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Abstract 
 
Understanding the functional relevance of DNA variants is essential for all exome and genome 
sequencing projects. However, current mutagenesis cloning protocols require Sanger sequencing, 
and thus are prohibitively costly and labor-intensive. We describe a massively-parallel site-
directed mutagenesis approach, “Clone-seq”, leveraging next-generation sequencing to rapidly 
and cost-effectively generate a large number of mutant alleles. Using Clone-seq, we further 
develop a comparative interactome-scanning pipeline integrating high-throughput GFP, yeast 
two-hybrid (Y2H), and mass spectrometry assays to systematically evaluate the functional 
impact of mutations on protein stability and interactions. We use this pipeline to show that 
disease mutations on protein-protein interaction interfaces are significantly more likely than 
those away from interfaces to disrupt corresponding interactions. We also find that mutation 
pairs with similar molecular phenotypes in terms of both protein stability and interactions are 
significantly more likely to cause the same disease than those with different molecular 
phenotypes, validating the biological relevance of our high-throughput GFP and Y2H assays and 
indicating that both assays can be used to determine candidate disease mutations in the future. 
The general scheme of our experimental pipeline can be readily expanded to other types of 
interactome-mapping methods to comprehensively evaluate the functional relevance of all DNA 
variants, including those in non-coding regions. 
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Author Summary 
 
With rapid advances in sequencing technologies, tens of millions of DNA variants have now 
been discovered in the human population. However, there are currently no experimental methods 
available for examining the impact of DNA variants in a high-throughput fashion. As a result, we 
have no functional data on the vast majority of these variants, which is a major roadblock to 
generating novel biological insights and developing new disease prevention therapeutic 
strategies. To address this issue, we have successfully developed the first massively-parallel site-
directed mutagenesis approach, Clone-seq, to leverage the power of next-generation sequencing 
to generate a large number of mutant alleles in a fast and cost-effective manner. In conjunction 
with Clone-seq, we established a high-throughput comparative interactome-scanning pipeline to 
experimentally elucidate the effect of variants on protein stability and interactions. Additionally, 
Clone-seq can be used to generate clones for all DNA variants, including those in non-coding 
regions.  
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Introduction 
 
Owing to rapid advances in next-generation sequencing technologies, tens of thousands of 
disease-associated mutations [1] and millions of single nucleotide polymorphisms (SNPs) [2,3] 
have been identified in the human population. With the large number of ongoing whole-exome 
and whole-genome sequencing projects [2,3], hundreds of thousands of new SNPs are now being 
discovered every month. Hence, there is an urgent need to develop high-throughput methods to 
sift through this deluge of sequence data and rapidly determine the functional relevance of each 
variant. Here, we focus on coding variants, firstly because trait- and disease-associated SNPs are 
significantly over-represented in nonsynonymous sites [4], and secondly because the vast 
majority of disease-associated mutations identified to date reside within coding regions [1]. We 
evaluate the functional impact of coding variants by examining their effects on corresponding 
protein-protein interactions, because most proteins carry out their functions by interacting with 
other proteins [5].  

Recent studies have begun to use large-scale protein interaction networks to understand 
human diseases and their associated mutations [5,6]. By integrating structural details with high-
quality protein networks, we created a 3D interactome network where the interface for each 
interaction has been structurally resolved [7]. Using this 3D network, we demonstrated that in-
frame disease mutations (missense mutations and in-frame insertions/deletions) are significantly 
enriched at the interaction interfaces of the corresponding proteins [7]. Our results indicate that 
alteration of specific interactions is very important for the pathogenesis of many disease genes, 
highlighting the importance of 3D structural models of protein interactions in understanding the 
functional relevance of coding variants. However, many important questions still remain 
unanswered – for example, what fraction of protein-protein interactions is altered by disease 
mutations to cause the corresponding disorders? Furthermore, do structural details of the 
interacting proteins, especially the position of the mutation relative to the interaction interface, 
affect the ability of a given disease mutation to alter a specific interaction? 

To address these questions, we decided to focus on proteins with known disease mutations 
that participate in interactions with available co-crystal structures in the Protein Data Bank 
(PDB) [8]. To detect the alteration of the interactions by disease mutations, it is necessary to first 
detect the interactions of the wild-type proteins using an assay of choice. This turns out to be a 
major bottleneck because all high-throughput interaction-detection assays have very limited 
sensitivity [9,10]. Our assay of choice is Y2H because there are over 16,000 human protein 
interactions detected by our version of Y2H that can serve as the reference interactome for 
comparison [11,12,13,14], the largest for any assay performed to date (Fig. S1). In total, there 
are 217 interactions detected by our version of Y2H with available co-crystal structures; 51 of 
these also have known missense disease mutations on corresponding proteins in the Human Gene 
Mutation Database (HGMD) [1] and the corresponding interactions for the wild-type proteins 
can be detected in our experiments with strong Y2H-positive phenotypes (Fig. S2; Materials 
and Methods). Here, we focused on missense mutations because they are intrinsically more 
likely to generate interaction-specific disruptions [6]. We established a high-throughput 
comparative interactome-scanning pipeline to clone disease mutations and examine their 
molecular phenotypes (Fig. 1). The methodologies established here can be readily applied to any 
non-synonymous variant in the coding region, including nonsense mutations.  

 



Results 
 
Clone-seq: a massively parallel site-directed mutagenesis pipeline using next-generation 
sequencing 
 
The first step of our pipeline is a massively parallel approach, termed Clone-seq, designed to 
leverage the power of next-generation sequencing to generate a large number of mutant alleles 
using site-directed mutagenesis in a rapid and cost-effective manner. Current protocols for site-
directed mutagenesis require picking individual colonies and sequencing each colony using 
Sanger sequencing to identify the correct clone [15]. This standard approach is both labor-
intensive and expensive; therefore, it does not scale up to genome-wide surveys. In Clone-seq, 
we put one colony of each mutagenesis attempt into one pool (Fig. 1a; in other words, each pool 
contains one and only one colony for each desired mutation) and combine multiple pools through 
multiplexing for one Illumina sequencing run [16]. Colonies for generating different mutations 
of the same gene can be put into the same pool, which can be easily distinguished 
computationally when processing the sequencing results. This is true even for mutations 
occurring at the same site (Fig. 2a, Text S1).  

For the 51 selected interactions, we chose 27 disease-associated mutations of residues at the 
interface (“interface residue”), 100 mutations in the rest of the interface domain (“interface 
domain”) and 77 mutations away from the interface (“away from the interface”; Fig. 3a,b). 
These interfaces were determined using solvent accessible surface area calculations as previously 
described [17,18] on 7,340 co-crystal structures (Materials and Methods). To set up our Clone-
seq pipeline, we first started with 39 mutations from these 204 and picked 4 colonies for each 
mutation. As a reference, we also pooled together all the wild-type alleles in our human 
ORFeome library to be sequenced together with the 4 pools of the mutagenesis colonies. In total, 
there were 40.1 million Illumina HiSeq 1×100 bp reads for our Clone-seq samples (Text S1I) for 
an average of > 2,500× coverage on all desired mutation sites. Therefore, our Clone-seq pipeline 
has the capacity to generate > 3,000 mutations in one full lane of a HiSeq run with 1×100 bp 
reads, drastically improving the throughput and decreasing overall sequencing costs by at least 
10-fold (Text S1). 

