
	
  

	
  

Matchmaking between hairballs – insights from cross-disciplinary network comparison 
 
Koon-Kiu Yan1,2, Daifeng Wang1,2, Anurag Sethi1,2, Paul Muir4,5, Robert Kitchen1,2, Chao Cheng6, 
Mark Gerstein1,2,3 
 

1 Program in Computational Biology and Bioinformatics, 

2 Department of Molecular Biophysics and Biochemistry, 

3 Department of Computer Science, 

4 Department of Molecular, Cellular and Developmental Biology, 

5 Integrated Graduate Program in Physical and Engineering Biology, 

Yale University, New Haven, CT 06520 
6 Department of Genetics, Dartmouth School of Medicine, Hanover NH 03755 

 
Abstract 
Biological systems are complex. In particular, the interactions between molecular components 
often form inscrutable hairballs. Here we argue that one way of untangling these hairballs is 
through cross-disciplinary network comparison, matching biological networks with those from 
other disciplines. On the one hand, such comparison allows the transfer of mathematical 
formalism between disciplines, precisely describing the abstract associations between entities. 
This allows us to directly apply sophisticated formalisms developed elsewhere to biology (e.g. 
related to network growth and scaling).  On the other hand, by examining in detail the mechanistic 
interactions in systems for which we have much day-to-day experience and then drawing 
analogies to the more abstruse biological networks, network comparison allows us to leverage 
intuition from these systems to biology (e.g. leveraging intuitions about bottlenecks in 
management hierarchies to understand the structure of transcriptional regulatory networks). 
 
  



	
  

	
  

Introduction 
A signature of biology in the “omic” era is the shift of attention from a few individual components 
to a collection of constituents [1]. In the past structural biologists studied the binding of a few 
proteins, but now they are able to probe the interactions between thousands of proteins. Similarly, 
geneticists who would previously manipulate a single gene for functional characterization can 
now employ high-throughput functional genomic techniques to study the relationships between all 
genes. In many cases, genome-scale information describing how components interact are 
captured by a network representation [2]. However, given the astonishing size and complexity of 
the cellular molecular networks probed by genomics or systems biology, gaining easy intuition 
about biology from these hairballs is not guaranteed [3].  
 
What approaches might help in deciphering hairballs? Throughout the history of science, many 
advances in biology were catalyzed by discoveries in other disciplines. For instance, the 
maturation of X-ray diffraction facilitated the discovery of the double helix and, later on, the 
characterization of structures of thousands of different proteins. One may wonder if ideas in other 
areas of science could help us with the “hairball challenge”. In this essay, we argue that, while the 
influx of ideas in the age of reductionism mostly originated from subfields of physics and 
chemistry, to understand biology via a systems perspective, we can further benefit from new 
catalysts coming from disciplines as diverse as engineering, behavioral science and sociology. 
These new ideas are centered on the concept of network.  
 
Comparison and analogies are not new to biology. For instance, to illustrate the principles of 
selection Dawkins came up with the idea of a meme, which is a unit carrying cultural ideas 
analogous to the gene in biology [4]. This comparison has been further elaborated in the 
protofield of phylomemetics, which concerns itself with phylogenetic analysis of non genetic data 
[5]. Nevertheless, comparing a bio-molecular network with a complex network from a disparate 
field, say sociology, may sound like comparing apples to oranges. What kinds of comparison can 
truly deepen our understanding? 
 
To address this, it is useful to put various descriptions of a cellular system on a spectrum, in 
terms of abstraction and simplification.  
  
A spectrum of cellular descriptions 
Given the complexity of a cell, a certain level of simplification is necessary for useful discussion. 
The depth of description of cellular systems can be seen as a spectrum (Figure 1). On one 
extreme, there is a complete three or four-dimensional picture of how cellular components and 
molecules interact in space and time. On the other extreme, there is a simple parts list that 
enumerates each component without specifying any relationships. However neither extreme 
leads to a full understanding and intuition for the system as a whole. It is widely appreciated that 
the characteristics of a cellular system cannot be explained by the properties of individual 
components – the whole is greater than the sum of its parts. To describe the full picture, one 
would need the 3D structures of everything in the genome as well as representation of their 
dynamical movements. This level of detail is too ambitious for the current state-of-the-art in data 
acquisition. 
 
