
nature neurOSCIenCe   advance online publication �

r e S O u r C e

The transcriptome of the human brain changes markedly across 
development and aging, with the largest gene expression changes 
occurring during fetal life, tapering into infancy1,2. Developmental 
brain disorders often involve genes that are differentially expressed 
in fetal as compared with postnatal life3,4. While exploration of the 
brain transcriptome has been an important approach to under-
standing brain development and brain disease, previous transcrip-
tome characterizations have used primarily microarray technologies 
based on probe sequences that capture only a limited proportion of 
transcriptome diversity. Technological advances in RNA sequencing 
(RNA-seq) now permit a flexible and potentially unbiased charac-
terization of the transcriptome at high resolution and coverage5. Yet 
existing published RNA-seq-based characterizations of brain devel-
opment have used gene- and/or exon-level count-based summariza-
tions4,6,7, which require an accurate and complete gene annotation. 
Such feature-based read counts lack the ability to reliably identify new 
transcriptional activity, but they generally limit the inherent diffi-
culty in transcript assembly and characterization based on short-read 
sequencing technologies8.

We have implemented a method for RNA-seq analysis at single base 
resolution to more fully characterize transcription dynamics, which 
exploits the benefits of both count- and transcript-based methods. We 
describe herein the results of deep coverage sequencing of the poly(A)+ 
transcriptomes of human dorsolateral prefrontal cortex (DLPFC) 
samples across six important life stages: fetal (second trimester),  

infant, child, teen, adult and late life. We implemented an annota-
tion-agnostic differential expression analysis to exploit the power 
of RNA-seq without the difficulties of transcript assembly9. This 
method, called derfinder, identifies differential expression at base-pair 
resolution and forms differentially expressed regions (DERs) by join-
ing adjacent differentially expressed bases. We tested for differences 
in average expression across the six age groups and used statistical  
permutation to calculate a measure of genome-wide significance 
for each DER10. A DER represents a differentially expressed (here, 
across age groups) unspliced segment of RNA that can originate  
from a full-length or, potentially, spliced transcript. The derfinder 
approach therefore interrogates transcript-level changes in gene 
expression via differentially expressed segments using only cover-
age-level RNA-seq data. This approach allows an unconstrained  
and unbiased search of the transcriptome to identify fragments  
of interest for more detailed molecular characterization of  
corresponding full-length transcripts.

After applying this approach to a discovery data set of 36 brain  
samples, we carried forward DERs that had significant differential 
expression in a replication data set of 36 more DLPFC samples. 
Significant and replicated DERs were mapped onto existing refer-
ence transcriptomes in databases such as Ensembl11, UCSC12 and 
Gencode13 to characterize their locations in the genome. We further 
related the expression levels within DERs to a wide range of publicly 
available resources, including RNA-seq data from 16 human brain 
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Transcriptome analysis of human brain provides fundamental insight into development and disease, but it largely relies  
on existing annotation. We sequenced transcriptomes of 72 prefrontal cortex samples across six life stages and identified 
50,650 differentially expression regions (DERs) associated with developmental and aging, agnostic of annotation. While many 
DERs annotated to non-exonic sequence (41.1%), most were similarly regulated in cytosolic mRNA extracted from independent 
samples. The DERs were developmentally conserved across 16 brain regions and in the developing mouse cortex, and were 
expressed in diverse cell and tissue types. The DERs were further enriched for active chromatin marks and clinical risk for 
neurodevelopmental disorders such as schizophrenia. Lastly, we demonstrate quantitatively that these DERs associate with  
a changing neuronal phenotype related to differentiation and maturation. These data show conserved molecular signatures of 
transcriptional dynamics across brain development, have potential clinical relevance and highlight the incomplete annotation  
of the human brain transcriptome.
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regions14, the developing mouse cortex15, and a variety of other cell16 
and tissue17 types to understand these patterns in a broader context 
(Fig. 1). Lastly, we identify significant enrichment for functional  
epigenomic marks associated with gene expression and for disease-
associated genetic loci from recent GWAS. The results highlight  
conserved signatures of gene expression across development and 
aging in the human brain, including many non-exonic sequences 
that appear to be mature mRNAs, and identify biological finger-
prints of age-associated changes in neuronal phenotypes and CNS  
disorder–associated genes.

RESULTS
Extensive transcriptional changes across brain development
We identified 50,650 DERs associated with development and aging 
that were both genome-wide significant in our discovery data set (at 
family-wise error rate ≤ 5%) and were also differentially expressed in a 
second independent sample of 36 human brains distributed across the 
same age ranges (at P < 0.05; see Online Methods and Supplementary 
Table 1). These DERs represent 8.63 megabases (Mb) of expressed 
sequence (Supplementary Table 2), annotated to 5,985 unique RefSeq 
genes (and 6,549 unique Ensembl) genes. There were, on average, 7.51 
DERs annotated to each RefSeq gene (median = 4; interquartile range, 
2–10). Only 1,454 genes contained a single DER (24.3%).