Fig. 2a presents a schematic of the criteria we use to determine which clones contain the 
desired mutation and can be used for subsequent steps. For example, in pool 1, all reads 
(ignoring sequencing errors) confirm that genes I and II each contain the desired mutation – 
T116A and G298T, respectively. For gene III, we want to generate two separate clones with two 
separate mutations – IIIA41T and IIIC194T. Since half the reads contain T41 (instead of A41) and 
the other half contain T194 (instead of C194), and we normalize DNA concentrations across all 
samples, we can infer that both mutant clones were generated successfully. In contrast, for gene 
IV, we see that while half the reads contain A511 (instead of G511), all the reads are wild-type at 
C74. Thus, we infer that while the IVG511A clone is successfully generated, the IVC74T clone is 
not. For V, although both mutant clones are successfully generated, half the reads contain an 
additional mutation, C436G. Since it is impossible to know which of the two clones for V 
contains this unwanted mutation, neither clone is usable. Similarly, we can determine mutant 
clones IT116A, IIIA41T, IIIC194T, IVC74T, IVG511A, VT53G, and VG272A as usable clones in pool n. 
Based on these criteria, we developed the S score calculation and used it to determine successful 
mutagenesis attempts (Materials and Methods). Out of 156 colonies for 39 mutations, 125 of 
them contain the desired mutations (S > 0.8), an overall 80% PCR-mutagenesis success rate. In 
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fact, we were able to pick correct clones for all 39 mutant alleles using only the first two pools in 
Clone-seq. All 78 clones from the first two pools, from which the correct ones were selected for 
use in subsequent steps, were also Sanger sequenced for verification. 55 Clone-seq positive 
results with S > 0.8 were all confirmed and there is a clear separation in the S scores between the 
successful and failed mutagenesis attempts (Fig. 2b).  

One major advantage of our Clone-seq pipeline is that it allows us to carefully examine 
whether other unwanted mutations have been inadvertently introduced during PCR-mutagenesis 
in comparison with the corresponding wild-type alleles, since we obtain reads spanning the entire 
gene. We found that there are on average 4-5 unwanted mutations introduced in each pool of 39 
colonies. This corresponds to a 0.013% PCR error rate (Materials and Methods), in agreement 
with previous studies [19]. The detection of unwanted mutations, especially those distant from 
the mutation of interest, is achieved in traditional site-directed mutagenesis pipelines by Sanger 
sequencing through the gene of interest. This is costly and labor-intensive, especially because 
multiple sequencing runs are needed for one long gene. However, since Clone-seq yields reads 
spanning the entire gene, we were able to determine which of the generated clones definitely do 
not have unwanted mutations in the full length of their sequences as illustrated in Fig. 2a 
(Materials and Methods), and we pick only these clones for subsequent assays.  

To further test our Clone-seq pipeline, we applied it to generate clones for 113 SNPs on 66 
genes from the recently published Exome Sequencing Project dataset [3]. Using the same 
approach as described above, we sequenced 4 colonies each for the 113 alleles of interest using 
one third of a 1×100 bp MiSeq run. We obtained 4.7 million reads for these 113 alleles. With a 
threshold of S > 0.8, we were able to determine that 370 out of the 452 colonies (82%) contain 
the desired mutation, in perfect agreement with the PCR-mutagenesis success rate obtained 
earlier. We were able to choose colonies that contain only the desired mutation for all 113 
alleles. Because the whole MiSeq run produced 17.7 million reads and we only used 4.7 million 
for generating the 113 mutant clones, the capacity of our Clone-seq pipeline using one full lane 
of a 1×100 bp HiSeq run is estimated to be >3,000, exactly the same as our previous assessment 
(Text S1I). The results from the two Clone-seq experiments using both HiSeq and MiSeq agree 
perfectly with each other, confirming the scalability, accuracy, and throughput of our Clone-seq 
pipeline independent of the sequencing platform used. 

Finally, we generated the remaining 165 disease mutations (of the 204) and 717 other coding 
variants from the Exome Sequencing Project and the Catalog of Somatic Mutations in Cancer 
[20] using a full 1×100 bp HiSeq run, including 40 mutations on a single gene – MLH1. Using 
111.2 million reads for these 882 alleles, we found that 2,958 of the 3,528 colonies (84%) 
contain the desired mutation, again in excellent agreement with our previously obtained PCR-
mutagenesis success rate. There was at least one colony with only the desired mutation for all 
882 alleles, including all 40 MLH1 mutations (Table S1). Therefore, our Clone-seq pipeline can 
generate a large number of mutations (>40) even for a single gene. In fact, to generate even more 
mutations for one gene, we can implement a two-round barcoding approach: generate groups of 
40 mutations and barcode them differently for one HiSeq run (Fig. S3). Ten such groups will 
enable us to generate ~400 mutations for a single gene (Text S1). Since the average coverage of 
these 882 alleles is > 300×, the capacity of our Clone-seq pipeline using one full lane of a 1×100 
bp HiSeq run is estimated to be >3,000, again in agreement with our previous two estimates 
(Text S1). 

Overall, our pipeline has been significantly optimized to make it very efficient. We 
established a web-tool (http://www.yulab.org/Supp/MutPrimer) to design mutagenic primers 
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both individually and in batch. MutPrimer can design ~1,000 primers for ~500 mutations in one 
batch in less than one second. All of the 2,068 primers for the 1,034 mutations in this study were 
generated by MutPrimer. All mutagenesis PCRs are performed in batch using automatic 96-well 
procedures. Since single colony picking after bacterial transformation of mutagenesis PCR 
product is a rate-limiting step, we rigorously optimized this step and found that adding 10 µL 
mutagenesis PCR products to 100 µL competent cells and plating 50 µL transformed cells give 
the best transformation yield and well-separated single colonies. Furthermore, rather than 
individually streaking transformed cells onto agar plates one sample at a time, we were able to 
significantly increase throughput by spreading colonies using glass beads onto four sector agar 
plates which are partitioned into four non-contacting quadrants (Materials and Methods). In 
this manner, a 96-well plate of transformed bacteria can be plated out onto 24 four-sector agar 
plates in ~15 minutes. Traditional site-directed mutagenesis pipelines require miniprepping each 
of the selected colonies and sequencing them separately by Sanger sequencing. To drastically 
improve the throughput of our Clone-seq pipeline, we pooled together the bacteria stock of a 
single colony for each mutagenesis attempt to perform one single maxiprep, which makes the 
library construction step much more efficient and amenable to high-throughput (Text S1). 
Furthermore, existing variant calling pipelines [21] cannot be applied to our Clone-seq results 
because the expected allelic ratios built into these pipelines are a function of the ploidy of the 
organism. However, in our Clone-seq pipeline there is no concept of ploidy. We pool together 
many mutations for one gene in the same pool (e.g., 40 mutations for MLH1) and different genes 
often have different numbers of mutations. Our S score calculation and unwanted mutation 
detection pipeline was designed according to our pooling strategy (Materials and Methods). 