The network representation sits conveniently between these extremes. It captures some of the 
relationships between the components on the parts list in a flexible fashion, especially those 
where connectivity rather than exact location determines the consequence. There are two 
particularly useful ways to think about networks: association networks and mechanistic networks. 
Association networks essentially represent a process of abstraction in which entries are 
connected via a defined mathematical relationship. This could, for instance, be a statistical, rather 
than physical, relationship between nodes. This is exemplified by disease networks [6] in which a 
gene (genotype) and a disease (phenotype) are connected via the statistical association between 
the existence of genomic variants and the occurrence of the disease. Networks derived from co-
expression relationships provide another example.  
 



	
  

	
  

On the other hand, mechanistic networks represent a process of concretization. Unlike abstract 
association networks that move away from the complete 4D-picture, concrete mechanistic 
networks aim to more completely describe it. They are intended to describe and integrate many of 
the physical processes happening inside a living system-- for instance, the processing of 
information, the chemistry of metabolites and the assembly of molecular machines-- and 
therefore focus on incorporating various details of interactions. Note, any mechanistic interaction 
can be simplified and abstracted as a mathematical association. However, the converse is not 
always true. 
 
Adding further mechanistic detail onto a simple nodes-and-edges skeleton can be visualized as 
decorating edges with directionality, color, thickness etc. However, incorporating too much detail 
makes the description intractable. That is, the network formalism breaks down if we try to load 
spatial or temporal information as well as higher-order interactions onto the diagram. At certain 
point, the actual four-dimensional picture is required. 
 
Because of their simplicity, abstract association networks allow one to transfer mathematical 
formalism readily between disciplines. This can beneficial for the biological sciences, in that it 
allows the application of formalism developed elsewhere to easily find fruitful application in 
biology. On the other hand, mechanistic networks can serve as the skeletons for describing 
complex systems in detail. In this case, because of system-specific details, it is not possible to 
transfer entire formalisms; instead, one focuses more on the conceptual, rather than topological, 
resemblances. Thus, comparison of appropriately matched networks may provide additional 
intuition into the interactions between molecular components of cells by examining analogous 
interactions in complex systems for which we have more day-to-day experience.  
 
Association Networks: Comparison leverages mathematical formalism 
The power here of the network formalism lies in its simplicity. In the era of Big Data, the network 
is a very useful data structure with a wide variety of applications in both biology and other data 
intensive disciplines like computational social science. This is, of course, particularly true for 
abstract association networks.  
 
Formalism focusing on network topology 
A key application focuses on the organization principles of various complex systems. The earliest 
and probably most important observation is that many networks organize themselves into scale-
free architectures in which a majority of the nodes contain very few connections (edges) while a 
few (also called hubs) are highly connected [7]. A surprisingly large number of networks that one 
comes into contact with have a scale-free architecture – e.g. the Internet, air transport routes and 
many social networks [8].  
 
The behavior of scale-free networks is dominated by a relatively small number of nodes and this 
ensures that such networks are resistant to random accidental failures but are vulnerable to 
coordinated attacks at hub nodes [9]. In other words, just as the Internet functions without any 
major disruptions even though hundreds of routers malfunction at any given moment, different 
individuals belonging to the same biological species remain healthy in spite of considerable 
random variation in their genomic information. However, a cell is not likely to survive if a hub 
protein is knocked out. For example, highly connected proteins in the yeast protein-protein 
interaction network are 3-fold more likely to be essential than proteins with only a small number of 
links [10].  
 
