Supplementary Material for LARVA

1. Pseudogene UTR, TSS, and promoter sites removal

Pseudogenes are known to be hotspots of artifact in numerous genomics
analyses. It is partially because that read mapping in pseudogenes might be
complicated due to their context similarity with their parent genes. In order to
analyze the mutation events in the pseudogene regions, we extracted all the
pseudogenes from the Gencode annotation (version 19) and calculated the average
mutation counts from the pooled samples in gene and pseudogene regions, and also
the up- and downstream 2kb region of all pseudogenes. Possibly due to the shorter
length of pseudogenes, a larger variance of the mutation rate was observed in the
pseudogene, although two-sided Wilcoxon test shows no significant difference (P =
0.453). However, we observed a noticeable elevated mutation rate in the up- and
downstream regions of pseudogenes (Fig. S2). In order to exclude artifacts, such as
variant calling difficulties, we excluded the pseudogenes from the Gencode gene list
in our analysis.

2. Details of model fittings

The constant mutation rate assumption and the resultant binomial distribution

The underlying assumption of the binomial model is that the mutation rate
within the given region is constant. Suppose the target region has n bases in length,
and the homogeneous mutation rate is p. Then mutation count x inside this region

falls into a binomial distribution with the probability mass function as
Pr(X:x):( ’; ]p"(l—p)n_x (1.1).

Given the mutation count data, the maximum likelihood estimator of the
mutation rate is just
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where k represents the total number of regions and i is the region index.

(1.2)

The beta-binomial distribution used in LARVA
Instead of the fixed mutation rate assumption, we provided more flexibility of
the mutation rate by allowing it to follow a beta distribution
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Suppose the mutation count is x;,i =1,2,---,k, and the sample size and binomial
probability can be expressed as n, and p,. Instead of assuming the mutation in all

77(1?|05,ﬁ) = Beta(a,3) =
(1.3).

the bins is a constant, we can set up a two-stage model
D; ~ Binomial(nl.,p[)

Xi

p, ~ Beta(a,B)
Then the total number of mutations within the bin with length n follows the
beta binomial distribution as in (1.5)

B | n F(a+ﬁ)F(a+xi)F(a+ni—xi)
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To estimate the parameters in beta-binomial distribution we used the scheme
described in (1,2). When the target bin length is fixed, resulting in n, =n,i=1,2,---k,

(1.4).

X

we the mean and variance of mutation counts can be written into

E[X]:naiﬁ =nu

var[ X]=nu(1-u)o, (1.6)
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For simplicity, we directly estimate u and o instead of o and . Hence the

moment estimator can be immediately got from equation (1.6).
When the target region length is variable, estimation is a little bit more
complicated. Define additional parameters for mathematical convenience as in (1.7).
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We can have the moment estimator in (1.8)
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However, from (1.8), w, is also a function of o which is to be estimated, and

there is no analytical solution to it. Hence as suggested in (2), we initially assigned
the w, proportional to n, to get a rough estimate of y. Then w, was updated with

this estimate to obtain a more accurate estimation of o .

3. Supplementary figures

Figure S1

Boxplot of mutations count in 10k, 100k, and 1mb regions with or without
overlapping with the blacklist region. P values were calculated from the two-sided
Wilcoxon tests (P<2.2x10~"® for 10kb bin, P=4.767x10-° and 0.473 for the 100k, and
1mb bins). In the smaller bin regions (10k and 100k), regions overlapped with
blacklists demonstrates significantly higher mutation rate.

100

s
g7 i

5000
L

80
600
4000
L

s
ts
3000
L

40

2000
L

200
L

| == —

1000

0
L

T T -
T T
10kb bins blacklist 10kb bins nonblacklist 100Kb bins blacklist 100Kb bins nonblacklist v i Blaclel 5 nonblacksal

Figure S2
Average mutation rate estimation from gene, pseudogene, and regions before
and after pseudogene regions.
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Figure S3

Fitting comparison between beta-binomial and binomial distribution. (A)
Density plot of the beta-binomial, binomial, and empirical distribution of read count
data in 100kb bins; (B) C.D.F curve of the KS statistics of beta-binomial and binomial
generated counts VS. random samplings in the observed counts; (C) Boxplots of the

KS statistics.
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Figure S4
Fitting comparison between beta-binomial and binomial distribution. (A)

Density plot of the beta-binomial, binomial, and empirical distribution of read count
data in 1kb bins; (B) C.D.F curve of the KS statistics of beta-binomial and binomial
generated counts VS. random samplings in the observed counts; (C) Boxplots of the
KS statistics.
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Figure S5

Half of the observed data is used for model fitting of both beta-binomial and
binomial distribution, and the remaining half was used to calculate the KS statistics
with generalizations from the fitted distributions. Boxplots of 100 repeats were
given below.
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Figure S6

The smooth scatter plots of the mutations count in all tumor samples within 1kb
bins vs. its averaged replication timing value. A linear regression was fitted and the
R-squared values are up to 0.124.
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Supplementary tables

Table S1
Summary of the whole genome sequencing cancer data used in this study
Cancer Type # of Samples
Acute Lymphoblastic Leukemia 1
Acute Myeloid Leukemia 7
Breast Cancer 119
Chronic Lymphocytic Leukemia 28
Glial Tumor 26
Kidney Carcinoma 32
Liver Cancer 88
Lung Adenocarcinoma 24
Lymphoma B-cell 24
Medulloblastoma 100
Pancreatic Cancer 15
Pilocytic Astrocytoma 101
Prostate Cancer 95
Stomach Cancer 100
Sum 760
Table S2

Percentage of coding mutations in all samples (attached in supplementary file)

Table S3

P values for all noncoding functional regions and bins on the whole genome
(http://larva.gersteinlab.org/)
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