In total, we have used the novel Clone-seq pipeline successfully to generate 1,034 (39 + 113 
+ 882) mutant clones without any additional unwanted mutations, confirming the scalability, 
accuracy, and throughput of our Clone-seq pipeline. 

 
A high-throughput GFP assay to determine the impact of mutations on protein stability 

 
For the 204 mutations on proteins with co-crystal structures, we first examined whether the 
mutant proteins can be stably expressed in human cells. To do this, we tagged every wild-type 
and mutant protein with GFP at the C-terminus using high-throughput Gateway cloning (Fig. 
1b). The GFP constructs were transfected into HEK293T cells and fluorescence intensities were 
measured by a plate reader (Fig. 3c; Materials and Methods). All fluorescence intensity 
readings were also confirmed manually under a microscope. Compared with the corresponding 
wild-type proteins, the expression levels of 3 of the 27 “interface residue” mutants, 8 of the 99 
“interface domain” mutants and 6 of the 77 “away from the interface” mutants are significantly 
diminished (Fig. 3c; Materials and Methods; Table S2). To validate these findings, we also 
performed Western blotting for 8 random mutants that are stably expressed and 8 random 
mutants with significantly diminished expression levels (Fig. 4a). Western blotting results 
confirm our GFP intensity readings. 
 
 
A high-throughput Y2H assay to determine the impact of mutations on protein interactions 
 
Next, we investigated whether these mutations could affect protein-protein interactions using 
Y2H (Fig. 1c; Materials and Methods). We found that 21 of the 27 (78%) “interface residue” 
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mutations, 57 of the 100 (57%) “interface domain” mutations, and only 22 of the 77 (29%) 
“away from the interface” mutations disrupt the corresponding interactions, thereby 
demonstrating a clear difference (Fig. 4b; P = 3 x 10-6 between “interface residue” and “interface 
domain” and P = 8 x 10-10 between “interface domain” and “away from the interface”) in terms 
of ability to interfere with protein-protein interactions between mutations at different structural 
loci within the same protein. Furthermore, comparing with the GFP results, we found that all 
destabilizing mutations were shown to disrupt the corresponding interactions in our Y2H 
experiments. By considering only the mutations that do not affect protein expression based on 
the GFP experiments, we found the same difference: 13 out of 18 (72%) “interface residue” 
stable mutations, 42 out of 83 (51%) “interface domain” stable mutations, and only 9 out of 52 
(17%) “away from the interface” stable mutations disrupt the corresponding interactions (Fig. 
4b; P = 2 x 10-5 between “interface residue” and “interface domain” and P = 9 x 10-13 between 
“interface domain” and “away from the interface”; Table S2). Since these interfaces are obtained 
from actual co-crystal structures, our results suggest that accurate structural information can help 
determine the functional impact of mutations on protein-protein interactions. Wild-type proteins 
corresponding to 113 of the 153 stably expressed mutant proteins also interact with other 
proteins as determined by our Y2H experiments (114 interactions in total, termed “other 
interactions”); however, for these interactions, there are currently no co-crystal structures 
available in the PDB. Using these other interactions, we calculated the likelihood of a given 
mutation disrupting a specific interaction without any structural information to be 32% (Fig. 4b).  
 
Relationships between measured molecular phenotypes and corresponding disease 
phenotypes 
 
We then analyzed whether the molecular phenotypes measured by our high-throughput GFP and 
Y2H assays are correlated with corresponding disease phenotypes. We first examined how 
mutation pairs on the same gene affect protein stability and its relationship to their corresponding 
diseases. We find that pairs of mutations that are either both stable or both unstable cause the 
same disease in 68% and 70% of cases, respectively. However, pairs comprising one stable and 
one unstable mutation cause the same disease in only 30% of cases (P = 6 x 10-9 and 8 x 10-10, 
respectively, Fig. 5a). For example, we find that the mutations R727C and L844F on the spindle 
checkpoint kinase Bub1b both cause the protein to become unstable and lose all its interactors. 
These mutations are both associated with the same disease, mosaic variegated aneuploidy, an 
autosomal recessive disorder that causes predominantly trisomies and monosomies of different 
chromosomes [22,23]. Since our GFP assay shows that these two mutations cause loss of protein 
product, our results are consistent with Matusuura et al.’s finding that a more than 50% decrease 
in Bub1b activity leads to abnormal mitotic spindle checkpoint function and mosaic variegated 
aneuploidy [24].  

We then examined whether mutation pairs on the same gene disrupt the same set or different 
sets of interactions (i.e, their interaction disruption profiles) and investigated whether their 
disruption profiles correlates with disease phenotypes. We found that mutation pairs with the 
exact same disruption profile are significantly more likely to cause the same disease than those 
with different profiles (70% and 61% respectively, P = 3 x 10-5, Fig. 5b). For example, we found 
that two mutations on Smad4, R361C and Y353S, disrupt its interactions with Smad3 and Smad9 
while leaving the interactions with Lmo4 and Rassf5 unaltered (Fig. 5c). These two mutations 
both cause juvenile polyposis coli [25,26], a disease is known to be caused by disruption of the 



core Smad/Bmp signaling pathways [27]. Our Y2H results clearly demonstrate that the R361C 
and Y353S mutations disrupt the Smad4-Smad3 and Smad4-Smad9 interactions (Fig. 5c) leading 
to disruption of core Smad signaling pathways. However, the mutation N13S on Smad4 does not 
disrupt any of these interactions (Fig. 5c) and is associated with a different disease, pulmonary 
arterial hypertension. Our results agree with Nasim et al.’s finding that the N13S mutation does 
not alter downstream Smad signaling [28]. Our findings provide support for the hypothesis that 
the N13S mutation either impacts pathways outside the core Smad signaling network or are 
pathogenic only when combined with other environmental and genetic factors [29]. 

Overall, these results show that mutation pairs with similar molecular phenotypes in terms of 
both protein stability and interactions are significantly more likely to cause the same disease than 
those with different molecular phenotypes. This confirms that the molecular phenotypes 
measured by our high-throughput GFP and Y2H assays are biologically relevant. Furthermore, 
by comparing the molecular phenotypes, in particular the protein interaction disruption profiles, 
of mutations/variants to those of known disease mutations, potential candidate mutations for a 
variety of diseases can be identified. 
 
