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Re: Loregic: A method to characterize the cooperative logic of regulatory factors

Dear Editor,

We hereby submit our revised manuscript entitled “Loregic: A method to characterize the cooperative logic of regulatory factors” by Wang et al. 

We want to acknowledge the efforts of the editorial team and the two reviewers in the reviewing process. We are happy that both reviewers said our manuscript was well written and clearly conveyed the ideas and approaches of Loregic. We have incorporated all minor comments from reviewers, and a revised manuscript with highlighted changes along with a separate point-by-point address are enclosed. In addition, we have provided the following extra materials:

1. A new supplement Figure S3, which compared the scores of logic-gate-consistent triplets with TF targets at top, middle, bottom hierarchical layers for yeast;
2. A new supplement Figure S4, which compared the scores of logic-gate-consistent triplets using two binarization methods, BoolNet and ArrayBin;
3. An image for Loreigc for the featured or issue image.  

Thank you for giving us the opportunity for revising our manuscript. We are looking forward to hearing from you. 


	Yours faithfully,

	Mark Gerstein

	Albert L. Williams Professor
	of Biomedical Informatics


[bookmark: h.wb59si7ejby1]
Point-by-Point response letter for revision
[bookmark: h.c3pu5u42rpw4]Reviewer 1

[bookmark: h.a1zrogd3a78q]-- Ref 1.1 –Binarization--
	Reviewer
Comment
	The authors used existing methods to binarize gene expression data. However, how accurate is this binarization of the expression level of TFs/mi-RNAs and downstream genes? Could the determination of which triplets are "gate-consistent" and which ones are not depend on the choice of binarization scheme? It would also be interesting to know if the authors think it is possible to somehow extend the framework developed in this manuscript to capture more subtle regulatory modes - e.g. have multiple (rather than binary) expression states for the TFs/genes?

	Author
Response
	Thanks for the questions. Loregic uses the gene expression dynamics across samples at the logical level to characterize the regulatory cooperativity. To capture the logical cross-sample dynamics, we recommend the binarization methods such as BoolNet [29]. Unlike traditional ways using a uniform cutoff strategy such as median value, this method customizes the binarization cutoff for each gene based on its expression dynamic patterns across samples. To answer the reviewer’s questions, we compared BoolNet and another method, ArrayBin (http://cran.r-project.org/web/packages/ArrayBin/), which uses an adaptive approach to binarize high-throughput gene expression data. We found that the 81% yeast and 85% human TF-TF-target triplets have the same best-matched logic gates found by Loregic between two binarization methods. Also, the consistency scores for those triplets between two methods are highly correlated (Yeast, cor=0.80; Human, cor=0.97), which is shown in a new supplement figure, Fig. S4. Human has higher correlation because it has more data samples (200 samples) than yeast (59 samples). Also, before binarization, we normalized miRNA and protein-coding gene expression datasets separately given that their expression levels vary at different scales. Please note that the point of the Loregic tool is not to address binarization issues but to be compatible with any binarization data that the user wants. 

In addition, we thank the reviewer for the great suggestion for Loregic’s extensions. We can extend Loregic to deal with the multiple expression states using advanced models such as fuzzy logic models. We added a new reference [45] in Discussion:
[bookmark: _ENREF_45]45. Du P, Gong H, Wurtele ES, Dickerson JA (2005) Modeling gene expression networks using fuzzy logic. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics 35: 1351-1359.

	Excerpt From Revised Manuscript
	Loregic uses the gene expression dynamics across samples at the logical level to characterize the regulatory cooperativity. To capture the logical cross-sample dynamics, we recommend the binarization methods such as BoolNet [29]. Unlike traditional ways using a uniform cutoff strategy such as median value, this method customizes the binarization cutoff for each gene based on its expression dynamic patterns across samples. 
…
To test the robustness of Loregic to different binarization methods, we compared BoolNet with another method, ArrayBin [53], which uses an adaptive approach to binarize high-throughput gene expression data. We found that the 81% yeast and 85% human TF-TF-target triplets have the same best-matched logic gates found by Loregic between two binarization methods. Also, the consistency scores for those triplets between two methods are highly correlated (Yeast, cor=0.80; Human, cor=0.97) as shown in Fig. S3. Human has higher correlation because it has more data samples (200 samples) than yeast (59 sam-ples).




[bookmark: h.e4xfop3krhy1]-- Ref 1.2 –Logics for more complex hierarchical structures--
	Reviewer
Comment
	The authors have previously described in great detail the hierarchical structure of regulatory networks (Yu and Gerstein PNAS 2006, Gerstein et al Nature 2012 etc). Is it possible to capture more complex hierarchical structures (not just triplets) using a series of logic gates?

