
Figure Legends 
 
Figure 1 - Schematic workflow. 
ALoFT uses a VCF file as input and annotates premature Stop, frameshift-causing indel 
and canonical splice-site mutations with functional, conservation, network, mismapping 
and annotation issue features. Then it predicts the pathogenicity (as either benign, 
recessive or dominant disease-causing) of premature stop mutations using a model 
trained on known data. ALoFT can also take a 5-column tab-delimited file containing 
chromosome, position, variant ID, Ref allele and Alt allele columns as input. 
 
Figure 2 - ALoFT classification of 1000 Genomes, ESP6500 and HGMD variants. 
a) Benign LoF score for premature stop variants in 1000 Genomes Phase1 data set 
(1KG) and HGMD. For this plot, we randomly selected one variant per gene. b) HGMD 
and 1KG premature stop variants on the dominant disease-causing gene - NF2. The 
benign 1KG LoF variant truncates 2 isoforms, whereas HGMD LoF variants truncate 7 to 
12 isoforms. The red triangle denotes the disease-causing LoF variants that affect 7 
isoforms and are different from the isoforms affected by 1KG LoF variant. c) Relative 
positive of premature stop variants on coding transcripts and their allele frequencies. 
Compared to HGMD variants, 1KG and ESP6500 LoF variants are enriched in the last 
5% of the coding sequence. d) Predicted benign LoF scores for premature stop variants 
in the last coding exon. 
 
Figure 3 – AloFT classification of premature stop variants from Mendelian disease, 
autism and cancer studies.  
a) ALoFT dominant LoF score, GERP and CADD score for Mendelian disease mutations 
obtained from the Center for Mendelian Genomics studies. b) The top two panels show 
the dominant LoF scores of de novo nonsense mutations in autism patients and siblings; 
mutations in patients are further separated by gender, as shown in yellow background in 
the bottom two panels. c) For cancer somatic mutations with predicted diseasing-
causing score higher or equal to the threshold of 0.33  (X-axis), we calculated the 
fraction of mutations occurring in various gene categories. We calculated the fraction of 
somatic premature stop mutations in 504 known cancer driver genes and 504 randomly 
selected genes. To ensure that the cancer driver genes and the selected random genes 
have similar length distributions, the 504 random genes were selected from genes with 
matched length. We also made sure that the randomly picked genes are sampled from 
genes known to have premature stop polymorphisms from the 1000 Genomes cohort.  
Similarly, we compared the fraction of somatic premature stop mutations in 397 LoF-
tolerant genes and 397 randomly selected genes with similar length distribution. LoF-
tolerant genes are genes that have at least one homozygous LoF variant in at least one 
individual in the 1000 Genomes cohort. 
 

Supplementary Materials and Methods 
 

1. Description of ALoFT annotation pipeline 
 

ALoFT provides extensive annotation for SNPs that introduce a premature-stop 
codon, SNPs affecting the splice sites and indels that lead to frameshifts. Initial 
sequence-based annotation of the coding variants is performed by Variant Annotation 
Tool1. The output of VAT is augmented with various features specific to LoF variants. 
The input files can be in VCF format or a tab-delimited 5-column file that includes 



chromosome, variant position, variant ID, reference allele and alternate allele. LoF 
variants annotated with various features are output as three separate files.  

a. A VCF-formatted file containing summarized annotations.    
b. Tab-delimited file containing extensive annotations for premature Stop variants 

and indels leading to frameshift.  
c. Tab-delimited file containing annotations for variants that affect the canonical 

splice sites. 
 
The output of ALoFT annotation pipeline is discussed below and the overview of 

the pipeline is shown in Figure S1. 
 