A scale-free network is a kind of small-world network because hubs ensure that the distance 
between any two nodes is small [11][12]. For example, the presence of hubs in the airport 
network makes it possible to travel between any two cities in the world within a short interval of 
time. However, not every small world network has to be scale-free. An example of a prominent 
small-world network that is not scale-free is the mammalian cerebral cortex. The cortical neuronal 
network is subdivided into more than 100 distinct, highly modular, areas [13] that are dominated 
by connections that are internal to each area, with only ~20% of all connections being between 



	
  

	
  

neurons in different areas [14]. Each area is considered to have a primary feature, for example in 
processing sensory or cognitive signals. The cortical architecture has a high degree of clustering 
and small path-length and exhibits an exponential degree-distribution [15].  
	
  
While counting the number of neighbors is very useful in determining the centrality of a node, a 
more sophisticated way to define centrality is to take into account the importance of neighbors. 
The PageRank algorithm is a prominent example of this approach. Faced with a search query, 
Google must decide which set of results to rank higher and place on the first results page. 
Originally developed in social network analysis [16], PageRank utilizes an algorithm developed to 
rank relevant documents based on the rank of the websites that link to this document in a self-
consistent manner  - i.e. being linked to by higher ranking nodes has a larger impact on the 
document’s ranking. This algorithm has been applied to food webs to prioritize species that are in 
danger of extinction [17] and has also been used to rank marker genes and predict clinical 
outcome for cancers [18]. 
 
A second method of measuring a node’s centrality is based on the number of paths passing 
through it -- its "betweenness”. Similar in spirit to heavily used bridges, highways, or intersections 
in transportation networks, a few centrally connected nodes funnel most of the paths between 
different parts of the network. These are referred to as bottlenecks and removal of these nodes 
could reduce the efficiency of communication between nodes [19] (increasing their effective 
distance). Indeed, it has been reported that bottlenecks in biological networks are more sensitive 
to mutations than the rest of the network, even more so than hubs for regulatory networks 
[20][21]. 
 
Apart from measuring degrees and paths, one can easily observe that social networks tend to 
have communities within them due to the relatively larger number of interactions between people 
in the same neighborhood, school, or work place. People within the same social group naturally 
form strong ties and, in the extreme, constitute a single cohesive group (or a fully connected 
graph, or clique). Analogous to these closely-knit social groups, a large number of biological 
components can form a single functional macromolecular complex such as the ribosome. More 
generally, a common feature of a large number of social, technological and biological networks is 
that they are composed of modules such that nodes within the same module have a larger 
number of connections to each other compared to nodes belonging to different modules. A 
quantity dubbed modularity attempts to measure this, comparing the number of intra and inter 
module links in a network [22].  
 
Formalisms focusing on the interplay between topologies and the properties of nodes 
Networks are useful in data science because they can be used as a reference for mapping 
additional properties or features of different nodes. Recently, it has been reported that mapping 
somatic mutations to gene networks allow for stratification of cancer into subtypes [23]. Another 
important example is the inference of missing data using “guilt by association” -- the idea that 
nodes having similar associations in the network tend to be similar in properties. For example, in 
a social context, if your friends in an online social network use a particular product, you are more 
likely to use this product and the advertisements you view online are personalized based on 
these recommendation systems [24]. In a biological context, it has been observed that cellular 
components within the same network module are more closely associated with the same set of 
phenotypes than components belonging to different modules [25]. Furthermore, modules within 
gene co-expression networks tend to contain genes in the same biological pathway or have 
similar functions [26]. As a result, one can infer the function of a gene or a non-coding element 
based on its neighbors in the underlying network. 	
  
 
In this context, networks play an important role in gene prioritization, an essential process for 
disease-gene discovery because of limited validation and characterization resources [27]. For 
example, network properties (e.g. hubbiness) have been used to distinguish functionally essential 
and loss-of-function tolerant genes [28]. One could also prioritize uncharacterized genes based 
on how they are connected to characterized ones. If a gene, say, is one step away from a group 



	
  

	
  

of genes associated with a particular disease, it is very likely that it too is associated with this 
disease. The influence of a node may not be restricted to its nearest neighbors; network flow 
algorithms are widely used to examine long-range influence [29][30]. For instance, in a social 
science context, researchers use cascade structured models to capture the information 
propagation on blog networks, predicting a blog’s popularity [31].  
 