	Author
Response
	Thanks for the good question. Yes, Loregic can identify the hierarchical pathways consisting of a series of cascaded logic-gate-consistent triplets. For example in Section 2.4 and Figure 7, we found that two regulatory pathways targeting the gene PPIL2 comprise four logic-gate-consistent triplets, which form a two-layer hierarchical structure. We added “two-layer hierarchical structure” to the example in Section 2.4, and one more sentence in Discussion about capturing logical cooperations of more complex hierarchical structures. We also constructed the regulatory hierarchical networks with top, middle and bottom layers using yeast TFs [5], and found that the scores for the gate-consistent triplets targeting the bottom TFs are lower than the ones targeting middle and top TFs (a new supplemental figure, Fig. S3), which implies that the regulations of middle and top TFs more likely follow logical operations than the bottom TFs. We added Yu and Gerstein PNAS 2006 as Ref. 28.
[bookmark: _ENREF_28]28. Yu H, Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103: 14724-14731.

	Excerpt From Revised Manuscript
	These two pathways contain 4 logic-gate-consistent triplets forming a two-layer hierarchical structure… We also constructed the regulatory hierarchical networks with top, middle and bottom layers using yeast TFs [5], and found that the scores for the gate-consistent triplets targeting the bottom TFs are lower than the ones targeting middle and top TFs (Fig. S3), which implies that the regulations of middle and top TFs more likely follow logical operations than the bottom TFs.
…
In addition, we can use a series of cascaded logic-gate-consistent triplets to capture the logical cooperations of more complex hierarchical structures such as regulatory pathways across multiple layers in hierarchical gene regulatory networks. 



[bookmark: h.z3wfmm27zfl8]-- Ref 1.3 –Extensions to other data sources--
	Reviewer
Comment
	It would be interesting to see the application of Loregic to other model organism data - maybe from the recently published modENCODE papers or other sources.

	Author
Response
	This is a good suggestion. Current modENCODE datasets do not have all TF ChIP-seq datasets for every developmental stage. Thus, we applied Loregic to the limited available size of TF-target pairs for the worm embryogenesis datasets (24 time points only) in modENCODE, and reported 88 logic-gate consistent triplets along with scores in the attached table. We also added this point as future work of Loregic in Discussion when more RF-target predictions become available.

	Excerpt From Revised Manuscript
	Loregic can be further used to study cooperations among other regulatory elements such as splicing factors, long non-coding RNAs, etc., or RF cooperations during other biological processes such as embryonic developments for the model organisms in modENCODE project [44].
[bookmark: _ENREF_42]44. Gerstein MB, Rozowsky J, Yan KK, Wang D, Cheng C, et al. (2014) Comparative analysis of the transcriptome across distant species. Nature 512: 445-448.



[bookmark: h.byl2ibhfp06y][bookmark: h.cjnkaphxk79r]Reviewer 2
[bookmark: h.dq5uwwg2pmy9]-- Ref 2.1 –Explanation of miRNA-target relationship --
	Reviewer
Comment
	Would the authors please explain how miRNA-target relationship is defined? I did not find that in the Methods.

	Author
Response
	We thank the reviewer for this question. We used the miRNA-target pairs found in [52]. Authors in [52] selected the highly confident miRNA-target pairs that appeared at least twice from six miRNA-target databases: TargetScan, miRanda, miRDB, PicTar, DIANA- microT and MicroCosm.
[bookmark: _ENREF_49]52. Chen D, Fu LY, Zhang Z, Li G, Zhang H, et al. (2014) Dissecting the chromatin interactome of microRNA genes. Nucleic Acids Res 42: 3028-3043.

	Excerpt From Revised Manuscript
	The miRNA-target pairs that we used for human K562 cell line in this paper were the overlapped pairs among widely used public databases for predicting miRNA-target relationships described in [52].



[bookmark: h.3kzsbjrvb2ca]-- Ref 2.2 – TF2 motifs --
	Reviewer
Comment
	In the event no motif was found for the TF2 in the triple of TF1-TF2-Target, do the targets of TF2 overall show no enrichment of specific motifs? In related to this, how to define “80% PWM similarity?”

