
  
 Loss-of-function variants (LoF) attract great clinical interest, as it is believed that 
most cause disease. In this study, we include (1) premature Stop-causing SNPs, (2) 
frameshift-causing indels and (3) variants affecting canonical splice sites as putative LoF 
variants. About 12% of known disease-causing mutations in the human gene mutation 
database (HGMD) are due to nonsense mutations1. It is often assumed that premature 
Stop variants are deleterious as they are predicted to lead to loss-of-function. However, 
understanding the functional impact of premature Stop codons is not straightforward. 
Aberrant transcripts containing premature Stop codons are typically removed by 
nonsense-mediated decay (NMD), an mRNA surveillance mechanism2. However, a 
recent large-scale expression analysis shows that 68% of predicted NMD events due to 
premature Stop variants were not supported by RNASeq analyses3. In fact, a study 
aimed at understanding disease mutations using a 3D structure-based interaction 
network suggests that truncating mutations can give rise to functional protein products4. 
Moreover, premature Stop codons in the last exon are not subject to NMD. In addition, 
understanding isoform-specific LoF variants is complex. When a variant affects only 
some isoforms of a gene, it is difficult to infer its impact on gene function without the 
knowledge of the isoforms that are expressed in the tissue of interest and how their level 
of expression affect gene function. Finally, loss-of-function of a gene might not have any 
impact on the fitness of the organism.  

 
One of the most notable findings from personal genomics studies is that all 

individuals harbor LoF variants in some of their genes5. A systematic study of LoF 
variants from 180 individuals revealed that there are about 100 putative LoF variants in 
an individual6. Thus, several genes are knocked out either completely or in an isoform-
specific manner in apparently healthy individuals. Remarkably, recent studies have led 
to the discovery of LoF variants that are beneficial. For example, nonsense variants in 
PCSK9 are associated with low LDL levels7,8. Therefore, several pharmaceutical 
companies are actively pursuing the inhibition of PCSK9 as a potential therapeutic for 
hypercholesterolemia9-11. Other examples include nonsense and splice mutations in 
APOC3 associated with low levels of circulating triglycerides, a nonsense mutation in 
SLC30A8 resulting in about 65% reduction in risk for Type II diabetes and two splice 
variants in the Finnish population in LPA that protect from coronary heart disease12-15. 
Therefore, there is great interest in a more thorough understanding of putative LoF 
variants.  
 
 We have developed a pipeline called ALoFT (Annotation of Loss-Of-Function 
Transcripts), to provide extensive functional annotation of putative LoF variants. The 
main features of ALoFT include 1. Function – based annotations 2. Conservation 
features 3. Network features. In addition, the pipeline has features to help identify 
erroneous LoF calls, potential mismapping and annotation errors, because LoF variant 
calls have been shown to be enriched for annotation and sequencing artifacts6. An 
overview of the pipeline is shown in Supplementary Figure 1. For comprehensive 
functional annotation, we integrated several functional annotation resources such as 
PFAM and SMART functional domains16,17, signal peptide and transmembrane 
annotations, post-translational modification sites, structure-based features such as 
SCOP domains, disordered residues and prediction of NMD18,19. Evolutionary 
conservation can be used as a proxy for identifying functionally important regions. 
ALoFT provides variant position-specific GERP scores, which is a measure of 
evolutionary conservation20. In addition, we evaluate if the region lost due to the 
truncation is conserved based on GERP constraint elements and the percentage of 
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exons lost that are within GERP constrained elements21. ALoFT also outputs dn/ds 
values for macaque and mouse (ratio of missense to synonymous substitution rates) that 
are computed from human-macaque and human-mouse orthologous alignments 
respectively. ALoFT includes two network features previously shown to be important in 
disease prediction algorithms: proximity parameter that gives the number of disease 
genes that are connected to a gene in a protein-protein interaction network and the 
shortest path to the nearest disease gene6,22. A detailed description of all the annotations 
provided by ALoFT is included in the Supplementary Material and Methods section. The 
source code is available from https://github.com/gersteinlab/ALoFT.  Detailed 
documentation and input data files can be found at http://aloft.gersteinlab.org 