Another type of formalism making use of properties of nodes is link prediction. High-throughput 
experiments can be noisy, and the resultant networks may contain spurious links; missing data is 
also very common. Methods for link prediction and denoising are therefore useful. This can be 
done solely using network structure. For instance, in a protein-protein interaction network, 
defective cliques can be used to find missing interactions and determine the parts required to 
form a functional macromolecular complex [32]. Moving beyond network structure, whether two 
nodes are connected often depends on their intrinsic properties (e.g. their gene-expression level, 
conservation, and subcellular localization, etc.). A number of machine learning methods (e.g. 
collaborative filtering [33], maximum likelihood [34] and probabilistic relational models [35]) have 
been proposed to combine various node and edge features for link prediction [36]. One method 
that has not been used much in biological sciences is stochastic block models [37]. These have 
been popular in computational social science for link prediction [38]. They require comprehensive 
gold-standards for validation and may catch-on more in the biological sciences as these develop.  
 
Formalisms focusing on causal relationships and dynamics 
As mentioned above, one of the common ways to construct association networks is by correlating 
high-dimensional data. While correlative relationships can be readily calculated, a fundamental 
question is the distinction between direct (i.e. causal) and indirect interactions. For example, if 
transcription factor X regulates gene Y and Z, one could expect the expression of pairs like X-Y, 
X-Z, and Y-Z to be correlated, but the key is to identify the direct regulatory interactions X-Y and 
X-Z. Established mathematical machinery such as Bayesian networks and Markov random fields 
[39] have been used for this purpose.  
 
The inference of causal relationships is greatly improved by time-series data. In social science, 
online retailers are interested in using purchase records to study how customers influence each 
other [40]. The same question is extremely common in biology, under the term “reverse 
engineering”. For example, how can we infer the developmental gene regulatory network from 
temporal gene expression dynamics? Ideally, one could write differential equations to fit the 
temporal data. However, most functional genomics experiments do not contain enough time-
points. To overcome this drawback, data mining techniques such as matrix factorization are 
employed. For instance, given the genome-wide expression profile at different time-points, one 
could project the high-dimensional gene expression data to low dimensional space and write 
differential equations to model the dynamics of the projections [41].  
 
In addition to the actual dynamic processes occurring on a network, one can explore evolutionary 
dynamics by comparing networks. In a biological context, pairs of orthologous genes (nodes) can 
be used to define conserved edges, called interologs and regulogs for the protein-protein 
interaction and regulatory networks, respectively. Furthermore, these have been used to align 
networks from different species [42] and to detect conserved and specific functional modules [43] 
across species. Based on a large collection of aligned networks between species, a mathematical 
formalism has been developed to measure the evolutionary rewiring rate between networks using 
methods analogous to those quantifying sequence evolution. In this context, it was shown that 
metabolic networks rewire at a slower rate compared to regulatory networks [44]. The inference 
of causal and evolutionary relationships from statistical data points to the study of mechanistic 
networks. 
 
Mechanistic Networks: Comparison gives intuition into biological complexity 
Now we shift discussion to "mechanistic" networks. Here, the network framework serves as a 
skeleton for different complex systems. In particular, the previous sections discussed universal 
frameworks and insights gained by applying the same formalism to biological networks as well as 



	
  

	
  

to various social and technological networks. Such wide-ranging universal insights were possible 
only because the detailed characterization of the nodes in the network was neglected during the 
comparison. Only the abstracted "association" between the nodes was considered. On the other 
hand, if details are added to this picture, insights about a system become more specific, and in a 
sense, more meaningful. However, it is typically harder to apply the same formalism equivalently 
to two different networks. This situation is manifest when one tried to explain the scale-free 
degree distribution of various networks described above. 
 