 

 
 

 
Figure S1 - ALoFT annotation pipeline 

 
 

1.1 Functional features 
We annotated domains affected by the LoF variants with PFAM and SMART 

domain information. The 3D structure of the protein is essential for proper folding and 
function of proteins. Therefore, we incorporated structure-based features: SCOP 
domains and disordered residues into our pipeline.  In addition, we annotated signal 
peptide and trans-membrane domains. PFAM, SCOP, signal peptide and trans-
membrane domain annotations were obtained by querying Ensembl Release 73 using 
the Ensembl PERL API2.  Post-translationally modified residues (phosphorylated, 
acetylated, and ubiquitinated sites) are annotated based on data from PhosphositePlus 
3. Disordered residues have been known to be important in protein-protein interaction 
surfaces and have been implicated in disease-causing mechanisms4,5. We obtained 
disordered residues in proteins using DISOPRED6. For all functional features, we 
assessed if the premature stop variant affected a functional feature and if the region lost 
due to the premature Stop led to loss of functional domains/features. We also identified 



transcripts containing a premature Stop as candidates for nonsense-mediated decay 
(NMD) if the distance of the premature Stop from the last exon-exon junction was 
greater than 50 base pairs.  
1.2 Network features 

 We calculated proximity parameters for each LoF-affected gene that correspond 
to the number of disease genes directly connected to it in a protein-protein interaction 
network. Human protein-protein interaction networks were downloaded from BioGrid7 
(the version used is BIOGRID-ORGANISM-Homo_sapiens-3.2.95). The list of dominant 
and recessive disease genes were obtained from the list curated from OMIM8,9. Shortest 
path from a gene to the nearest disease gene are also included in the ALoFT output.  
   
1.3 Evolutionary features 

 ALoFT includes GERP score of the LoF variant position. In case of indels, the 
mean GERP score is provided. In addition, ALoFT evaluates the evolutionary 
conservation of the region that is lost due to the truncation. This is calculated as the 
percentage of region lost that occurs in GERP-constrained elements. dN/dS  values for 
human-macaque and human-mouse orthologs were obtained from Ensembl using 
Biomart10. 

 
1.4 Mismapping errors 

 ALoFT flags potential false positive variant calls by identifying homologous 
regions in the genome where the potential for mismapping is high. The following features 
are annotated: 

a. Variants in segmentally duplicated regions 
b. Variants in genes that have paralogs 
c. Variants in genes that have pseudogenes 

Paralogs of human genes were obtained from Ensembl. Pseudogene information was 
derived from the GENCODE pseudogene resource11.  
 
1.5 Annotation errors 

 Variants that lead to a premature Stop codon, indels that lead to frameshift and 
variants in splice sites are annotated as LoF variants based on sequence annotation and 
are under assumed to lead to LoF. However, this assumption is not always valid. The 
various ways where the inferred LoF annotation might not be correct is captured under 
the following flags:  

a. lof_anc: Indicates that the LoF variant allele is the same as the ancestral allele 
and is likely to be a functional allele. 

b. near_start: The variant is in the first 5% of the coding sequence. 
c. near_end: The variant is in the last 5% of the coding sequence. 
d. alt_canonical_site: SNPs in splice sites are flagged as potentially not LoF when 

the alternate allele represents the canonical splice site i.e when the alternate 
allele is GT at the donor or AG at the acceptor site.  

e. noncanonical_splice_flank:  Variants in exons that are flanked by noncanonical 
splice sites. Some of these exons could be due to spurious exon annotations in 
the gene models. 

f. Small_intron: Variants in introns less than 15 bp long  
	  

1.6 Other features 
Aloft includes all the annotation features derived from VAT. This includes transcript-

specific annotation of the coding SNP. In addition, ALoFT provides allele frequency 
information for the variants based on reference population studies, specifically, ALoFT 



output includes allele frequency information for LoF variants from the Phase1 1000 
Genomes as well as ESP6500 datasets. ESP6500 dataset was downloaded from 
Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, 
WA (URL: http://evs.gs.washington.edu/EVS/) [November 8, 2013]. An overview of 
all the features output by ALOFT is shown in Table S1. 