 
To understand the effect of putative LoF variants on gene function, we developed 

a prediction method to differentiate high impact disease-causing variants from low 
impact benign variants. Here, we focus on premature Stop-causing variants that arise 
either due to a SNP or an indel where a frameshift leads to a premature Stop. Current 
prediction methods that infer the pathogenicity of variants do not take into account the 
zygosity of the variant23,24. The majority of LoF variants in healthy population cohorts are 
heterozygous. It is likely that a subset of these variants will cause disease in the 
recessive state. Therefore, we developed a prediction model to classify premature Stop-
causing variants into those that are benign, that lead to recessive disease and those that 
lead to dominant disease using the annotations output by ALoFT as predictive features. 
In addition to the features output by ALoFT, we also used some gene-specific features 
for classification as shown in Figure 1a (details included in the Supplementary Material 
and Methods section).  

 
To build the classifier, we used three training datasets: premature Stop variants 

that are homozygous in at least one individual in the Phase1 1000 Genomes data that 
represent benign stop-causing variants, homozygous premature Stop mutations from 
HGMD that lead to recessive disease and heterozygous premature Stop variants in 
haploinsufficient genes that lead to dominant disease25. All the mutations from HGMD 
are not used for training. The training dataset is restricted to mutations that lead to 
dominant or recessive disease based on a curated gene list 26. Using the functional, 
conservation and other features described above, we built a classifier that distinguishes 
the three classes using a random forest algorithm (ref for random forest). The classifier 
provides class probability estimates for the model. We obtain very good discrimination 
between the three classes (Fig 1b). The accuracies for the three classes with 5-fold 
cross-validation are as follows:  Dominant=0.88, Recessive=0.82, Benign=0.93. The 
multiclass AUC is 0.953. The classifier is very robust to the choice of the training data 
sets and performs well when trained with different training data sets (Table S1) 

 
 We tested the classifier on a dataset of XX# of premature Stop variants from 
Phase1 1000Genomes, (excluding the YY# of homozygous LoF variants used as the 
training dataset) that represents a healthy cohort. We found that the predicted benign 
LoF score for the premature Stop variants in seemingly healthy people have values 
ranging between benign and disease-causing scores (Figure 2a). We predict that 3323 
premature Stop variants in 1000 Genomes dataset are benign, 2639 variants can lead to 
recessive disease and 107 variants can lead to disease via a dominant mode of 
inheritance (Table S2 and S5). Thus, 43.5% of heterozygous premature Stop variants in 
apparently healthy individuals from the 1000 genomes population are predicted to cause 
disease in the recessive state. On average, each individual is a carrier of about eight 
rare recessive premature Stop alleles (Table S3). As expected, individuals from African 
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population possess the highest number of premature Stop variants (Figure S4) and the 
difference is caused by excess of benign mutations (Figure S5). () 
 

Next, we looked at premature Stop variants in the 1000 genomes cohort in 
known disease-causing genes, of which none were expected, as these are healthy 
individuals. However, ALoFT predicted that several variants cause disease in the 
recessive state but are present in this cohort only as heterozygous variants. 
Interestingly, in some cases (%XX), the variant in the presumed healthy 1000 genome 
individuals and the disease-causing variants are in the same gene, but on different 
isoforms (Figure 2b). Thus, isoform-specific premature Stop-causing variants are 
responsible for disease and are not seen in the presumed healthy 1000 Genomes 
individuals. In other cases, the LoF variant in 1000 genomes and the disease-causing 
HGMD variant are on the same transcript. However, the LoF variant in the 1000 
genomes samples truncates the protein at a position much later than the disease-
causing variant. Presumably, the former doesn’t affect function significantly whereas the 
latter does.  
 
