable to 
coordinated attacks at hub nodes [15]. In other words, just as the Internet functions without any 
major disruptions even though hundreds of routers malfunction at any given moment, different 
individuals belonging to the same biological species remain healthy in spite of considerable 
random variation in their genomic information. However, a cell is not likely to survive if a hub 
protein is knocked out. For example, highly connected proteins in the yeast protein-protein 
interaction network are 3-fold more likely to be essential than proteins with only a small number of 
links [16]. 
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There are more elaborate approaches to determining centrality than just counting neighbors, 
most famously, the original PageRank algorithm, underlying the Google search approach (see 
BOX). Besides, we can consider its influence via network paths such as “betweenness” (See 
BOX, influence & bottleneck). It has been reported that bottlenecks (nodes with high 
betweenness) in biological networks are more sensitive to mutations than the rest of the network, 
even more so than hubs for regulatory networks [17][18]. Apart from properties of individual 
nodes, it is important to define mesoscopic structures called communities (See BOX, modularity). 
A quantity dubbed modularity attempts to measure this, comparing the number of intra and inter 
module links in a network [19]. 
 
A broad class of network algorithms applied in biological and other data science is building on the 
mapping of additional properties or features of nodes onto the network, very often provides us 
guidance on visualizing the structure of a complex hairball (Figure 5) [20][21]. Apart from 
visualization, the mapping of additional features provides ways to organize the additional 
features. For instance, it has been reported that mapping somatic mutations to gene networks 
allow for stratification of cancer into subtypes [22]. Another important example is the inference of 
missing data using “guilt by association” -- the idea that nodes having similar associations in the 
network tend to be similar in properties. In a social context, if your friends in an online social 
network use a particular product, you are more likely to use this product and the advertisements 
you view online are personalized based on these recommendation systems [23]. In a biological 
context, it has been observed that cellular components within the same network module are more 
closely associated with the same set of phenotypes than components belonging to different 
modules [24]. As a result, one can infer the function of a gene or a non-coding element based on 
its neighbors in the underlying network. The so-called diseases comorbidity network [25][26][27] 
makes use of a similar idea. In such network, a node represents a disease and two diseases are 
connected if they are carried by a same patient as shown in medical claims data. Diseases 
(phenotypes) found in the same module in the network may operate similarly in a molecular level. 
 
Particularly informative network analyses have utilized ‘seed’ genes, a form of biological prior, to 
drive network creation. Instead of identifying hub genes based on connectivity, these hub genes 
are defined from the literature as being known to be causally implicated in a particular disease or 
phenotype. In one such example, genes implicated through copy-number variation in autism were 
used to cluster an expression network in healthy brain development in order to identify larger sets 
of putative autism-related genes as candidates for future investigation and diagnosis [28]. Such 
approaches are attractive as they maintain the power and flexibility of the network based 
analysis, but are grounded from the start in a biologically meaningful context. 
 
We can further exploit the structure of a network with data of underlying dynamical processes. In 
social science, online retailers are interested in using purchase records to study how customers 
influence each other [29]. The same question is extremely common in biology, under the term 
“reverse engineering”. For example, how can we infer the developmental gene regulatory network 
from temporal gene expression dynamics? Ideally, one could write differential equations to fit the 
temporal data. However, most functional genomics experiments do not contain enough time-
points. To overcome this drawback, data mining techniques such as matrix factorization are 
employed. For instance, given the genome-wide expression profile at different time-points, one 
could project the high-dimensional gene expression data to low dimensional space and write 
differential equations to model the dynamics of the projections [30].  
 
In addition to the actual dynamic processes occurring on a network, one can explore evolutionary 
dynamics by comparing networks. In a biological context, pairs of orthologous genes (nodes) can 
be used to define conserved edges, called interologs and regulogs for the protein-protein 
interaction and regulatory networks, respectively. Furthermore, these have been used to align 
networks from different species [31] and to detect conserved and specific functional modules [32] 
across species. Based on a large collection of aligned networks between species, a mathematical 
formalism has been developed to measure the evolutionary rewiring rate between networks using 
methods analogous to those quantifying sequence evolution. In this context, it was shown that 
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metabolic networks rewire at a slower rate compared to regulatory networks [33]. The inference 
of causal and evolutionary relationships from statistical data points to the study of mechanistic 
networks. 
 