A high-throughput mass spectrometry assay to determine the impact of mutations on 
protein interactions 
 
While we use only those interactions that are supported by co-crystal structures to estimate the 
fraction of interactions that are disrupted by mutations at different structural loci, the described 
procedures can also be applied to interactions with predicted interfaces and structural models 
[30,31,32,33]. This is of particular importance because over 90% of known interactions do not 
currently have corresponding co-crystal structures [33,34]. For example, Mlh1 is known to 
interact with Pms2, both of which are well-studied DNA mismatch repair genes frequently 
mutated in hereditary nonpolyposis colorectal cancer [35]. Although the structural basis of the 
Mlh1-Pms2 interaction still remains unknown, both our previous 3D reconstruction of the human 
interactome network [7,32] and the newly-established Interactome3D [33] database suggest that 
the HATPase_c domain is part of the interface for Mlh1’s interaction with Pms2. Previous work 
has shown that a point mutation (I107R) on the HATPase_c domain of Mlh1 is associated with 
colorectal cancer and disrupts the Mlh1-Pms2 interaction [7,35,36]. First, using Y2H, we were 
able to confirm the disruption (Fig. S4). Next, we developed a high-throughput-amenable mass 
spectrometry pipeline using Stable Isotope Labeling by Amino acids in Cell culture (SILAC) 
[37,38], which was designed to reveal both lost/weakened and gained/enhanced interactions of 
the target proteins (Fig. 1d) [39]. We added an HA-tag to the N-terminus of both wild-type and 
mutant Mlh1, as well as to GFP as a control, and performed four SILAC experiments: wild-type 
Mlh1 (heavy) vs. GFP control (light), mutant Mlh1 (heavy) vs. GFP control (light), wild-type 
(heavy) vs. mutant (light) Mlh1, and mutant (heavy) vs. wild-type (light) Mlh1 (Fig. 6a; 
Materials and Methods). Interactors of wild-type/mutant Mlh1 are defined as those that bind 
wild-type/mutant Mlh1 more than 2× stronger than GFP control (Materials and Methods). For 
a lost/weakened interaction, we required that the interaction be more than 2× stronger with wild-
type Mlh1 than with mutant Mlh1 as confirmed both in wild-type (heavy) vs. mutant (light) and 
in mutant (heavy) vs. wild-type (light) experiments; we further required that the interaction be 
detected in the wild-type vs. control experiment (Fig. 6a; Materials and Methods). For a 
gained/enhanced interaction, we required that the interaction be more than 2× stronger with 
mutant Mlh1 than with wild-type Mlh1 as confirmed both in wild-type (heavy) vs. mutant (light) 



and in mutant (heavy) vs. wild-type (light) experiments; we further required that the interaction 
be detected in the mutant vs. control experiment (Fig. 6a; Materials and Methods). We were 
able to detect Pms2 as the only specifically weakened interactor caused by the mutation (Figs. 
6b,c; E = -1.77; P = 3 x 10-4), in agreement with our Y2H results and previous studies [7,36]. 
Additionally, we were able to detect Hspa8 as the only specifically enhanced interactor of the 
mutant protein (Figs. 6b,c; E = 2.71; P = 7 x 10-8). Two other known interactors of Mlh1, Pms1 
(Figs. 6b,c; E = -0.32; P = 0.21) [40] and Brip1 (Fig. 6b,c; E = 0.18; P = 0.32) [41], were also 
detected, although their interactions with Mlh1 are not affected by this particular mutation 
(Materials and Methods).  

Hspa8 was not previously known to interact with Mlh1 and the impact of the Mlh1 I107R 
mutation on its interactions with Pms1 and Brip1 has not been reported in the literature. To 
verify our SILAC results, we performed in vivo co-immunoprecipitation using HA-tagged wild-
type and mutant Mlh1 and tagged Hspa8 and Brip1 with V5 (Materials and Methods). Our co-
immunoprecipitation results confirm that Hspa8 only weakly interacts with wild-type Mlh1, but 
the interaction is dramatically enhanced by a single amino acid substitution (I107R) (Fig. 6d, 
lanes 3 and 4), whereas the interaction between Mlh1 and Brip1 is not affected by this mutation 
(Fig. 6d, lanes 6 and 7; Materials and Methods). Hspa8 is a constitutively expressed member of 
the heat shock protein 70 family [42]. It functions as a chaperone to facilitate protein folding [42] 
and also functions as an ATPase in the disassembly of clathrin-coated vesicles during membrane 
trafficking [43]. A recent study reported that Hspa8 is specifically recruited to reovirus viral 
factories, independent of its chaperone function [44]. Our Western blotting results demonstrate 
that the expression level of Mlh1 is not affected by the I107R mutation (Fig. S5). Therefore, our 
SILAC results suggest that Hspa8 may play an important role in colorectal cancer and that its 
function could be independent of its role as a chaperone. 

 
Discussion 

 
We have successfully developed the first massively parallel site-directed mutagenesis pipeline, 
Clone-seq, using next-generation sequencing. Our Clone-seq pipeline is entirely different from 
previously described random mutagenesis approaches [45,46,47,48]. Clone-seq is used to 
generate a large number of specific mutant clones with desired mutations; each individual mutant 
clone has a separate stock and different clones can therefore be used separately for completely 
different downstream assays. In random mutagenesis, a pool of sequences containing different 
mutations for one gene is generated using error-prone PCR or error-prone DNA synthesis. 
Therefore, it is not possible to separate one mutant sequence from another and the whole pool 
can only be used for the same assay(s) together. Furthermore, it is not possible to control which 
or how many mutations are generated on each DNA sequence. In fact, to improve coverage, most 
random mutagenesis pipelines generate on average two or more mutations on each DNA 
sequence [45], which makes it impossible to distinguish the functional impact of each individual 
mutation on the same sequence. Site-directed mutagenesis and random mutagenesis are designed 
for different goals: if one wants to generate all possible mutations for a certain protein without 
the need to separate different clones, it would be more favorable to use random mutagenesis; 
whereas if one needs to have separate clones for each mutation, site-directed mutagenesis is 
required. As a result, the two approaches are complementary and not comparable. 

While there are highly efficient methods for random mutagenesis [45,46,47,48], current 
protocols for site-directed mutagenesis are low-throughput and become prohibitively expensive 



if a large number of clones needs to be generated. Clone-seq directly addresses the necessity for 
a high-throughput site-directed mutagenesis pipeline. It is a robust, cost-effective and efficient 
method that can be used to generate a total of ~3,000 distinct mutant clones in one full lane of a 
1×100 bp HiSeq run. Clone-seq is suitable both for generating mutations across many genes as 
well as a large number of mutations on a few genes. The former situation is applicable when one 
wants to generate many mutations/variants from large-scale studies (e.g., whole-genome or 
whole-exome sequencing) since they typically identify mutations/variants on a large number of 
genes [49,50]. The latter situation usually arises in a study focused on a single pathway with a 
few genes of interest (e.g., an alanine-scanning mutagenesis to determine functional sites on a 
gene of interest [51]).  

Integrating with Clone-seq, we also established a comprehensive comparative interactome-
scanning pipeline, including high-throughput GFP, Y2H, and mass spectrometry assays, to 
systematically evaluate the impact of human disease mutations on protein stability and 
interactions. We examine each mutation individually, rather than looking at their combinatorial 
effects because these inherited germline disease mutations are extremely rare. Therefore, the 
probability of having even two of these in the same individual becomes infinitesimally small. 
Our results reveal that the overall likelihood of a given disease mutation disrupting a specific 
interaction is 32%. Accurate structural information of these interactions obtained from co-crystal 
structures greatly improves our understanding of the impact of disease mutations: 13 out of 18 
(72%) “interface residue” stable mutations, 42 out of 83 (51%) “interface domain” stable 
mutations, and only 9 out of 52 (17%) “away from the interface” stable mutations disrupt the 
corresponding interactions, unveiling a clear dependence of the molecular phenotypes of disease 
mutations on structural loci. These estimates are not affected by the false negative rate of our 
Y2H assay as we only use those interactions for which we can detect the wild-type interaction 
with strong Y2H phenotypes. Thus, any observed disruption is due to the mutation of interest 
and not an assay false negative. Furthermore, our Y2H pipeline has been shown to be of high 
quality and has an experimentally measured false positive rate of ~5% or lower in different 
organisms [9,12,52,53]. In addition, the interactions used to understand how molecular 
phenotypes of disease mutations vary based on structural loci are supported by co-crystal 
structures; the interactions are biologically real and not assay false positives. We also find that 
the molecular phenotypes detected by our GFP and Y2H assays correlate with known disease 
phenotypes, confirming the biological significance of our measurements. 