 
 

MISMAPPING 

Number of paralogs to genes containing LoF 
variants. 
LoF variant in segmental duplication 
Number of pseudogenes of genes containing LoF 
variant 

ANNOTATION ISSUES 

Alternative allele is ancestral allele 
NAGNAG pattern indicating alternative splice sites 
Alternative allele is the consensus splice site 
LoF containing exon flanked by non-canonical splice 
sites 
Splice LoF in short introns (<15bp) 
LoF within first or last 5% of coding sequence 

NETWORK Shortest path to disease-causing gene 
Proximity parameter 

EVOLUTIONARY 

GERP score 
GERP element 
dN/dS (macaque) 
dN/dS (mouse) 
Percentage of conserved exons removed due to 
truncation. Calculated as the fraction of removed 
exons covered by GERP-constraint elements 

FUNCTIONAL 
INTERPRETATION 

NMD prediction 
LoF in PFAM, SMART domains 
PFAM, SMART domain lost due to truncation 
LoF in trans-membrane, signal peptides 
Transmembrane domain, signal peptides lost due to 
truncation 
LoF in SCOP domain, disordered region 
SCOP domain, disordered region lost due to 
truncation 
LoF in post-translational modified sites (PTM) 
PTM lost due to truncation 

OTHER 

1000 Genomes, ESP6500 allele frequency 
Partial/full LoF (LoF affecting some isoforms of a 
gene/ all isoforms) 
Coding variant annotations using VAT1 tool 

 
Table S1: Features output by ALoFT for LoF variants. 

 
 
2. Pathogenicity prediction for LoF mutations 

  To predict pathogenicity of LoF variants, we trained a Random Forest model to 
differentiate between benign, heterozygous and homozygous disease-causing LoF 



variants. For the training data, we only used premature Stop variants because indel 
calling methods are not yet robust. Benign variants were derived from 1000 Genomes 
Phase1 dataset, comprising of 1,092 individuals. Premature Stop mutations leading to 
disease were obtained from HGMD. We used the variation-specific and gene features 
that are output by ALoFT to build the classifier. Background mutation rates vary amongst 
genes. Therefore, we also included the following gene/transcript-specific features, which 
take into account the effects of length and the background mutation rate for each gene. 
The following gene/transcript-specific features were included: 

a. Conservation: We calculated synonymous and non-synonymous SNP density 
based on variation data from 1000 Genomes Phase1, average GERP scores of 
synonymous and non-synonymous SNPs, percentage of synonymous and non-
synonymous SNPs in GERP-constrained elements, percentage of coding transcript 
overlapping with constrained GERP elements and average heterozygosity.  

b. Network: We obtained gene centrality scores of various networks from 
Khurana et al.12 

c. Transcript expression levels in 25 tissues from GTex13. For each transcript, we 
calculated the average expression values across individuals for particular tissue. Tissue 
specificity is calculated using entropy-based method.  

d. Number of validated miRNA binding sites per gene. 
 In total, we used 101 features to train our model. 
 
2.1 Training data 

Benign premature stop varaints are SNPs homozygous in at least one individual 
in the Phase1 1000 Genomes. Nonsense SNPs from HGMD are classified as those 
causing recessive or dominant disease based on ‘recessive’ and ‘dominant’ genes 
curated from the Online Mendelian Inheritance in Man database, OMIM9,14. Mutations 
that lead to dominant inheritance of diseases can do so both via loss of function as well 
as gain of function mechanisms. However, it is reasonable to assume that LoF variants 
in dominant disease genes are most likely to result in LoF. Nonetheless, we only 
included dominant genes predicted to be haplo-insufficient15 in the training data to make 
sure that we are predominantly probing loss-of-function effects. The final training dataset 
includes 404 (in 387 genes) benign variants, 2,365 (in 117 genes) dominant and 4,837 
(in 665 genes) recessive premature Stop mutations. 

   
2.2 Three-class classification 

Descriptive features are transformed into binary values - “-1” and “1”, e.g. 
whether truncating PFAM domain. Missing values are replaced with weighted average of 
three classes. We then use random forest algorithm to train our model and evaluate the 
performance with 10-fold cross-validation. To reduce bias, we included only one variant 
per gene in the training data (except for dominant genes, we randomly selected three 
variants per gene. The average number of dominant mutations per gene is 20). The 
variant is picked randomly from the list of mutations and the longest affected transcript is 
used. Thus each training model was based on 387 benign premature stop variants, xx# 
of dominant mutations and 665 recessive mutations. We repeated this process 40 times. 
We calculated multi-class AUC using the methodology developed by Hand and Till 16. 
We assigned the class with largest probability as the predicted outcome. Figure S2 
shows the precision calculations for 5 training models.  Precision is calculated as the 
fraction of true positives among predictions. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 



 

 
Figure S2 – Precision plot for 5 models.  