Criticisms to the abstract approach of network  
Despite an increasing number of studies implementing networks in an abstract mathematical 
context, concerns have been raised. A major concern of network analysis comes from the 
criticism that statistical patterns, for instance the scale-free degree distribution mentioned above, 
observed in networks offer limited insights. Other examples include the enrichment of some of the 
so-called network motifs (small recurrent subgraphs in a network). The statistical pattern 
suggests that the structures are potentially interesting, understanding the actual functions 
requires studying the detailed dynamics of the constituents [34]. While this is a fair comment, it is 
worthwhile to point out that such patterns could be used as features in various machine-learning 
frameworks for all sorts of biological and clinical predictions. Perhaps an even high-level concern 
is, as a way to represent data, what is the importance of finding various mathematical structures 
in a network using sophisticated statistical or machine learning techniques? For example, the 
mentioned studying the diseases comorbidity network can generate many hypothesis, such as 
the whether a particular gene or pathway is related to the connected diseases. Nevertheless, it is 
important to point out the possible source of unknown biases like the different ways doctors enter 
information into medical records. To what extent are the usefulness of the data, this concern may 
indeed be relevant, particularly in conjunction with some recent criticism concerning the over-
statement of big data in science [35][36].  
 
Depending on their background, different researchers may have different understanding on the 
meaning of “understanding” [3]. At the dawn of systems biology, Marc Kirschner suggested that 
systems biology is the study of the behavior of complex biological organization and processes in 
terms of the molecular constituents [37], hinting at the importance of mechanistic understanding. 
Therefore thinking network mechanistically complements the efforts on data mining. While it is 
tempting to incorporate different levels of details into the system, for example, incorporating the 
details of binding interfaces into a protein-protein interactions network offers further insights on 
the nature of hubs in the network [38][39], we are still in a rather beginning phase to a complete 
system-wide modeling of a cell. Thus a coarse network description of a cell remains to be useful. 
In the rest of the essay, we want to argue that, apart from writing complex equations for 
mechanistic modeling, we can learn by comparing such mechanistic networks with networks from 
other disciplines. 
 
Mechanistic Networks: Comparison gives intuition into biological complexity 
Now we shift discussion to "mechanistic" networks. Here, the network framework serves as a 
skeleton for different complex systems. In particular, the previous sections discussed universal 
frameworks and insights gained by applying the same formalism to biological networks as well as 
to various social and technological ones. Such wide-ranging universal insights were possible only 
because the detailed characterization of the nodes in the network was neglected during the 
comparison. Only the abstracted "association" between the nodes was considered. On the other 
hand, if details are added to this picture, insights about a system become more specific, and in a 
sense, more meaningful. However, it is typically harder to apply the same formalism equivalently 
to two different networks. This situation is manifest when one tried to explain the scale-free 
degree distribution of various networks described above. 
 
Different mechanistic intuitation for scale free structure 
A number of different stochastic models and explanations can lead to the formation of scale-free 
graphs. First let's consider one of the paradigms of scale-free architecture, the hub-and-spoke 
system of the airline network. How does this come about? Every time a new airport is created, the 
airlines have to balance available resources and customer satisfaction, i.e., the cost of adding a 
new flight and customer comfort due to connectivity between the new airport and a larger number 
of other airports. The most efficient use of these limited resources occurs if the new airport 
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connects to pre-existing hubs in the network as it reduces the average travel time to any airport in 
the entire system. This model is called ‘preferential attachment’ as newly created nodes prefer to 
connect to pre-existing hubs in the network [7] and, in this case, it depends on the small-world 
property of scale-free networks . In contrast, one explains the evolution and growth of the World 
Wide Web, which is also scale free, in somewhat different way. Here, a random pre-existing node 
and its associated edges are duplicated (for example, to make a webpage for a new product in 
amazon, one could use a template shared by an existing product) [40]. After duplication, the 
content of two nodes and their connections diverge but a proportion of their edges are likely to be 
shared [41]. Such a duplication-divergence model leads to the formation of scale-free networks 
because the connectivity of a hub increases as one of its neighbors has a higher chance of 
getting duplicated. The same duplication-divergence mechanism can describe the patterns and 
occurrence of “memes” in online media [42]. As gene duplication is one of the major mechanisms 
for the evolution of protein families, the formation of scale-free behavior in the protein-protein 
interaction network was proposed to evolve via the duplication-divergence model [43]. However, 
for protein networks there are additional twists in this explanation because one can actually 
resolve each of the nodes in the network as molecules with specific 3D geometry. In particular, 
upon analyzing the structural interfaces involved in protein-protein interactions, there are great 
differences in hubs that interact with many proteins by reusing the same structural interface 
versus those that simultaneously use many different interaction interfaces. The duplication 
divergence model only applies to the former situation  (with the duplicated protein reusing the 
same interface as its parent) [38].  
 