Moreover, as shown by the Mlh1 example (Fig. 6), our comparative interactome-scanning 
pipeline can also be used with predicted structural models [30,31,32,33]. The consequent 
experimental results will clearly be affected by the quality of these predictions, which is not part 
of our pipeline. In fact, our experimental interactome-scanning pipeline can be applied to 
evaluate or improve these predicted models by testing mutations at different loci of a protein of 
interest and examining how these mutations disrupt different interactions of this protein.  

Our comparative interactome-scanning pipeline described and validated here can be applied 
to experimentally determine in a high-throughput fashion the impact on protein-protein 
interactions for thousands of DNA coding variants and disease mutations, which can directly 
lead to hypotheses of concrete molecular mechanisms for follow-up studies. Furthermore, the 
elucidation of molecular phenotypes of disease mutations is also vital for selecting actionable 
drug targets and ultimately for making therapeutic decisions. Finally, the general scheme of our 
pipeline can be readily expanded to other interactome-mapping methods, particularly other 
protein-protein [10], protein-DNA [54,55], protein-RNA [56], and protein-metabolite interaction 



assays [57], to comprehensively evaluate the functional relevance of all DNA variants, including 
those in non-coding regions. 



Figure Legends 
 
Figure 1. Schematic of our comparative interactome-scanning pipeline. 
Our pipeline begins with Clone-seq (a), a massively-parallel low-cost site-directed mutagenesis 
pipeline leveraging next-generation sequencing. This is followed by a high-throughput GFP 
assay (b) to determine protein stability, and a high-throughput Y2H assay (c), along with SILAC-
based mass spectrometry (d) to determine the impact of DNA coding variants on protein 
interactions.  
 
Figure 2. Identifying usable clones from Clone-seq. 
(a) Schematic illustrating criteria used to determine which of the clones generated by our Clone-
seq pipeline are usable for further assays – green ticks indicate usable clones, while red crosses 
indicate clones that cannot be used. (b) Variation of S across different mutagenesis attempts that 
either contain or do not contain the desired mutation as confirmed by Sanger sequencing.  
 
Figure 3. Examples of disease mutations in different structural loci of protein-protein 
interactions and examples of our GFP assay results. 
(a) Crystal structure (PDB id: 3W4U) depicting a D100Y mutation (on Hbb) at an interface 
residue and a F104L mutation in the interface domain for the Hbb-Hbz interaction. (b) Crystal 
structure (PDB id: 1G3N) depicting a V31L mutation (on Cdkn2c) away from the Cdkn2c-Cdk6 
interaction interface. (c) GFP assays that determine the stability of wild-type Rrm2b and the 
R41P and L317V mutations on Rrm2b that are at an interface residue and away from the 
interface for the Rrm2b-Rrm2b interaction; GFP assays that determine the stability of wild-type 
Hprt1 and the C206Y mutation on Hprt1 that is away from the interaction interface of Hprt-
Hprt1. Empty vector was used as a negative control.  
 
Figure 4. Effect of disease mutations on protein stability and protein-protein interactions.  
(a) Western blotting with anti-GFP antibody confirming the protein expression levels of wild-
type Rrm2b, Actn2, Hprt1, Pnp, Tpk1, Gnmt, Gale, Fbp1, Klhl3, Tp53, Pnp, Smad4, and 
corresponding mutant alleles. β-tubulin and γ-tubulin were used as loading controls. Red denotes 
“interface residue” mutations, orange denotes “interface domain” mutations and blue denotes 
“away from the interface” mutations. (b) Likelihood of disruption of interactions by “interface 
residue”, “interface domain” and “away from the interface” mutations – overall and for stable 
mutants only; likelihood of a disease mutation disrupting a given interaction in the absence of 
structural information. Error bars indicate +SE. (N = 204 mutations) 
 
Figure 5. Relationships between molecular phenotypes and disease phenotypes. 
(a) Fraction of mutation pairs on the same gene that cause the same disease: for the same and 
different effects on protein stability. (b) Fraction of mutation pairs on the same gene that cause 
the same disease: for the same and different interaction disruption profiles. Error bars indicate 
+SE. (c) Crystal structure (PDB id: 1U7F) depicting the Y353S and R361C mutations (on 
Smad4) at interface residues for the Smad4-Smad3 interaction. (d) Y2H analysis of the effects of 
Smad Y353S, R361, and N13S mutations on its interactions with Smad3, Lmo4, Rassf5, and 
Smad9. Western blotting with anti-GFP antibody confirming the protein expression levels of 
wild-type Smad4 and its 3 mutant alleles – Y353S, R361C and N13S. γ-tubulin was used as a 
loading control. 



 
Figure 6. Identifying interactions of Mlh1 that are affected by the I107R mutation using SILAC-
based mass spectrometry. 
(a) Schematic illustrating criteria used to identify interactions that are lost/weakened, unchanged, 
and gained/enhanced due to the I107R mutation on Mlh1. Blue denotes samples cultured in light 
media and black denotes samples cultured in heavy media. (b) Scatter plot illustrating fold 
change (FC; log scale) in the amount of protein pulled down by wild-type Mlh1 and mutant 
Mlh1 (I107R). Values are computed based on the wild-type (heavy) vs. mutant (light) (X-axis) 
and mutant (heavy) vs. wild-type (light) (Y-axis) experiments. Green denotes enhancement of 
interaction, red denotes weakening of interaction, and gold denotes no change. Mlh1 is shown in 
grey. (c) Fold changes and read counts (r) for interactors of Mlh1 that can be reliably identified 
as weakened, unchanged, and enhanced due to the I107R mutation. (d) Anti-HA 
immunoprecipitation followed by Western blotting with anti-V5 antibody confirming that the 
Mlh1-Brip1 interaction remains unchanged and that the Mlh1-Hspa8 interaction is dramatically 
enhanced due to the I107R mutation. 
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Materials and Methods  
 
Selecting interactions with mutations on and away from the interface 
 
To calculate atomic-resolution interaction interfaces, we systematically examined a 
comprehensive list of 7,340 PDB co-crystal structures. To define the interface, we used a water 
molecule of diameter 1.4 Å as a probe and calculated the relative solvent accessible surface areas 
of the interacting pair as well as the individual proteins involved in the interaction. Residues 
whose relative accessibilities change by more than 1 Å2 are considered as potential interface 
residues, because amino acids at the interface reside on the surfaces of the corresponding 
proteins, but will tend to become buried in the co-crystal structure as the two proteins bind to 
each other [58]. So, for these residues, there should be a significant decrease in accessible 
surface area when we compare the bound and unbound states of the protein chains.  
 