Different mechanistic intuitation for scale free structure 
A number of different stochastic models and explanations can lead to the formation of scale-free 
graphs. First let's consider one of the paradigms of scale-free structure, the hub-and-spoke 
system of the airline network. How does this come about? Every time a new airport is created, the 
airlines have to balance available resources and customer satisfaction, i.e., the cost of adding a 
new flight and customer comfort due to connectivity between the new airport and a larger number 
of other airports. The most efficient use of these limited resources occurs if the new airport 
connects to pre-existing hubs in the network as it reduces the average travel time to any airport in 
the entire system. This model is called ‘preferential attachment’ as newly created nodes prefer to 
connect to pre-existing hubs in the network [7] and, in this case, it depends on the small-world 
property of scale-free networks [12]. In contrast, one explains the evolution and growth of the 
World Wide Web, which is also scale free, in somewhat different way. Here, a random pre-
existing node and its associated edges are duplicated (for example, to make a webpage for a 
new product in amazon, one could use a template shared by an existing product) [45]. After 
duplication, the content of two nodes and their connections diverge but a proportion of their edges 
are likely to be shared [46]. Such a duplication-divergence model leads to the formation of scale-
free networks because the connectivity of a hub increases as one of its neighbors has a higher 
chance of getting duplicated. The same duplication-divergence mechanism can describe the 
patterns and occurrence of “memes” in online media [47]. As gene duplication is one of the major 
mechanisms for the evolution of protein families, the formation of scale-free behavior in the 
protein-protein interaction network was proposed to evolve via the duplication-divergence model 
[48]. However, for protein networks there are additional twists in this explanation because one 
can actually resolve each of the nodes in the network as molecules with specific 3D geometry. In 
particular, upon analyzing the structural interfaces involved in protein-protein interactions, there 
are great differences in hubs that interact with many proteins by reusing the same structural 
interface versus those that simultaneously use many different interaction interfaces. The 
duplication divergence model only applies to the former situation  (with the duplicated protein 
reusing the same interface as its parent) [49].  
 
A third explanation for scale free structure comes from dependency networks. In particular, the 
existence of common scale free topology in many networks leads to the emergence of universal 
patterns in complex systems, biological and otherwise. In particular, it has been reported that the 
frequency of appearance of individual enzymes across different bacterial genomes and the 
frequency of local installations of individual packages in multicomponent software platforms follow 
a broad distribution [50]. In the same analysis, it has been suggested that the observations can 
be explained by the scale free topology of the corresponding multi-levels dependency networks 
because incorporation of an additional component requires the presence of the depending factors 
in the network. (As a specific example: enzyme A is connected to enzyme B if A is used to 
decompose the output metabolites of enzyme B; package A is connected to package B if the 
installation of package A depends on the installation of package B.) 
 
Thus, many networks that exhibit similar topologies are the result of significantly different 
underlying mechanisms. In the case of scale free networks, there exists a common mathematical 
formalism but somewhat different mechanistic explanations in many different domains (e.g. airline 
networks vs gene networks). Some of the domains share the same mechanistic explanation -- i.e. 
the scale-free structure in both protein-protein interaction and web-link networks can be explained 
by duplication and divergence. Moreover, this latter commonality provides additional intuition 



	
  

	
  

about the protein interaction network through comparison to the web-link network, which is 
conceptually much more easy to understand.  
 