A third explanation for scale free structure comes from dependency networks. In particular, the 
existence of common scale free topology in many networks leads to the emergence of universal 
patterns in complex systems, biological and otherwise. In particular, it has been reported that the 
frequency of appearance of individual enzymes across different bacterial genomes and the 
frequency of local installations of individual packages in multicomponent software platforms follow 
a broad distribution [44]. In the same analysis, it has been suggested that the observations can 
be explained by the scale free topology of the corresponding multi-levels dependency networks 
because incorporation of an additional component requires the presence of the depending factors 
in the network. (As a specific example: enzyme A is connected to enzyme B if A is used to 
decompose the output metabolites of enzyme B; package A is connected to package B if the 
installation of package A depends on the installation of package B.) 
 
Thus, many networks that exhibit similar topologies are the result of significantly different 
underlying mechanisms. In the case of scale free networks, there exists a common mathematical 
formalism but somewhat different mechanistic explanations in many different domains (e.g. airline 
networks vs gene networks). Some of the domains share the same mechanistic explanation -- i.e. 
the scale-free structure in both protein-protein interaction and web-link networks can be explained 
by duplication and divergence. Moreover, this latter commonality provides additional intuition 
about the protein interaction network through comparison to the web-link network, which is 
conceptually much more easy to understand.  
 
Intuition from common design principles on large and small scales  
The ability to gain intuition about the often-arcane world of molecular biology by comparison to 
commonplace systems is even more evident in comparisons involving social networks, where 
people have very strong intuition for how a "system" can work. Transferring the understanding of 
organizational hierarchy to biology is a good example of this type of comparison (Figure 2). Many 
biological networks, such as transcription regulatory networks, have an intrinsic direction of 
information flow, forming a loose hierarchical organization. Likewise, many social structures are 
naturally organized into a hierarchical structure -- e.g. a militarily command chain or a corporate 
"org-chart" [45]. In the purest form of the military hierarchy multiple individuals of lower rank each 
report to a single individual of a higher rank and there are fewer and fewer individuals on the 
upper levels, eventually culminating in a single individual commanding an entire army. This 
structure naturally leads to information flow bottlenecks as all the orders and information related 
to many low-rank privates must flow through a very limited number of mid-level majors. In a 
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biological hierarchy of TFs, one sees a similar pattern with "high betweenness" bottlenecks in the 
middle. In many cases, these bottlenecks create vulnerabilities. Indeed, it has been shown in 
knockout experiments that many of the bottlenecks in biological networks are essential [17]. 
Hierarchies can insulate themselves somewhat from mid-level bottleneck vulnerability by allowing 
middle managers to co-regulate those under them. This eases information flow bottlenecks in an 
obvious way (if one major gets knocked out, the privates under him can receive orders from a 
second major). Moreover, many commenters have mentioned that, in order to function smoothly, 
it is imperative for corporate hierarchies to have middle managers working together [46]. 
Strikingly, biological regulatory networks employ the same strategy by having two mid-level TFs 
co-regulate targets below them [47]. Thus, one can get an intuition for the reason behind a 
particular biological structure through analogies to a commonplace social situation. 
 