To identify interface domains, we required at least one of the following criteria to hold: 
 

1. 3did [59] or iPfam [60] have identified the domain pair as interacting and each of the 
interface domains contains at least one interface residue based on our calculations. 

2. The domain pair contains 5 or more interface residues for each protein according to our 
calculations. 

We then identified the subset of these interactions that contain at least one disease mutation and 
are amenable to our version of Y2H [11,12,13,14]. Subsequently, we performed a pairwise retest 
of all these interactions and selected the ones that yield strong Y2H phenotypes, because 
subsequent steps involve detecting a significant decrease in these phenotypes. 
 
Primer design for site-directed mutagenesis 
 
Primers for site-directed mutagenesis were selected based on a customized version of the 
protocol accompanying the Stratagene QuikChange Site-Directed Mutagenesis Kit (200518). 
The following criteria are used: 
 

1. The primer should be of length 30-50 bp and should contain the mutation of interest in 
the center or one base away. 

2. The GC content of the primer should be ≥ 40% and the primer should start and end with a 
G or a C. 

3. The Tm for the primer should be ≥ 78 °C. Tm was calculated using the following 
expression: 
 

€ 

Tm = 81.5 + 0.41× (%GC) − 675
N

−%mismatch  
 
where N is the primer length in bases, %GC is the percentage of G or C nucleotides in the 
primer, and %mismatch is the percentage of mismatched bases in the primer. Values for 
%GC and %mismatch are whole numbers. 
 



For cases where no primer satisfies all three criteria simultaneously, we relaxed criterion 2 to GC 
content ≥ 30%. 
 
We established a supplementary web tool (http://www.yulab.org/Supp/MutPrimer) to design 
mutagenesis primers individually or in bulk. 
 
Construction of mutant alleles using high-throughput site-directed mutagenesis PCR 
 
All wild-type clones were obtained from the human ORFeome v8.1 collection [61]. To generate 
mutant alleles, sequence-verified single-colony wild-type clones and their corresponding 
mutagenic primers were aliquoted into individual wells of 96-well PCR plates. Mutagenesis PCR 
was then performed as specified by the New England Biolabs (NEB) PCR protocol for Phusion 
polymerase (M0530L), noting that PCR was limited to 18 cycles. The samples were then 
digested by DpnI (NEB R0176L) according to the manufacturer’s manual. After digestion, 
samples were transformed into competent E. coli. Since single colony picking after bacterial 
transformation of mutagenesis PCR product is a rate-limiting step, we rigorously optimized this 
step. First, we tried different volumes of competent cells for transformation and found that single 
colony yields peak when ~100 µL of competent cells are used. It is also necessary to use ~10 µL 
of mutagenesis PCR product: any lower volume of PCR product results in significantly reduced 
colony yields, while higher volumes of PCR product do not increase yield. Finally, colony 
picking was done using four-sector agar plates (VWR 25384-308) that are partitioned into four 
non-contacting quadrants with glass beads poured onto each plate quadrant. Each bead-filled 
quadrant was inoculated with ~50 µL of transformed bacteria. This was then spread by lightly 
shaking the four-sector agar plate. Our optimized transformation protocol results in a large 
number of well-separated single colonies that can be easily picked the next day. Upon recovery, 
single colonies from each quadrant were then picked and arrayed into 96-deepwell plates filled 
with 300 µL of antibiotic media. Four colonies per allele were picked for next-generation 
sequencing. 
 
DNA library preparation for Illumina sequencing 
 
DNA library preparation was performed using NEBNext DNA Library Prep Master Mix Set for 
Illumina (NEB E6040S) according to the manufacturer’s manual. Briefly, 5 µg of pooled 
plasmid DNA (~100 µL, all samples were normalized to the same concentration) was sonicated 
to ~200 bp fragments. The fragmented DNA was first mixed with NEBNext End Repair Enzyme 
for 30 mins at 20 °C. Blunt-ended DNA was then incubated with Klenow Fragment for 30 mins 
at 37 °C for dA-Tailing. Subsequently, NEBNext Adaptor was added to dA-Tailed DNA. 
Adaptor-ligated DNA (~300 bp) was size-selected on a 2% agarose gel. Size-selected DNA was 
then mixed with one of the NEBNext Multiplex Oligos (NEB E7335S) and Universal PCR 
primers for PCR enrichment. At each step, DNA was purified using a QIAquick PCR 
purification kit (Qiagen 28104). Multiplexed DNA samples were combined and analyzed in one 
lane of a 1×100 bp run by Illumina HiSeq 2500. 
 



Identifying successful instances of site-directed mutagenesis based on next-generation 
sequencing 
 
The mutant colonies were barcoded and pooled as shown in Fig. 1a. The multiplexed colonies 
were then run on an Illumina sequencer (2 HiSeq runs and 1 MiSeq run) to give 1×100 bp reads. 
These reads were then de-multiplexed and mapped to the genes of interest using the BWA “aln” 
algorithm [62]. For each allele, we identified all reads that mapped to the position of the 
mutation of interest (Rall) and those that actually contained the desired mutation (Rmut). We then 
calculated a normalized score (S) that quantifies the fraction of reads containing the desired 
mutation: 
 

€ 

S =
Rmut

1
k
Rall

=
k × Rmut

Rall
 

 
where k is the number of different mutations for the same gene.  
 
For 39 mutations, we Sanger sequenced two mutant colonies per mutagenesis attempt to quantify 
the correlation between S and observation of the desired mutation. We found that all clones with 
S > 0.44 are confirmed to be correct via Sanger sequencing with a clear separation between those 
that are correct and those that are not (Fig. 2b). However, to further ensure that the clones we 
picked were correct, we require S > 0.8 for a colony to be scored as containing the desired 
mutation. 
 
Identifying unwanted mutations 
 
One major advantage of our Clone-seq pipeline over traditional site-directed mutagenesis 
protocols using Sanger sequencing [15] is that we can now carefully examine whether there are 
other unwanted mutations inadvertently introduced during the PCR process, in comparison with 
the corresponding wild-type alleles. It is essential to use clones with no unwanted mutations for 
downstream experiments, as the presence of these will make it impossible to determine whether 
the observed disruption is due to the desired or other undesirable mutation(s). 

We use samtools “mpileup” [63] to obtain read counts for different alleles at each nucleotide 
for all the clones. We calculate the background sequencing error rate by calculating the average 
fraction of non-reference alleles across all nucleotides where we did not attempt to introduce a 
mutation. Any site that has a significantly higher fraction of non-reference alleles (using a P 
value cutoff of 0.2 from a cumulative binomial test) is considered to have an unwanted mutation. 
A lenient P value cutoff (0.2 as opposed to the more traditionally used 0.05 or 0.01) implies 
more stringent filtering in this case because we want to eliminate type II errors i.e., we want to 
identify all unwanted mutations at the cost of discarding a few clones that actually do not have 
any unwanted mutations. 