	Author
Response
	Thanks for the questions. We elaborated how to define on no TF2 motifs found at promoter regions. Given a TF and its target, if we say no TF motif was found at the target promoter, we mean that we couldn’t find any matches in the target promoter sequence for the TF’s motifs with at least 80% Position Weight Matrix (PWM) similarity using matchPWM(…, min.score=“80%”) in [39].
[bookmark: _ENREF_38]39. DebRoy HPaPAaRGaS Biostrings: String objects representing biological sequences, and matching algorithms. R package version 2.30.1.

	Excerpt From Revised Manuscript
	In a number of cases even when the logic gate assessment predicted cooperation between the two TFs, we could not find the binding motifs (i.e., TF motif’s Position Weight Matrix) for one of these TFs in the target gene’s promoter region. This suggests that the motif-missing TF is only involved with the target gene indirectly perhaps through a protein-protein interaction (specifically for this assessment, we define that the TF binding motifs are missing if we couldn’t find any matches in target promoter sequences for TF motifs with at least 80% Position Weight Matrix (PWM) similarity using matchPWM(…, min.score=“80%”) in [39].



[bookmark: h.4cb1jxhce0cv]-- Ref 2.3 – Percentage of targets explained by gate-consistent triplets --
	Reviewer
Comment
	Would the authors comment on what % of targets can be explained by consistent RF1-RF2-T triplets at the global level?

	Author
Response
	This is a good point. We calculated the percentages of targets from gate-consistent triplets, and added them to the manuscript. For the TF-TF-target in Yeast, the gate-consistent triplets include 757 unique targets, which is ~31% of total 2464 targets from all yeast triplets. In human, we found that there are more than half targets from gate-consistent triplets for all three groups:
TF-TF-target: 1005 out of 1824 (~55%) targets 
miRNA-TF-target: 1672 out of 2210 (~76%) targets
distTF-TF-target: 66 out of 113 (~58%) targets.

	Excerpt From Revised Manuscript
	We used Loregic to characterize the TF-TF-target logics during the yeast cell cycle (see Methods) and found 4,126 TF-TF-target triplets that are gate-consistent (Fig. 3A, Supplement File 1). There are totally 39,011 TF-TF-target triplets with 2464 unique targets in yeast cell cycle data. The 4,126 gate-consistent triplets include 757 unique targets.
…
The gate-consistent triplets from TF-TF-target, miRNA-TF-target, and distTF-TF-target include 1005 (~55% of 1824 unique targets from 50,865 TF-TF-target triplets), 1672 (~76% of 2210 unique targets from 56,944 miRNA-TF-target triplets), and 66 (~58% of 113 unique targets from 821 distTF-TF-target triplets) unique targets, respectively (see Methods).




[bookmark: h.z6h9ld6bo4iw]-- Ref 2.4 – Logic gates on TFs vs. non-TFs --
	Reviewer
Comment
	Is the expression of TFs more likely to be explained by triplet loregic gates than non-TFs? I.e, does triplet loregic more likely to occur at the top level of hierarchical regulation network?

	Author
Response
	This is a great suggestion. We found that the consistency scores of the triplets with TF targets are significantly greater than the ones with non-TF targets in both yeast and human (K-S test p value < 4e-6 in yeast and < 0.04 in human). We added this result in Section 2.4.

	Excerpt From Revised Manuscript
	In addition, a variety of regulatory pathways can be connected to form gene regulatory networks, which have the hierarchical structures [5,26-28]. TFs typically lie at higher layers than non-TFs in hierarchical gene regulatory networks. We found that the consistency scores of the triplets with TF targets are significantly greater than the ones with non-TF targets in both yeast and human (K-S test p value < 4e-6 in yeast and < 0.04 in human), which implies that the regulatory cooperations to the high hierarchical layers more likely follow logical ways.



[bookmark: h.g8wzj38014gy]-- Ref 2.5 – Difference from the highest to second highest consistency scores--
	Reviewer
Comment
	The authors used the highest consistency scores to pick the best matched logic gate. This is perfectly fine.  However, I wonder how difference is the highest to the second highest consistency score.

	Author
Response
	Thanks for the question. We checked the second highest scores for the gate-consistent TF-TF-target triplets in Yeast, and found that the average of ratios of their second highest to highest scores is 0.66.


[image: ]
Figure S3 Scores of logic-gate-consistent triplets targeting the transcription factors at top, middle and bottom hierarchical layers in yeast. Boxplot displays the score distributions of the logic-gate-consistent triplets with targets being TFs at three different hierarchical layers: top, middle and bottom. The TFs at bottom have lower scores than others in yeast.