The hierarchical organization borrowed from social contexts has been useful in interpreting the 
change in biological characteristics of regulators at different levels in the genetic regulatory 
hierarchy. Transcription factors at the higher hierarchical levels tend to be more conserved [48] 
and connected in the protein-protein interaction network as they modulate gene expression based 
upon internal and external stimuli through these interactions [45][49]. Meanwhile, the transcription 
factors at the middle levels tend to be most connected within the regulatory network, and are 
regulated by a larger number of microRNAs. These middle managers tend to have more 
coregulatory partnerships that ease bottlenecks within the regulatory network [47]. The amount of 
collaborative regulation increases with overall genomic complexity. Finally, the transcription 
factors at the bottom level tend to be essential for the viability of the cell and are more uniformly 
expressed across different tissues [49]. The hierarchical organization of the gene regulatory 
network can also be utilized to understand the phenotypic effects of rewiring the network as it was 
found that upper-level changes in the hierarchy had a larger effect on cell proliferation and 
survival [50]. More interestingly, the hierarchy constructed by promoter regulation between 
transcriptional factors is very much different from the one constructed by distal regulation [51]. 
These observations imply that the hierarchical organization of gene regulatory networks place 
position-dependent constraints on their evolution and regulators at different hierarchical levels 
tend to have significantly different biological characteristics. 
 
The goal of this comparison is the transfer of ideas on the relationship between network structure 
and "function" from a social context to a less intuitive biological one. More generally, lying at the 
heart of deciphering biological networks is the mapping between architecture and function. As it is 
often hard to define “function” in complex biological settings, comparison with simple 
technological or engineered components that possess basic and well-defined functions is 
particularly insightful [52]. For example, consider the phosphorylation and dephosphorylation 
reactions of a protein by a pair of kinase/phosphatases. While the mathematical description of 
Michaslis-Menten kinetics can be a bit complicated, the reaction essentially sets up a sigmoidal 
signal-response curve that is analogous the thresholding behavior of transistors in analog 
electronic circuits [53]. Thus, the comparison allows us to potentially map some aspects of the 
logical gate structure of digital electronics to the phosphorylation network. It also helped inform 
the design of synthetic biological circuits capable of logarithmic computation [54]. Similarly, a 
decade ago, Uri Alon pointed out several common design principles in biological and engineering 
networks such as modular organization and robustness to perturbation [55]. Robustness is a 
preferred design objective because it makes a system tolerant to stochastic fluctuations, from 
either intrinsic or external sources. Modularity, on the other hand, makes a system more 
evolvable. For instance in software design, modular programming that separates the functionality 
of a program into independent parts connected by interfaces is widely practiced [56]. The same is 
true for biological networks because modules can be readily reused to adapt new functions. 
 
Intuition on network change: contrasting the tinkerer and engineer 
By comparing biological and technological systems, we can see remarkable similarity in their 
design principles, in terms of their global organization (e.g. scale-free and hierarchical), as well as 
local structure. As both are complex adaptive systems, to shed light on the origin of such 
commonalities, we describe a third comparison: how biological and technological networks 
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change. Manmade networks like roadways and electronic circuits are thought to change 
according to the plan of rationale designers. In contrast, biological networks are thought to 
change randomly and then for the successful changes to be selected. This is analogous to the 
work of a tinkerer, rather than an intelligent designer. Nevertheless, the distinction is not clear-cut. 
There are plenty of examples showing that many of man's great innovations are the result of trial 
and error, and all technological systems are subjected to selection such as user requirements. In 
a recent review, Wagner summarized nine key commonalities between biological and 
technological innovation, including descent with modification, extinction and replacement, and 
horizontal transfer [57]. 
 
In a sense, we could picture that both the engineer and tinkerer are working on an optimization 
problem with similar underlying design objectives, but take different views when balancing 
constraints. For example, in biological networks, more connected components (as measured by 
their hubbiness or betweenness) tend to be under stronger constraint than less connected ones. 
This is evident in numerous studies that have analyzed the evolutionary rate of genes in many 
networks (e.g. protein interaction and transcription regulatory networks) in many organisms (e.g 
humans, worms, yeast, E. coli) using many different metrics of selection (e.g. variation within a 
population or dN/dS for fixed differences) [58][59][60][61]. Constraint is related to connectivity in 
biological systems. One's intuition here is obvious: biological systems seek to decentralize 
functionality, minimizing average connectivity on nodes and making the system robust. However, 
this architecture requires a few hubs to connect everything up and these more connected 
components are particularly vulnerable to random changes; Is this finding true in general? And if 
not, why? Comparison can provide insight. 
 