Intuition from common design principles on large and small scales  
The ability to gain intuition about the often-arcane world of molecular biology by comparison to 
commonplace systems is even more evident in comparisons involving social networks, where 
people have very strong intuition for how a "system" can work. Transferring the understanding of 
organizational hierarchy to biology is a good example of this type of comparison (Figure 2). Many 
biological networks, such as transcription regulatory networks, have an intrinsic direction of 
information flow, forming a loose hierarchical organization. Likewise, many social structures are 
naturally organized into a hierarchical structure -- e.g. a militarily command chain or a corporate 
"org-chart" [51]. In the purest form of the military hierarchy multiple individuals of lower rank each 
report to a single individual of a higher rank and there are fewer and fewer individuals on the 
upper levels, eventually culminating in a single individual commanding an entire army. This 
structure naturally leads to information flow bottlenecks as all the orders and information related 
to many low-rank privates must flow through a very limited number of mid-level majors. In a 
biological hierarchy of TFs, one sees a similar pattern with "high betweenness" bottlenecks in the 
middle. In many cases, these bottlenecks create vulnerabilities. Indeed, it has been shown in 
knockout experiments that many of the bottlenecks in biological networks are essential [20]. 
Hierarchies can insulate themselves somewhat from mid-level bottleneck vulnerability by allowing 
middle managers to co-regulate those under them. This eases information flow bottlenecks in an 
obvious way (if one major gets knocked out, the privates under him can receive orders from a 
second major). Moreover, many commenters have mentioned that, in order to function smoothly, 
it is imperative for corporate hierarchies to have middle managers working together [52]. 
Strikingly, biological regulatory networks employ the same strategy by having two mid-level TFs 
co-regulate targets below them [53]. Thus, one can get an intuition for the reason behind a 
particular biological structure through analogies to a commonplace social situation. 
 
The goal of this comparison is the transfer of ideas on the relationship between network structure 
and "function" from a social context to a less intuitive biological one. More generally, lying at the 
heart of deciphering biological networks is the mapping between architecture and function. As it is 
often hard to define “function” in complex biological settings, comparison with simple 
technological or engineered components that possess basic and well-defined functions is 
particularly insightful [54]. For example, consider the phosphorylation and dephosphorylation 
reactions of a protein by a pair of kinase/phosphatases. While the mathematical description of 
Michaslis-Menten kinetics can be a bit complicated, the reaction essentially sets up a sigmoidal 
signal-response curve that is analogous the thresholding behavior of transistors in analog 
electronic circuits [55]. Thus, the comparison allows us to potentially map some aspects of the 
logical gate structure of digital electronics to the phosphorylation network. It also helped inform 
the design of synthetic biological circuits capable of logarithmic computation [56]. Similarly, a 
decade ago, Uri Alon pointed out several common design principles in biological and engineering 
networks such as modular organization and robustness to perturbation [57]. Robustness is a 
preferred design objective because it makes a system tolerant to stochastic fluctuations, from 
either intrinsic or external sources. Modularity, on the other hand, makes a system more 
evolvable. For instance in software design, modular programming that separates the functionality 
of a program into independent parts connected by interfaces is widely practiced [58]. The same is 
true for biological networks because modules can be readily reused to adapt new functions. 
 
Intuition on network change: contrasting the tinkerer and engineer 
By comparing biological and technological systems, we can see remarkable similarity in their 
design principles, in terms of their global organization (e.g. scale-free and hierarchical), as well as 
local structure. As both are complex adaptive systems, to shed light on the origin of such 
commonalities, we describe a third comparison: how biological and technological networks 
change. Manmade networks like roadways and electronic circuits are thought to change 
according to the plan of rationale designers. In contrast, biological networks are thought to 
change randomly and then for the successful changes to be selected. This is analogous to the 



	
  

	
  

work of a tinkerer, rather than an intelligent designer. Nevertheless, the distinction is not clear-cut. 
There are plenty of examples showing that many of man's great innovations are the result of trial 
and error, and all technological systems are subjected to selection such as user requirements. In 
a recent review, Wagner summarized nine key commonalities between biological and 
technological innovation, including descent with modification, extinction and replacement, and 
horizontal transfer [59]. 
 