 We next applied our classifier to predict the effect of premature Stop variants in 
the last exon. It is often assumed that premature Stop variants in the last coding exon 
are likely to be benign because they escape NMD and therefore the truncated protein 
will be expressed and will not lead to loss of function. However, it is known that some 
disease-causing premature Stop mutations are present in the last coding exon. 
Therefore, we applied our classifier to see if we could distinguish between benign and 
disease-causing LoF variants in the last coding exon. To this end, we expanded our 
analysis to include the ESP6500 and HGMD datasets. A large number of premature 
Stop variants are seen at the end of the coding genes in both the 1000 Genomes and 
ESP6500 datasets (Fig 2c). The classifier correctly predicts that most variants in the last 
coding exon in the 1000 Genomes and ESP6500 cohort are benign, whereas HGMD 
mutations in the last coding exon are not (Fig. 2d).   
 

We further evaluated the classifier by predicting the effect of nonsense mutations 
in several recently published disease studies. We classified premature Stop mutations 
from the Center For Mendelian Genomics studies and predicted the mode of inheritance 
and pathogenicity of all of the truncating variants (Fig 3a). Our method showed that 
dominant variants have significant dominant disease-causing score than recessive ones 
(p-value: 0.003; Wilcox rank-sum test). We also used two other measures, GERP score 
which is a measure of evolutionary conservation and CADD score that gives a measure 
of pathogenicity, to classify recessive versus dominant LoF variants27. Both CADD and 
GERP scores are not able to discriminate between recessive and dominant disease-
causing mutations (Fig 3a).  

 
De-novo LoF SNPs have been implicated in autism based on analysis of 

sporadic or simplex families, families with no prior history of autism. We applied our 
method to de-novo LoF mutations discovered in autism28-31. Our method shows that the 
proportion of dominant disease-causing de-novo LoF events is significantly higher in 
autism patients versus siblings (Fig 3b; p-value: 0.006; Wilcox rank-sum test). Autism is 
more prevalent amongst males than females. However, the severity of the disease is 
known to be much higher in females. Previous studies suggest that there is a higher 
mutational burden in female patients 32. We observe a similar pattern for LoF mutations 
– female probands have a higher portion of deleterious de-novo LoF variants than male 
probands (p-value: 0.017). The published studies identified candidate genes based on 
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statistical enrichment of de novo LoF variants in probands over the unaffected 
individuals.  Our classifier identified yy# disease-causing de novo LoF variants in zz# 
genes, and is agnostic to unaffected and proband status. A recent study based on 
exome sequencing of 3871 autism cases delineated xxx # of risk genes33. Mutations in 
this set of autism genes34 have higher dominant disease causing score than others 
(Figure S6; p-value: 0.008).   
 

Lastly, we also examined somatic Stop-causing mutations in several cancers. To 
classify driver genes as tumor suppressors or oncogenes, Vogelstein proposed a “20/20” 
rule where a gene is classified as a tumor suppressor if the gene had greater than 20% 
of the mutations that are LoF mutations35. Therefore, we expect to see a higher 
proportion of deleterious somatic LoF variants in driver genes than the rest of the genes. 
We validated our prediction method by inferring the effect of somatic premature Stop 
variants from a compilation of ~6,000 cancer exome sequencing studies36. As shown in 
the Fig 3c, a higher proportion of somatic LoF mutations in known cancer driver genes 
are predicted to be deleterious than somatic mutations in LoF-tolerant genes and 
randomly sampled genes whose length distribution matched that of the known driver 
genes.  
 

To our knowledge, ALoFT is the first tool that predicts the impact of nonsense 
SNPs in the context of a diploid model, i.e. whether nonsense SNP will lead to recessive 
or dominant disease. This method is applicable to premature Stop variants and 
frameshift-causing indels. ALoFT allows for the identification and prioritization of high 
impact putative disease-causing LoF variants in a personal genome from amongst 
benign LoF variants. Integrating benign LoF variants with phenotypic information will 
help us to identify protective/beneficial LoF variants which are valuable drug targets37. 
Lastly, diseases caused by LoF variants provides an unique opportunity for targeted 
therapy of a wide variety of diseases using drugs that either enable read-through of the 
premature Stop restoring the function of the mutant protein or an NMD inhibitor that 
prevents degradation of the LoF-containing transcript by NMD. This is especially useful 
in the context of rare diseases where targeting the same molecular phenotype leading to 
different diseases alleviates the need to design a new drug for each individual disease. 