We identified an average of 4-5 unwanted point mutations per pool. The overall per-base 
point mutation rate of Phusion polymerase was calculated to be ~ 10-4. NEB’s advertised error 
rate for Phusion polymerase varies from 4.4 – 9.5 x 10-7 per PCR cycle. Since we perform 18 
PCR cycles, the expected overall error rate is ~ 10-5. Our calculated mutation is within an order 
of magnitude of this advertised error rate. It is slightly higher than the advertised rate as we use 
stringent filtering criteria as described above. 



GFP assay 
 
All wild-type and mutant clones were moved into the pcDNA-DEST47 vector with a C-terminal 
GFP tag using automated Gateway LR reactions in a 96-well format. After bacterial 
transformation, minipreps were prepared on a Tecan Freedom Evo 200, and DNA concentrations 
were determined by OD 260/280 with a Tecan Infinite M1000 plate reader in 96-well format. A 
100 ng aliquot of each expression clone plasmid was used for transfection into HEK293T cells in 
96-well plates using Lipofectamine 2000 (Invitrogen 11668019) according to the manufacturer’s 
instructions. At approximately 48 hrs post-transfection, cells were processed with Tecan M1000. 
Fluorescence intensities were measured at 395 nm for excitation and 507 nm for emission, 
according to Invitrogen’s manual. As negative controls, the fluorescence intensities 
corresponding to cells transfected with the empty vector were measured. The normalized 
fluorescence intensity was calculated as:  
 

€ 

Inorm = I − Ibackground  
 
where I corresponds to the measured intensity and Ibackground corresponds to the average intensity 
of the empty vector controls for each plate. All Inorm values greater than K are considered to 
correspond to stable protein expression. K corresponds to the range (maximum – minimum) of 
background fluorescence intensities of the empty vector controls for each plate. For this study, 
all fluorescence intensity readings were also confirmed manually under a microscope. All 
transfection and GFP experiments were repeated 3 times. 
 
Y2H assay 
 
Y2H was performed as previously described [7]. All wild-type/mutant clones were transferred by 
Gateway LR reactions into our Y2H pDEST-AD and pDEST-DB vectors. All DB-X and AD-Y 
plasmids were transformed individually into the Y2H strains MATα Y8930 and MATa Y8800, 
respectively. Each of the DB-X MATα transformants (wild-type and mutants) were then mated 
against corresponding AD-Y MATa transformants (wild-type and mutants) individually using 
automated 96-well procedures, including inoculation of AD-Y and DB-X yeast cultures, mating 
on YEPD media (incubated overnight at 30 °C), and replica-plating onto selective Synthetic 
Complete media lacking leucine, tryptophan, and histidine, and supplemented with 1 mM of 3-
amino-1,2,4-triazole (SC-Leu-Trp-His+3AT), SC-Leu-His+3AT plates containing 1 mg/l 
cycloheximide (SC-Leu-His+3AT+CHX), SC-Leu-Trp-Adenine (Ade) plates, and SC-Leu-
Ade+CHX plates to test for CHX-sensitive expression of the LYS2::GAL1-HIS3 and GAL2-
ADE2 reporter genes. The plates containing cycloheximide select for cells that do not have the 
AD plasmid due to plasmid shuffling. Growth on these control plates thus identifies spontaneous 
auto-activators [64]. The plates were incubated overnight at 30 °C and “replica-cleaned” the 
following day. Plates were then incubated for another three days, after which positive colonies 
were scored as those that grow on SC-Leu-Trp-His+3AT and/or on SC-Leu-Trp-Ade, but not on 
SC-Leu-His+3AT+CHX or on SC-Leu-Ade+CHX. Disruption of an interaction by a mutation 
was defined as at least 50% reduction of growth consistently across both reporter genes, when 
compared to Y2H phenotypes of the corresponding wild-type allele as benchmarked by 2-fold 
serial dilution experiments. All Y2H experiments were repeated 3 times. 
 



Construction of plasmids  
 
Wild-type MLH1, HSPA8, and BRIP1 entry clones are from the human ORFeome v8.1 collection 
[61]. Using Gateway LR reactions, wild-type MLH1, mutant MLH1 (I107R), and GFP were 
transferred into the pMSCV-N-FLAG-HA-PURO vector [65]; HSPA8 and BRIP1 were 
transferred into the pcDNA-DEST40 vector that contains a C-terminal V5 tag (Invitrogen 12274-
015).  
 
Analysis of interacting proteins by SILAC and LC-MS/MS  
 
HEK293T cells were grown in SILAC media comprising SILAC DMEM (Thermo Scientific) 
and 10% dialyzed FBS (JR Scientific) supplemented with either 0.1 mg/ml L-lysine and L-
arginine (light media) or 0.1 mg/ml L-lysine 13C6, 15N2 and L-arginine 13C6, 15N4 (heavy 
media). Heavy- or light-media cultured HEK293T cells were transfected using Lipofectamine 
2000 (Invitrogen) in three 10 cm plates. 48 hrs after transfection, cells were washed three times 
in cold PBS and then resuspended in 5 ml RIPA buffer [1% NP-40, 50 mM Tris-HCl pH 7.5, 150 
mM NaCl, 5 mM EDTA, 1× EDTA-free Complete Protease Inhibitor tablet (Roche)]. Cells were 
lysed for 30 mins on ice before centrifuging at 13,000 rpm for 10 mins. Cell lysates were 
incubated with 60 µL EZview Red Anti-HA Affinity Gel (Sigma-Aldrich) for 3 hrs. After 3 
washes with RIPA buffer, bound proteins were eluted with 3 resin volumes elution buffer (100 
mM Tris-HCl pH 8.0, 1% SDS). Eluted proteins from light and heavy media were mixed 
together, reduced with 5 mM DTT, alkylated with 15 mM of iodoacetamide, and then 
precipitated with 3 volumes PPT solution (50% acetone, 49.9% ethanol, 0.1% acetic acid). 
Proteins from pull-down experiments were solubilized with 50 µL Urea/Tris solution (8 M Urea, 
50 mM Tris-HCl pH 8.0) and 150 µL NaCl/Tris (50 mM Tris-HCl pH 8.0, 150 mM NaCl) 
followed by the addition of 1 µg Trypsin Gold (Promega). Protein digestion was performed 
overnight at 37 °C after which trifluoroacetic acid and formic acid were added to a final 
concentration of 0.2%. Peptides were de-salted with Sep-Pak C18 columns (Waters 
Corporation), dried in a speed-vac, and reconstituted in 85 µL of a solution containing 80% 
acetonitrile and 1% formic acid. Samples were fractionated by Hydrophilic Interaction LIquid 
Chromatography (HILIC) using a TSK gel Amide-80 column (Tosoh Bioscience). HILIC 
fractions were dried in a speed-vac, reconstituted in 0.1% trifluoroacetic acid, and analyzed by 
LC-MS/MS using a 125 µM ID capillary column packed in-house with 3 µm C18 particles 
(Michrom Bioresources) and a Q-Exactive mass spectrometer (Thermo Fisher Scientific) 
coupled with a Nano LC-Ultra system (Eksigent). Xcalibur 2.2 software (Thermo Fischer 
Scientific) was used for the data acquisition and Q-Exactive was operated in the data-dependent 
mode. Survey scans were acquired in the Orbitrap mass analyzer over the range of 380 to 2000 
m/z with a mass resolution of 70.000 (at m/z 200). Up to the top 10 most abundant ions with a 
charge state higher than 1 and less than 5 were selected within an isolation window of 2.0 m/z. 
Selected ions were fragmented by Higher-energy Collisional Dissociation (HCD) and the tandem 
mass spectra were acquired in the Orbitrap mass analyzer with a mass resolution of 17.500 (at 
m/z 200). The fragmentation spectra were searched by using the SEQUEST software on a 
SORCERER system (Sage-N Research) and a human database downloaded from the 
International Protein Index (version 3.80). In all database searches, trypsin was designated as the 
protease, allowing for one non-tryptic end and two missed-cleavages. The following parameters 
were used in the database search: a mass accuracy of 15 ppm for the precursor ions, differential 