In a sense, we could picture that both the engineer and tinkerer are working on an optimization 
problem with similar underlying design objectives, but take different views when balancing 
constraints. For example, in biological networks, more connected components (as measured by 
their hubbiness or betweenness) tend to be under stronger constraint than less connected ones. 
This is evident in numerous studies that have analyzed the evolutionary rate of genes in many 
networks (e.g. protein interaction and transcription regulatory networks) in many organisms (e.g 
humans, worms, yeast, E. coli) using many different metrics of selection (e.g. variation within a 
population or dN/dS for fixed differences) [60][61][62][63]. Constraint is related to connectivity in 
biological systems. One's intuition here is obvious: biological systems seek to decentralize 
functionality, minimizing average connectivity on nodes and making the system robust. However, 
this architecture requires a few hubs to connect everything up and these more connected 
components are particularly vulnerable to random changes; Is this finding true in general? And if 
not, why? Comparison can provide insight. 
 
Consider software systems: software engineers tend to reuse certain bits of code, leading to the 
sharing of components between modules, arriving at highly connected components. Analysis of 
the evolution of a canonical software system, the Linux kernel, revealed that the rate of evolution 
of its functions (routines) is distributed in a bimodal fashion; the more central components in the 
underlying network (call graph) are updated often [64]. These patterns seem to hold for other 
software systems. For instance, in package-dependency network of the statistical computing 
language ‘R’, packages that are called by many others are updated more often (Figure 3). In 
other words, unlike biological networks whose hubs tend to evolve slowly, hubs in the software 
system evolve rapidly. What’s the implication? As a piece of code is highly called by many 
disparate processes – i.e. modules tend to overlap -- intuitively one would expect that the 
robustness of software would decrease. Our first intuition is that an engineer should not meddle 
too much with highly connected components, However, there is another factor to consider: 
rational designers may believe that they can modify a hub without disrupting it (i.e. the road 
planner thinks construction is possible in Manhattan without too much disruption) -- in contrast to 
a situation where random changes dominate. Moreover, the central points in a system are often 
those in the greatest use and hence are in the most need of the designer's attention (and 
maintenance). This situation is again analogous to road networks: one sees comparatively more 
construction on highly used bottlenecks (e.g. the George Washington Bridge) compared to out of 
the way thoroughfares. The discrepancy between tinkerer and engineer suggests that, as an 
optimization process, no approach optimizes all objectives (robustness and modularity in this 
case) and thus tradeoffs are unavoidable in both biological and technological systems. This is 
essentially the conventional wisdom – there’s no free lunch [65][66]. 
 
Conclusion 
Biology is a subject with a strong tradition of utilizing comparative methods. One hundred years 
ago, biologists compared the phenotypes of different species. Since the discovery of DNA, 
biologists have been comparing the sequences of different genes, and then various ‘omes’ across 
species. Perhaps, it is a time to extend this tradition even further to compare networks in biology 
to those in other disciplines. In fact, efforts have already been made along this direction (Figure 
4). Here, we have tried to describe how these comparisons are beginning to take place. First, we 
have described how association networks that just show simple connections between entities are 
abstract enough to allow the application of mathematical formalisms across disciplines. Then, we 
show how mechanistic details can be placed onto these simple networks and enable them to 
better explain a real process such as transcriptional regulation or software code development. In 
this case, the networks are often too detailed to allow for direct transfer of formalisms. 



	
  

	
  

Nevertheless, one can gain meaningful intuition about a biological system through comparing it to 
a more commonplace network such as a social system using a similar mechanistic description. 
Indeed, a proper intuition on concepts such as how essentiality and connectivity relate enables us 
to decipher a hairball into a more structured network. Moreover, once made evident, these 
intuitions often guide visualizations that allow us to literarily see the structure of a complex 
hairball (Figure 5) [67][68]. 
 