 
 
 
1.	
   Stenson,	
  P.D.	
  et	
  al.	
  The	
  Human	
  Gene	
  Mutation	
  Database:	
  building	
  a	
  

comprehensive	
  mutation	
  repository	
  for	
  clinical	
  and	
  molecular	
  genetics,	
  
diagnostic	
  testing	
  and	
  personalized	
  genomic	
  medicine.	
  Hum	
  Genet	
  133,	
  1-­‐9	
  
(2014).	
  

2.	
   Isken,	
  O.	
  &	
  Maquat,	
  L.E.	
  Quality	
  control	
  of	
  eukaryotic	
  mRNA:	
  safeguarding	
  
cells	
  from	
  abnormal	
  mRNA	
  function.	
  Genes	
  Dev	
  21,	
  1833-­‐56	
  (2007).	
  

3.	
   Lappalainen,	
  T.	
  et	
  al.	
  Transcriptome	
  and	
  genome	
  sequencing	
  uncovers	
  
functional	
  variation	
  in	
  humans.	
  Nature	
  501,	
  506-­‐11	
  (2013).	
  

4.	
   Guo,	
  Y.	
  et	
  al.	
  Dissecting	
  disease	
  inheritance	
  modes	
  in	
  a	
  three-­‐dimensional	
  
protein	
  network	
  challenges	
  the	
  "guilt-­‐by-­‐association"	
  principle.	
  Am	
  J	
  Hum	
  
Genet	
  93,	
  78-­‐89	
  (2013).	
  

5.	
   Balasubramanian,	
  S.	
  et	
  al.	
  Gene	
  inactivation	
  and	
  its	
  implications	
  for	
  
annotation	
  in	
  the	
  era	
  of	
  personal	
  genomics.	
  Genes	
  Dev	
  25,	
  1-­‐10	
  (2011).	
  

Mark Gerstein



6.	
   MacArthur,	
  D.G.	
  et	
  al.	
  A	
  systematic	
  survey	
  of	
  loss-­‐of-­‐function	
  variants	
  in	
  
human	
  protein-­‐coding	
  genes.	
  Science	
  335,	
  823-­‐8	
  (2012).	
  

7.	
   Cohen,	
  J.	
  et	
  al.	
  Low	
  LDL	
  cholesterol	
  in	
  individuals	
  of	
  African	
  descent	
  resulting	
  
from	
  frequent	
  nonsense	
  mutations	
  in	
  PCSK9.	
  Nat	
  Genet	
  37,	
  161-­‐5	
  (2005).	
  

8.	
   Cohen,	
  J.C.,	
  Boerwinkle,	
  E.,	
  Mosley,	
  T.H.,	
  Jr.	
  &	
  Hobbs,	
  H.H.	
  Sequence	
  variations	
  
in	
  PCSK9,	
  low	
  LDL,	
  and	
  protection	
  against	
  coronary	
  heart	
  disease.	
  N	
  Engl	
  J	
  
Med	
  354,	
  1264-­‐72	
  (2006).	
  

9.	
   Banerjee,	
  Y.,	
  Shah,	
  K.	
  &	
  Al-­‐Rasadi,	
  K.	
  Effect	
  of	
  a	
  monoclonal	
  antibody	
  to	
  
PCSK9	
  on	
  LDL	
  cholesterol.	
  N	
  Engl	
  J	
  Med	
  366,	
  2425-­‐6;	
  author	
  reply	
  2426	
  
(2012).	
  

10.	
   Milazzo,	
  L.	
  &	
  Antinori,	
  S.	
  Effect	
  of	
  a	
  monoclonal	
  antibody	
  to	
  PCSK9	
  on	
  LDL	
  
cholesterol.	
  N	
  Engl	
  J	
  Med	
  366,	
  2425;	
  author	
  reply	
  2426	
  (2012).	
  

11.	
   Stein,	
  E.A.	
  et	
  al.	
  Effect	
  of	
  a	
  monoclonal	
  antibody	
  to	
  PCSK9	
  on	
  LDL	
  cholesterol.	
  