modification of 8.0142 Daltons for lysine and 10.00827 Daltons for arginine. Results were 
filtered based on probability score to achieve a 1% false positive rate. The Xpress software, part 
of the Trans-Proteomic Pipeline (Seattle Proteome Center), was used to process the raw data and 
quantify the light/heavy peptide isotope ratios. Results were also manually inspected. 
 
Identifying loss and gain of interactors for Mlh1 
 
We performed four SILAC experiments using both wild-type and mutant Mlh1, as well as GFP 
as a control: wild-type (heavy) vs. control (light) [WT_Control]; mutant (heavy) vs. control 
(light) [Mutant_Control]; wild-type (heavy) vs. mutant (light) [WT_Mutant]; and mutant (heavy) 
vs. wild-type (light) [Mutant_WT].  
 
We use the following variables and define four ratios for all subsequent calculations. In the 
WT_Control experiment, the relative abundance of protein p pulled down by wild-type Mlh1 to 
protein p pulled down by GFP (WTp) is quantified by the inverse of the geometric mean of rwc 
reads with Xpress values Xi. In the Mutant_Control experiment, the relative abundance of protein 
p pulled down by mutant Mlh1 (I107R) to protein p pulled down by GFP (Mutp) is quantified by 
the inverse of the geometric mean of rmc reads with Xpress values Yi. In the WT_Mutant 
experiment, the relative abundance of protein p pulled down with mutant Mlh1 (I107R) to 
protein p pulled down by wild-type Mlh1 is quantified by the geometric mean of rwm reads with 
Xpress values Pi. The amount of mutant Mlh1 (I107R) to wild-type Mlh1 is quantified by the 
geometric mean of twm reads with Xpress values Cj. In the Mutant_WT experiment, the relative 
abundance of protein p pulled down with mutant Mlh1 (I107R) to protein p pulled down by wild-
type Mlh1 is quantified by the inverse of the geometric mean of rmw reads with Xpress values Qj. 
The amount of mutant Mlh1 (I107R) to wild-type Mlh1 is quantified by the inverse of the 
geometric mean of tmw reads with Xpress values Di. 
 

WTp =
1
Xii=1

rwc

∏rwc

 
 

Mutp =
1
Yii=1

rmc

∏rmc
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∏rwm
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j=1

twm

∏twm  

 



FCmw =

Di
i=1
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j=1

rmw

∏rmw  

 
where both FCwm and FCmw denote the fold change in protein abundance as the normalized ratio 
of the amount of protein pulled down with mutant Mlh1 to that with wild-type Mlh1. 
 
To identify interactors that are lost/weakened due to the I107R mutation, we required the 
following criteria to hold simultaneously: 
 

1. The protein has to be identified as an interactor of wild-type Mlh1: WTp > 2, rwc ≥ 5. 
2. The protein has to be identified as a lost interactor based on both Mutant_WT: FCmw < 

0.5, rmw ≥ 5, and WT_Mutant: FCwm < 0.5, rwm ≥ 5. 
 

The first criterion ensures that the protein identified is a true interactor of wild-type Mlh1. The 
second criterion ensures that the loss of interaction is significant and reliably observed across 
both WT_Mutant and Mutant_WT experiments. 
 
Similarly, to identify interactors that are gained/enhanced due to the I107R mutation, we 
required the following criteria to hold simultaneously: 
 

1. The protein has to be identified as an interactor of mutant Mlh1 (I107R): Mutp > 2, rmc ≥ 
5. 

2. The protein has to be identified as a gained interactor based on both Mutant_WT: FCmw > 
2, rmw ≥ 5, and WT_Mutant: FCwm > 2, rwm ≥ 5. 
 

The first criterion ensures that the protein identified is a true interactor of the I107R mutant of 
Mlh1. The second criterion ensures that the gain of interaction is significant and reliably 
observed across both WT_Mutant and Mutant_WT experiments. 
 
We also identify interactors of Mlh1 that are unaffected by the I107R mutation using the 
following criteria: 
 

1. The protein has to be identified as an interactor of both wild-type Mlh1: WTp > 2, rwc ≥ 5, 
and mutant Mlh1 (I107R): Mutp > 2, rmc ≥ 5. 

2. The protein has to be identified as an unchanged interactor based on both Mutant_WT: 
0.5 < FCmw < 2, rmw ≥ 5, and WT_Mutant: 0.5 < FCwm < 2, rwm ≥ 5. 
 

Integrating both WT_Mutant and Mutant_WT experiments, we calculated a weighted average of 
the individual fold changes: 
 

E = rmw × log2(FCmw )+ rwm × log2(FCwm )
rmw + rwm  



 
P values are calculated using a two-sided Kolmogorov-Smirnov test (with bootstrapping). 
 
Cell culture, co-immunoprecipitation, and Western blotting 
 
HEK293T cells were maintained in complete DMEM medium supplemented with 10% FBS. 
Cells were transfected with Lipofectamine 2000 (Invitrogen) at a 6:1 (µL/µg) ratio with DNA in 
6-well plates and were harvested 24 hrs after transfection. Cells were gently washed three times 
in PBS and then resuspended using 200 µL 1% NP-40 lysis buffer [1% Nonidet P-40, 50 mM 
Tris-HCl pH 7.5, 150 mM NaCl, 1× EDTA-free Complete Protease Inhibitor tablet (Roche)] and 
kept on ice for 20 mins. Extracts were cleared by centrifugation for 10 mins at 13,000 rpm at 4 
°C. 15 µL EZview Red Anti-HA Affinity Gel (Sigma-Aldrich) and 100 µL protein lysate were 
used for each co-immunoprecipitation reaction. The samples were rotated gently at 4 °C for 2 
hrs. HA beads were then washed three times with protein lysis buffer, treated with 6× protein 
sample buffer, and subjected to SDS-PAGE. Proteins were then transferred from the gel onto 
PVDF (Amersham) membranes. Anti-HA (Sigma H9658), anti-V5 (Invitrogen 46-0705), anti-β-
tubulin (Promega G7121), and anti-GFP (Santa Cruz sc-9996) antibodies were used at 1:3,000 
dilutions for immunoblotting analysis. 
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