What's next? We envision that these cross-disciplinary network comparisons will become 
increasingly common. Networks are a key structure used for the analysis of large datasets in the 
emerging field of data science. Moreover, network datasets are becoming increasingly common 
in many fields. We anticipate that this data growth will enable further fruitful comparisons with 
biology. One area that is especially ripe for comparison is multiplex networks, which concatenate 
networks to form a multiplex structure [69][70]. This framework is commonly used in social 
science in which an individual may participate in multiple social circles (e.g. family, friends, and 
colleagues), or in an online setting: Facebook, LinkedIn and Twitter. However, it has not been 
very well explored in biology. Nevertheless, the fundamental structure of biological data now 
extends beyond a single network to multiplex structures: the multiple layers could be formed by 
different categories of relationships (co-expression, genetic interactions, etc.), Furthermore, 
biological regulation occurs at multiple levels: transcriptional, post-transcriptional, and post-
translational regulation in a manner in analogous to a city with electrical networks, water pipes, 
and cell phone lines. We are looking forward to some of the methods developed in other contexts 
to be applied in biology. 
 
So far we have focused on leveraging the ideas and methods developed in multiple disciplines 
through comparison. We can even imagine that these comparisons will lead to real connections 
(i.e. not analogies) between biological networks and those in other disciplines. For instance, there 
is an increasing amount of attention among biologists and sociologists on the connection between 
genomics information and sociological information such as whether phenotypes or genotypes are 
correlated in friendship networks [71]. 
 
Figures Caption 
 
Figure 1.  
A spectrum of cellular descriptions. From left to right. Networks help reveal and convey the 
relationships between components of a biological system. Different levels of information can be 
represented using a network. At an abstract level, a network can denote associations between 
various nodes. More details, such as excitatory and inhibitory regulatory relationships, can then 
be layered on top of this basic network. As additional information about the nodes and the 
relationships between them is added, the network begins to resemble the real world entity it 
models. For example, the addition of 3D structural information and temporal dynamics onto a 
network of molecular machine components leads it to more closely resemble the molecular 
machine itself. 
 
Figure 2.  
Comparison between the hierarchical organizations in social networks versus biological networks 
illustrates design principles of biological networks. The hierarchical organization in biological 
networks resembles the chain of command in human society, like in military context. The top 
panel shows a conventional autocratic military hierarchy. The structure is intrinsically vulnerable 
in the sense that if a bottleneck agent (star) is disrupted, information propagation breaks down. 
The introduction of cross-links (blue) avoids the potential problem (middle panel) because the 
private at the bottom can then take commands from two different superiors above. The bottom 
panel shows the hierarchical organization of a biological network, with the existence of cross-links 
between pathways. These observations reflect a democratic hierarchy as opposite to an 
autocratic organization. 
 
Figure 3. 



	
  

	
  

Different evolutionary patterns in biological networks versus technological networks. The left 
shows the protein-protein interactions network in human [72], whereas the right is the R package 
dependency network specifying the proper function of a package (node) depends on (edge) the 
installation of another. Central nodes in a PPI network are under strong selective constraints 
(slow rate of evolution), whereas central nodes in the R package dependency network evolve 
faster. In other words, network centrality and rate of evolution is negatively correlated in biological 
networks (left), but positive correlated in technological networks (right). The R package 
dependency network consists of all the available packages (5711) via R studio at October 2014.  
 
Figure 4. 
Interdisciplinary network comparison. A lot of papers have addressed the similarity and difference 
between biological networks (circle) and networks in social/technological systems (squares). Here 
we represent all these comparison in the form of a network, where an edge associated with 
references represents a network comparison in a specific context (color). Moreover, these 
comparisons can take place in terms abstract association networks where formalism is used 
equivalently in two domains (dotted lines) or mechanistic networks, where one only seeks 
analogy between disciplines (solid lines). 
 
Figure 5.  
Intuitions guide visualizations of a complex hairball. A mechanistic network with multiple kinds of 
edges (protein-protein interactions, metabolic reactions, transcription regulations, etc.) forms an 
ultimate hairball (left). The hairball is then visualized by scaling the size of nodes by the degree of 
genes (right). The red nodes are essential, and the blue nodes are loss-of-function-tolerant. The 
network layout was generated by iCAVE [68].     
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a complex hairball a visualization guided by intuitions