N	
  Engl	
  J	
  Med	
  366,	
  1108-­‐18	
  (2012).	
  

12.	
   Flannick,	
  J.	
  et	
  al.	
  Loss-­‐of-­‐function	
  mutations	
  in	
  SLC30A8	
  protect	
  against	
  type	
  
2	
  diabetes.	
  Nat	
  Genet	
  46,	
  357-­‐63	
  (2014).	
  

13.	
   Lim,	
  E.T.	
  et	
  al.	
  Distribution	
  and	
  medical	
  impact	
  of	
  loss-­‐of-­‐function	
  variants	
  in	
  
the	
  Finnish	
  founder	
  population.	
  PLoS	
  Genet	
  10,	
  e1004494	
  (2014).	
  

14.	
   Tachmazidou,	
  I.	
  et	
  al.	
  A	
  rare	
  functional	
  cardioprotective	
  APOC3	
  variant	
  has	
  
risen	
  in	
  frequency	
  in	
  distinct	
  population	
  isolates.	
  Nat	
  Commun	
  4,	
  2872	
  
(2013).	
  

15.	
   Timpson,	
  N.J.	
  et	
  al.	
  A	
  rare	
  variant	
  in	
  APOC3	
  is	
  associated	
  with	
  plasma	
  
triglyceride	
  and	
  VLDL	
  levels	
  in	
  Europeans.	
  Nat	
  Commun	
  5,	
  4871	
  (2014).	
  

16.	
   Letunic,	
  I.,	
  Doerks,	
  T.	
  &	
  Bork,	
  P.	
  SMART:	
  recent	
  updates,	
  new	
  developments	
  
and	
  status	
  in	
  2015.	
  Nucleic	
  Acids	
  Res	
  (2014).	
  

17.	
   Finn,	
  R.D.	
  et	
  al.	
  Pfam:	
  the	
  protein	
  families	
  database.	
  Nucleic	
  Acids	
  Res	
  42,	
  
D222-­‐30	
  (2014).	
  

18.	
   Ward,	
  J.J.,	
  McGuffin,	
  L.J.,	
  Bryson,	
  K.,	
  Buxton,	
  B.F.	
  &	
  Jones,	
  D.T.	
  The	
  DISOPRED	
  
server	
  for	
  the	
  prediction	
  of	
  protein	
  disorder.	
  Bioinformatics	
  20,	
  2138-­‐9	
  
(2004).	
  

19.	
   Hornbeck,	
  P.V.	
  et	
  al.	
  PhosphoSitePlus:	
  a	
  comprehensive	
  resource	
  for	
  
investigating	
  the	
  structure	
  and	
  function	
  of	
  experimentally	
  determined	
  post-­‐
translational	
  modifications	
  in	
  man	
  and	
  mouse.	
  Nucleic	
  Acids	
  Res	
  40,	
  D261-­‐70	
  
(2012).	
  

20.	
   Cooper,	
  G.M.	
  et	
  al.	
  Distribution	
  and	
  intensity	
  of	
  constraint	
  in	
  mammalian	
  
genomic	
  sequence.	
  Genome	
  Res	
  15,	
  901-­‐13	
  (2005).	
  

21.	
   Davydov,	
  E.V.	
  et	
  al.	
  Identifying	
  a	
  high	
  fraction	
  of	
  the	
  human	
  genome	
  to	
  be	
  
under	
  selective	
  constraint	
  using	
  GERP++.	
  PLoS	
  Comput	
  Biol	
  6,	
  e1001025	
  
(2010).	
  

22.	
   Huang,	
  N.,	
  Lee,	
  I.,	
  Marcotte,	
  E.M.	
  &	
  Hurles,	
  M.E.	
  Characterising	
  and	
  predicting	
  
haploinsufficiency	
  in	
  the	
  human	
  genome.	
  PLoS	
  Genet	
  6,	
  e1001154	
  (2010).	
  

23.	
   Hu,	
  J.	
  &	
  Ng,	
  P.C.	
  SIFT	
  Indel:	
  predictions	
  for	
  the	
  functional	
  effects	
  of	
  amino	
  acid	
  
insertions/deletions	
  in	
  proteins.	
  PLoS	
  One	
  8,	
  e77940	
  (2013).	
  