[image: ]
Figure S4 Consistency scores of logic-gate-consistent triplets using the binarized datasets from two methods, BoolNet and ArrayBin. Scatterplots (left: yeast, right: human) display the consistency scores of logic-gate-consistent triplets that best match the same logic gates by Loregic using two binarized datasets: one is from the BoolNet method in this paper (x-axis), and another is from the ArrayBin (http://cran.r-project.org/web/packages/ArrayBin/) method (y-axis). The scores are highly correlated between two methods (correlation = 0.80 in Yeast, and 0.97 in Human).

[bookmark: _GoBack]Table: 88 worm logic-gate-consistent triplets using limited modENCODE embryonic developmental data [44].
	TF1
	TF2
	target
	logic gate
	score

	T26C11.7
	C03B8.4
	Y111B2A.11
	OR
	0.3240741

	T26C11.7
	M04B2.1
	Y111B2A.11
	T=1
	0.3428571

	C32F10.6
	F43G9.11
	Y111B2A.11
	NAND
	0.4676871

	C32F10.6
	F49H12.1
	Y111B2A.11
	~RF1+RF2
	0.5742188

	C32F10.6
	C03B8.4
	Y111B2A.11
	~RF1+RF2
	0.4263848

	C32F10.6
	T28F12.2
	Y111B2A.11
	T=1
	0.2532468

	C32F10.6
	M04B2.1
	Y111B2A.11
	~RF1+RF2
	0.4101563

	F43G9.11
	Y46H3D.6
	Y111B2A.11
	~RF1+RF2
	0.3948718

	F43G9.11
	K12H4.1
	Y111B2A.11
	~RF1+RF2
	0.5494505

	F43G9.11
	C03B8.4
	Y111B2A.11
	~RF1+RF2
	0.4365079

	F43G9.11
	T28F12.2
	Y111B2A.11
	~RF1+RF2
	0.5128205

	Y46H3D.6
	F49H12.1
	Y111B2A.11
	OR
	0.4083333

	Y46H3D.6
	K12H4.1
	Y111B2A.11
	~RF1+RF2
	0.2800000

	Y46H3D.6
	C03B8.4
	Y111B2A.11
	OR
	0.3230769

	F49H12.1
	K12H4.1
	Y111B2A.11
	OR
	0.5714286

	F49H12.1
	C03B8.4
	Y111B2A.11
	OR
	0.3365385

	F49H12.1
	T28F12.2
	Y111B2A.11
	OR
	0.4166667

	K12H4.1
	C03B8.4
	Y111B2A.11
	OR
	0.4166667

	K12H4.1
	M04B2.1
	Y111B2A.11
	OR
	0.4000000

	C03B8.4
	T28F12.2
	Y111B2A.11
	OR
	0.3316327

	C03B8.4
	B0304.1
	Y111B2A.11
	RF1+~RF2
	0.2623457

	C32F10.6
	F43G9.11
	F31E8.1
	RF1
	0.4251701

	C32F10.6
	T28F12.2
	F31E8.1
	RF1
	0.3506494

	C32F10.6
	M04B2.1
	F31E8.1
	RF1
	0.3937500

	F25D7.3
	F43G9.11
	F31E8.1
	~RF1
	0.3815629

	F25D7.3
	M04B2.1
	F31E8.1
	~RF1
	0.3150000

	F43G9.11
	T28F12.2
	F31E8.1
	~RF2
	0.2670940

	T28F12.2
	M04B2.1
	F31E8.1
	~RF1
	0.2450000

	C32F10.6
	T28F12.2
	C04A2.3
	RF2
	0.4220779

	C32F10.6
	M04B2.1
	C04A2.3
	~RF1
	0.3572917

	F25D7.3
	M04B2.1
	C04A2.3
	RF1
	0.4355556

	F43G9.11
	T28F12.2
	C04A2.3
	RF2
	0.5128205

	K12H4.1
	M04B2.1
	C04A2.3
	RF1
	0.4355556

	T28F12.2
	M04B2.1
	C04A2.3
	RF1
	0.5600000

	C32F10.6
	T28F12.2
	R166.5
	~RF1+RF2
	0.3798701

	C32F10.6
	F49H12.1
	Y111B2A.12
	OR