The concept of connectivity associating with constraint is also extremely useful for therapeutics, 
in which a drug targeting a highly connected target can have a very efficient effect on an entire 
cell, albeit often with the sacrifice of low specificity.  However, the measurement of 
connectivity/constraint depends on the cellular process. In regulatory networks and similar 
systems involving information transfer, this is often better conceptualized in terms of bottlenecks, 
while in protein-protein interactions and similar systems involved with signaling cascades it is 
often better to consider hubs.  An example of a chemically exploitable bottleneck in the regulatory 
network is the bacterial ribosome, which is the target of most antibiotics that broadly inhibit 
protein translation leading to the rapid death of the organism [62]. A subtler, but no less useful, 
route to the inhibition of protein translation is through hub proteins such as mTOR and other key 
gates in cellular signaling cascades that are actively exploited in therapies for ailments as diverse 
as breast cancer [63] to depression [64].  
 
Consider software systems: software engineers tend to reuse certain bits of code, leading to the 
sharing of components between modules, arriving at highly connected components. Analysis of 
the evolution of a canonical software system, the Linux kernel, revealed that the rate of evolution 
of its functions (routines) is distributed in a bimodal fashion; the more central components in the 
underlying network (call graph) are updated often . These patterns seem to hold for other 
software systems. For instance, in package-dependency network of the statistical computing 
language ‘R’, packages that are called by many others are updated more often (Figure 3). In 
other words, unlike biological networks whose hubs tend to evolve slowly, hubs in the software 
system evolve rapidly. What’s the implication? As a piece of code is highly called by many 
disparate processes – i.e. modules tend to overlap -- intuitively one would expect that the 
robustness of software would decrease. Our first intuition is that an engineer should not meddle 
too much with highly connected components, However, there is another factor to consider: 
rational designers may believe that they can modify a hub without disrupting it (i.e. the road 
planner thinks construction is possible in Manhattan without too much disruption) -- in contrast to 
a situation where random changes dominate. Moreover, the central points in a system are often 
those in the greatest use and hence are in the most need of the designer's attention (and 
maintenance). This situation is again analogous to road networks: one sees comparatively more 
construction on highly used bottlenecks (e.g. the George Washington Bridge) compared to out of 
the way thoroughfares. The discrepancy between tinkerer and engineer suggests that, as an 
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optimization process, no approach optimizes all objectives (robustness and modularity in this 
case) and thus tradeoffs are unavoidable in both biological and technological systems. This is 
essentially the conventional wisdom – there’s no free lunch [65][66]. 
 
Seeking comparison between biological networks, social networks and technological networks 
may echo the long-time fantasy of finding universality in all complex systems. Indeed, the 
discovery of the scale-free degree distribution in many different networks initially hinted at such 
direction. Very soon researchers argued that a universal model never exists: there are biological 
networks whose degree distributions do not follow a simple power-law [67][68]; there are simply 
too many ways to generate a network with a broad degree distribution [69]. Indeed, it is important 
to clarify certain myths for the advancement of network biology as a field [70][71]. While scale-
free distribution is not universal (and the lack of fundamental laws of networks in general) sounds 
like a bad news, we believe that one should not be disappointed or simply turn away from 
network biology. As suggested by some of the examples in this essay, understanding the 
differences between biological networks and networks from other disciplines may be as rewarding 
as finding the commonality. Nevertheless, discouraging the search of fundamental laws is not 
healthy for science. The concept of universality has a long tradition in statistical physics literature, 
and the perspective of characterizing the underlying mechanisms of complex systems by a few 
scaling or critical exponents should very much be appreciated. In fact, apart from the degree 
distribution, there are still many relatively open questions. For examples, as building blocks of 
networks, different network motifs exhibit different occurrence frequencies [72]. It is quite 
remarkable that under proper normalization, the transcriptional regulatory networks constructed 
by experiments in different cell lines as well as different species exhibit similar patterns [73][74]. 
Whether it is an interesting technical artifact or an insightful clue on cellular information 
processing is still unknown.  
 