24.	
   Rausell,	
  A.	
  et	
  al.	
  Analysis	
  of	
  stop-­‐gain	
  and	
  frameshift	
  variants	
  in	
  human	
  
innate	
  immunity	
  genes.	
  PLoS	
  Comput	
  Biol	
  10,	
  e1003757	
  (2014).	
  



25.	
   Genomes	
  Project,	
  C.	
  et	
  al.	
  An	
  integrated	
  map	
  of	
  genetic	
  variation	
  from	
  1,092	
  
human	
  genomes.	
  Nature	
  491,	
  56-­‐65	
  (2012).	
  

26.	
   Blekhman,	
  R.	
  et	
  al.	
  Natural	
  selection	
  on	
  genes	
  that	
  underlie	
  human	
  disease	
  
susceptibility.	
  Curr	
  Biol	
  18,	
  883-­‐9	
  (2008).	
  

27.	
   Kircher,	
  M.	
  et	
  al.	
  A	
  general	
  framework	
  for	
  estimating	
  the	
  relative	
  
pathogenicity	
  of	
  human	
  genetic	
  variants.	
  Nat	
  Genet	
  46,	
  310-­‐5	
  (2014).	
  

28.	
   Iossifov,	
  I.	
  et	
  al.	
  De	
  novo	
  gene	
  disruptions	
  in	
  children	
  on	
  the	
  autistic	
  
spectrum.	
  Neuron	
  74,	
  285-­‐99	
  (2012).	
  

29.	
   Sanders,	
  S.J.	
  et	
  al.	
  De	
  novo	
  mutations	
  revealed	
  by	
  whole-­‐exome	
  sequencing	
  
are	
  strongly	
  associated	
  with	
  autism.	
  Nature	
  485,	
  237-­‐41	
  (2012).	
  

30.	
   Neale,	
  B.M.	
  et	
  al.	
  Patterns	
  and	
  rates	
  of	
  exonic	
  de	
  novo	
  mutations	
  in	
  autism	
  
spectrum	
  disorders.	
  Nature	
  485,	
  242-­‐5	
  (2012).	
  

31.	
   O'Roak,	
  B.J.	
  et	
  al.	
  Sporadic	
  autism	
  exomes	
  reveal	
  a	
  highly	
  interconnected	
  
protein	
  network	
  of	
  de	
  novo	
  mutations.	
  Nature	
  485,	
  246-­‐50	
  (2012).	
  

32.	
   Jacquemont,	
  S.	
  et	
  al.	
  A	
  higher	
  mutational	
  burden	
  in	
  females	
  supports	
  a	
  
"female	
  protective	
  model"	
  in	
  neurodevelopmental	
  disorders.	
  Am	
  J	
  Hum	
  Genet	
  
94,	
  415-­‐25	
  (2014).	
  

33.	
   Poultney,	
  C.S.	
  et	
  al.	
  Synaptic,	
  transcriptional	
  and	
  chromatin	
  genes	
  disrupted	
  
in	
  autism.	
  Nature	
  515,	
  209-­‐15	
  (2014).	
  

34.	
   De	
  Rubeis,	
  S.	
  et	
  al.	
  Synaptic,	
  transcriptional	
  and	
  chromatin	
  genes	
  disrupted	
  in	
  
autism.	
  Nature	
  515,	
  209-­‐15	
  (2014).	
  

35.	
   Vogelstein,	
  B.	
  et	
  al.	
  Cancer	
  genome	
  landscapes.	
  Science	
  339,	
  1546-­‐58	
  (2013).	
  
36.	
   Alexandrov,	
  L.B.	
  et	
  al.	
  Signatures	
  of	
  mutational	
  processes	
  in	
  human	
  cancer.	
  

Nature	
  500,	
  415-­‐21	
  (2013).	
  
37.	
   Kaiser,	
  J.	
  The	
  hunt	
  for	
  missing	
  genes.	
  Science	
  344,	
  687-­‐9	
  (2014).	
  
 