 
Figures S3a and S3b are feature importance plots. In Figure S3a, the feature importance 
is calculated by randomly permuting the values of a feature, training the model with the 
permuted values for the feature, and calculating the change in mean accuracy of 
classification as each feature is probed. Figure S3b is an analogous importance plot 
where the mean change in Gini coefficient is calculated to assess the importance of a 
feature.  The importance plot is not directly interpretable because many variables are 
correlated. Therefore, evaluating each feature individually is not meaningful. 

Figure S3a - Importance plot 
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    Figure S3b - Importance plot 
 

We also ran the classifier on several different training datasets. As showed in 
Table S2, the method is pretty robust. Here are the details of the various runs.  

 
No
. 

Training datasets Multi-class 
AUC 

1 Dominant genes (includes only haploinsufficient genes); 
Longest transcript 

0.955 

2 Same as 1, except removed all Olfactory receptor genes 0.954 
3 Same as 1, except randomly picked transcript 0.952 
4 Same as 1, except used all dominant genes (without 

haploinsufficiency filter) 
0.921 

 
Table S2 - Robustness of method with respect to training data 

 
2.3 Application of prediction model 
   
2.3.1 Applied to known disease-causing mutations from CMG 
 We applied our method on known pathogenic mutations from published Center 
For Mendelian Genomics studies (http://data.mendelian.org/CMG/), which contain 4 
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dominant and 9 recessive stop-gained mutations. We also obtained GERP and CADD17 
score for these variants.  
 
2.3.2 Applied to 1000 Genomes Phase1 data 
 We applied our method to the healthy cohort of 1,092 individuals from the 
Phase1 1000 Genomes data. Among the 6,069 stop-gained mutations, 107, 2639 and 
3323 mutations are predicted as dominant, recessive and tolerant respectively (Table 
S3). Detailed results are available at Table S6.  
 

Predictions Number of premature-stop mutations (total 
6,069) 

Dominant 253 - 4.17% 
Recessive 2,823 - 46.5% 

Benign 2,993 - 49.3% 
 

Table S3 - Pathogenicity prediction for premature-stop mutations from1000 Genomes. 
 
 We also calculated per individual statistics for predicted dominant, recessive and 
benign premature stop mutations (Table S4). We counted the number of alternative 
alleles for each category.  
 
 

Predictions Average alternative allele counts per individual 
(percentage) 

Dominant 0.89 (0.64%) 
Recessive 8.3 (5.99%) 

Benign 127.9 (93.4%) 
 

Table S4 - Average per individual statistics for 1000 Genomes. 
 
2.3.3 Applied to de novo mutations from autism patient 
 We collected de novo stop-gained mutations from four autism studies18-21. There 
are 19 and 53 mutations in siblings and probands respectively. Most individuals have 
one de-novo premature stop mutation (Table S5). The prediction results are included in 
Table S7. 
 

  Number of premature-stop mutations 
Siblings 19 samples (1 mutation) 

Autism males 33 samples (1 mutation); 2 samples (2 
mutations) 

Autism females 14 samples (1 mutation); 1 sample (2 
mutations) 

 
Table S5 - number of de novo premature-stop mutations per individual  

  
 We obtained the 33 confident autism genes (FDR<0.1) from Rubeis et al.,22. 
Premature-stop mutations in these genes show significantly higher scores than 
premature-stop mutations in other genes (Only de novo LoFs in probands are used; p-
value:0.008; Wilcoxon rank-sum test).  
 



 
 

Figure S5 - Prediction scores for autism de novo LoFs in confident risk genes. 
 
2.3.4 Applied to somatic mutations from cancer genome sequencing 
 We obtained somatic premature-stop mutations from Alexandrov et al23. 
This includes ~6,000 exomes in 30 different cancer types. Cancer genes are from 
COSMIC cancer gene consensus24.  
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