Conclusion 
Biology is a subject with a strong tradition of utilizing comparative methods. One hundred years 
ago, biologists compared the phenotypes of different species. Since the discovery of DNA, 
biologists have been comparing the sequences of different genes, and then various ‘omes’ across 
species. Perhaps, it is a time to extend this tradition even further to compare networks in biology 
to those in other disciplines. In fact, efforts have already been made along this direction (Figure 
4). Here, we have tried to describe how these comparisons are beginning to take place. First, we 
have described how association networks that just show simple connections between entities are 
abstract enough to allow the application of mathematical formalisms across disciplines. Then, we 
show how mechanistic details can be placed onto these simple networks and enable them to 
better explain a real process such as transcriptional regulation or software code development. In 
this case, the networks are often too detailed to allow for direct transfer of formalisms. 
Nevertheless, one can gain meaningful intuition about a biological system through comparing it to 
a more commonplace network such as a social system using a similar mechanistic description.  
 
What's next? We envision that these cross-disciplinary network comparisons will become 
increasingly common. Networks are a key structure used for the analysis of large datasets in the 
emerging field of data science. Moreover, network datasets are becoming increasingly common 
in many fields. We anticipate that this data growth will enable further fruitful comparisons with 
biology. One area that is especially ripe for comparison is multiplex networks, which concatenate 
networks to form a multiplex structure [75][76]. This framework is commonly used in social 
science in which an individual may participate in multiple social circles (e.g. family, friends, and 
colleagues), or in an online setting: Facebook, LinkedIn and Twitter. However, it has not been 
very well explored in biology. Nevertheless, the fundamental structure of biological data now 
extends beyond a single network to multiplex structures: the multiple layers could be formed by 
different categories of relationships (co-expression, genetic interactions, etc.), Furthermore, 
biological regulation occurs at multiple levels: transcriptional, post-transcriptional, and post-
translational regulation in a manner in analogous to a city with electrical networks, water pipes, 
and cell phone lines. We are looking forward to some of the methods developed in other contexts 
to be applied in biology. 
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So far we have focused on leveraging the ideas and methods developed in multiple disciplines 
through comparison. We can even imagine that these comparisons will lead to real connections 
(i.e. not analogies) between biological networks and those in other disciplines. For instance, there 
is an increasing amount of attention among biologists and sociologists on the connection between 
genomics information and sociological information such as whether phenotypes or genotypes are 
correlated in friendship networks [77]. 
 
Figures Caption 
 
Figure 1.  
A spectrum of cellular descriptions. From left to right. Networks help reveal and convey the 
relationships between components of a biological system. Different levels of information can be 
represented using a network. At an abstract level, a network can denote associations between 
various nodes. More details, such as excitatory and inhibitory regulatory relationships, can then 
be layered on top of this basic network. As additional information about the nodes and the 
relationships between them is added, the network begins to resemble the real world entity it 
models. For example, the addition of 3D structural information and temporal dynamics onto a 
network of molecular machine components leads it to more closely resemble the molecular 
machine itself. 
 
Figure 2.  
Comparison between the hierarchical organizations in social networks versus biological networks 
illustrates design principles of biological networks. The hierarchical organization in biological 
networks resembles the chain of command in human society, like in military context. The top 
panel shows a conventional autocratic military hierarchy. The structure is intrinsically vulnerable 
in the sense that if a bottleneck agent (star) is disrupted, information propagation breaks down. 
The introduction of cross-links (blue) avoids the potential problem (middle panel) because the 
private at the bottom can then take commands from two different superiors above. The bottom 
panel shows the hierarchical organization of a biological network, with the existence of cross-links 
between pathways. These observations reflect a democratic hierarchy as opposite to an 
autocratic organization. 
 
Figure 3. 
Different evolutionary patterns in biological networks versus technological networks. The left 
shows the protein-protein interactions network in human [78], whereas the right is the R package 
dependency network specifying the proper function of a package (node) depends on (edge) the 
installation of another. Central nodes in a PPI network are under strong selective constraints 
(slow rate of evolution), whereas central nodes in the R package dependency network evolve 
faster. In other words, network centrality and rate of evolution is negatively correlated in biological 
networks (left), but positive correlated in technological networks (right). The R package 
dependency network consists of all the available packages (5711) via R studio at October 2014.  
 
Figure 4. 
Interdisciplinary network comparison. A lot of papers have addressed the similarity and difference 
between biological networks (circle) and networks in social/technological systems (squares). Here 
we represent all these comparison in the form of a network, where an edge associated with 
references represents a network compar ison in a specific context (color). Moreover, these 
comparisons can take place in terms abstract association networks where formalism is used 
equivalently in two domains (dotted lines) or mechanistic networks, where one only seeks 
analogy between disciplines (solid lines). 
 