	0.4375000

	C32F10.6
	M04B2.1
	Y111B2A.12
	OR
	0.4083333

	C32F10.6
	F43G9.11
	F58H1.5
	RF2
	0.3741497

	C32F10.6
	F43G9.11
	Y102A11A.8
	~RF1*RF2
	0.3741497

	C32F10.6
	T28F12.2
	Y102A11A.8
	RF2
	0.3896104

	F25D7.3
	F43G9.11
	F54F2.2
	RF1
	0.5494505

	F25D7.3
	Y46H3D.6
	F54F2.2
	RF1
	0.4200000

	F25D7.3
	F49H12.1
	F54F2.2
	RF1
	0.5714286

	F43G9.11
	Y46H3D.6
	F54F2.2
	RF2
	0.3384615

	F43G9.11
	K12H4.1
	F54F2.2
	RF2
	0.5494505

	F43G9.11
	T28F12.2
	F54F2.2
	RF2
	0.3846154

	Y46H3D.6
	F49H12.1
	F54F2.2
	RF1
	0.3500000

	Y46H3D.6
	K12H4.1
	F54F2.2
	RF2
	0.4200000

	F49H12.1
	K12H4.1
	F54F2.2
	RF2
	0.5714286

	F49H12.1
	T28F12.2
	F54F2.2
	RF2
	0.4166667

	F25D7.3
	Y46H3D.6
	F54F2.6
	T=0
	0.2133333

	F25D7.3
	F49H12.1
	F54F2.6
	AND
	0.2222222

	Y46H3D.6
	F49H12.1
	F54F2.6
	AND
	0.2552083

	Y46H3D.6
	K12H4.1
	F54F2.6
	T=0
	0.2133333

	F49H12.1
	K12H4.1
	F54F2.6
	AND
	0.2222222

	F49H12.1
	T28F12.2
	F54F2.6
	AND
	0.2232143

	F25D7.3
	F32H2.1
	F46F2.2
	RF1
	0.5600000

	F25D7.3
	Y46H3D.6
	F46F2.2
	RF1
	0.4200000

	F32H2.1
	Y46H3D.6
	F46F2.2
	RF2
	0.3266667

	F32H2.1
	K12H4.1
	F46F2.2
	RF2
	0.5600000

	Y46H3D.6
	K12H4.1
	F46F2.2
	RF2
	0.4200000

	F43G9.11
	F23F12.9
	W02B9.1
	NAND
	0.4583333

	F43G9.11
	F49H12.1
	C37A2.8
	T=1
	0.2031746

	F43G9.11
	K12H4.1
	F13D12.7
	~RF1+RF2
	0.5494505

	F49H12.1
	K12H4.1
	F13D12.7
	OR
	0.5714286

	F43G9.11
	T28F12.2
	C01G6.8
	RF2
	0.4487179

	F43G9.11
	F49H12.1
	Y39E4B.6
	RF1+~RF2
	0.5079365

	F43G9.11
	M04B2.1
	Y39E4B.6
	RF1+~RF2
	0.3555556

	F32H2.1
	F23F12.9
	C08C3.1
	~RF2
	0.3600000

	C08C3.3
	F23F12.9
	C08C3.1
	RF1*~RF2
	0.4017857

	Y46H3D.6
	K12H4.1
	F54F2.5
	T=0
	0.2800000

	Y46H3D.6
	T28F12.2
	F54F2.5
	T=0
	0.2954545

	F49H12.1
	K12H4.1
	F54F2.5
	RF1*~RF2
	0.3809524

	F49H12.1
	T28F12.2
	F54F2.5
	RF1*~RF2
	0.3888889

	F23F12.9
	K12H4.1
	Y51H4A.2
	RF1+~RF2
	0.1562500

	K12H4.1
	M04B2.1
	Y51H4A.2
	XNOR
	0.2100000

	T28F12.2
	M04B2.1
	Y51H4A.2
	XNOR
	0.1500000

	C25A1.2
	F49H12.1
	F39B2.6
	~RF2
	0.2625000

	C25A1.2
	T28F12.2
	W09B12.1
	AND
	0.3443878

	F49H12.1
	K12H4.1
	C53H9.1
	NOR
	0.4571429

	F49H12.1
	K12H4.1
	C53H9.2
	NOR
	0.4571429

	F49H12.1
	K12H4.1
	M01D7.6
	~RF2
	0.4000000

	F49H12.1
	K12H4.1
	M01D7.7
	RF2
	0.5714286

	F49H12.1
	K12H4.1
	C53H9.3
	NOR
	0.3809524

	F49H12.1
	T28F12.2
	T28F12.2
	RF2
	0.5833333

	K12H4.1
	M04B2.1
	F48C1.3
	RF1*~RF2
	0.1800000

	K12H4.1
	M04B2.1
	F48C1.4
	RF1
	0.4355556

	K12H4.1
	M04B2.1
	C01G8.9
	OR
	0.5600000
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