Figure 5.  
Intuitions guide visualizations of a complex hairball. A mechanistic network with multiple kinds of 
edges (protein-protein interactions, metabolic reactions, transcription regulations, etc.) forms an 
ultimate hairball (left). The hairball is then visualized by scaling the size of nodes by the degree of 
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genes (right). The red nodes are essential, and the blue nodes are loss-of-function-tolerant. The 
network layout was generated by Vaja Liluashvili and Zeynep H Gümüş, using iCAVE [21]. 
 
Box. Network characteristics from node to topology 
·      Degree number of neighbors of a node. The nodes with high degrees are important like a 
network’s hubs. 
·      Betweenness number of paths passing a node. Similar in spirit to heavily used bridges, 
highways, or intersections in transportation networks, a few centrally connected nodes funnel 
most of the paths between different parts of the network. High betweenness nodes are referred to 
as bottlenecks and removal of these nodes could reduce the efficiency of communication 
between nodes [79].  
·      Influence value measuring a node’s importance by taking into account the importance of its 
neighbors. The PageRank algorithm is a prominent example of this characteristic. Faced with a 
search query, Google must decide which set of results to rank higher and place on the first results 
page. Originally developed in social network analysis [80], PageRank utilizes an algorithm 
developed to rank relevant documents based on the rank of the websites that link to this 
document in a self-consistent manner - i.e. being linked to by higher ranking nodes has a larger 
impact on the document’s ranking. This algorithm has been applied to food webs to prioritize 
species that are in danger of extinction [81] and has also been used to rank marker genes and 
predict clinical outcome for cancers [82]. In biology, networks play an important role in gene 
prioritization, an essential process for disease-gene discovery because of limited validation and 
characterization resources [83]. For example, network properties (e.g. hubbiness) have been 
used to distinguish functionally essential and loss-of-function tolerant genes [84]. One could also 
prioritize uncharacterized genes based on how they are connected to characterized ones. If a 
gene, say, is one step away from a group of genes associated with a particular disease, it is very 
likely that it too is associated with this disease. The influence of a node may not be restricted to 
its nearest neighbors; network flow algorithms are widely used to examine long-range influence 
[85][86]. For instance, in a social science context, researchers use cascade-structured models to 
capture the information propagation on blog networks, predicting a blog’s popularity [87]. 
·      Modularity value to measure strength of network division. Apart from measuring degrees and 
paths, one can easily observe that social networks tend to have communities within them due to 
the relatively larger number of interactions between people in the same neighborhood, school, or 
work place. People within the same social group naturally form strong ties and, in the extreme, 
constitute a single cohesive group (or a fully connected graph, or clique). Analogous to these 
closely-knit social groups, a large number of biological components can form a single functional 
macromolecular complex such as the ribosome. More generally, a common feature of a large 
number of social, technological and biological networks is that they are composed of modules 
such that nodes within the same module have a larger number of connections to each other 
compared to nodes belonging to different modules. A quantity dubbed modularity attempts to 
measure this, comparing the number of intra and inter module links in a network [19]. 
·      Missing links connections unobservable or missing. Another type of formalism making use of 
properties of nodes is link prediction. High-throughput experiments can be noisy, and the 
resultant networks may contain spurious links; missing data is also very common. Methods for 
link prediction and denoising are therefore useful. This can be done solely using network 
structure. For instance, in a protein-protein interaction network, defective cliques can be used to 
find missing interactions and determine the parts required to form a functional macromolecular 
complex [88]. Moving beyond network structure, whether two nodes are connected often depends 
on their intrinsic properties (e.g. their gene-expression level, conservation, and subcellular 
localization, etc.). A number of machine learning methods (e.g. collaborative filtering [89], 
maximum likelihood [90], and probabilistic relational models [91]) have been proposed to combine 
various node and edge features for link prediction [92]. One method that has not been used much 
in biological sciences is stochastic block models [93]. These have been popular in computational 
social science for link prediction [94]. They require comprehensive gold-standards for validation 
and may catch-on more in the biological sciences as these develop. 
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