The RefSeq genes containing DERs were strongly enriched for many 
general developmental and metabolic processes, including organelle 
organization (GO:0006996; 976 of 2,368 genes, P = 7.13 × 10−29), regu-
lation of gene expression (GO:0010468; 1,314 of 3,442 genes, P = 8.62 × 
10−23) and regulation of transcription, DNA-dependent (GO:0006355; 
1,127 of 2,916 genes, P = 3.78 × 10−21) (Supplementary Table 3a). 
A more focused gene ontology analysis using the 1,000 most signifi-
cant DERs revealed more specific enrichment for neuron projection 
morphogenesis (GO:0048812; 49 of 575 genes, P = 4.98 × 10−11), 
neuron development (GO:0048666; 61 of 838 genes, P = 1.29 × 10−10),  
axonogenesis (GO:0007409; 43 of 509 genes, P = 1.08 × 10−9)  
and nervous system development (GO:0007399; 100 of 1,784 genes, 
P = 3.84 × 10−10) (Supplementary Table 3b).

Most DERs had their highest expression (adjusted for sequencing 
depth) in the fetal developmental period (N = 41,405; 81.7%), followed 
by adolescent (N = 3,104; 6.1%) and adult (N = 2,621; 5.2%). The 
genes containing DERs most highly expressed from infancy through  
adulthood were consistently enriched for 
synaptic transmission (GO:0007268; P value 
range 5.0 × 10−12–5.5 × 10−24), cell-cell  
signaling (GO:0007267; P value range  
4.0 × 10−7–1.7 × 10−17) and other related  

signaling processes (Supplementary Table 3d–g). Notably, genes con-
taining DERs most expressed in later life (age ≥50 years) were not 
enriched for these signaling processes, but instead were enriched for 
processes related to cellular respiration and energy-related processes 
(Supplementary Table 3h).

Principal component analysis (PCA) of the normalized coverage 
estimates across the 50,650 DERs revealed that the first principal 
component represented a linear scaling (either positive or negative)  
of expression across the lifespan (72% of variance explained; 
Supplementary Fig. 1a). The second and third principal components 
explained less variance (combined 15.1%) and represent dynamic 
expression from infanthood to adolescence with relatively similar 
levels of expression in fetal life and adulthood (Supplementary  
Fig. 1b,c). However, almost all DERs had much higher correlation to 
the first principal component (49,698; 98.1%) than the second or third 
principal components (605 and 346, representing 1.2% and 0.7%, 
respectively), suggesting that most DERs represent ‘scaling’ of gene 
expression—that is, unidirectional change—across the lifespan.

Several of the genes containing the most significant DERs showed 
patterns consistent with the canonical biology of brain develop-
ment (Supplementary Fig. 2). These included the high expression 
of previously identified developmentally important genes during  
fetal life, such as SOX11 (Fig. 1), which encodes a transcription 
factor involved in the regulation of embryonic development18, 
and DCX, which is involved in the migration and organization of  
neuroblasts19. Expression of SLC6A1 (GAT1), a sodium- and chloride-
dependent GABA transporter that removes GABA from the synaptic 
cleft, followed the well-studied early developmental expression of 
the GABAergic system20. DERs overlapping NRGN and CAMK2A, 
two calcium binding proteins important for learning and memory 
and neuropsychiatric disorders21,22, became most highly expressed 
in infant and teenage life periods, respectively. Several DERs that had 
their highest expression during postnatal life have been implicated 
in brain disorders thought to be developmental, including RGS4,  
a G protein signaling regulator associated with schizophrenia23  
that had its highest expression during adolescence, and CNTNAP1, 
a contactin-associated protein associated with autism24 that had  
its highest expression during adulthood.

Many of the genes associated with DERs also showed developmental 
regulation across the lifespan using previously published microarray 
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RNA sequencing (RNA-seq) on 36 DLPFC 
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data on 269 individuals without psychiatric disorders1 (obtained from 
GSE30272; see Online Methods), which both confirms the develop-
mentally regulated genes identified with the DERs and highlights 
the gains made by using sequencing-based approaches over microar-
rays. Many individuals in the present RNA-seq study discovery data  
set (28 of 36) were interrogated in this array-based data set. Most 
(4,955 of 5,985, or 82.8%) of the DER-associated genes were present 
in the processed microarray data, and almost all of these genes were 
differentially expressed across the lifespan: 4,920 (99.3%), 4,684 
(94.5%) and 4,304 (86.9%) were significant at P < 0.05, P < 10−6 and  
P < 10−11, respectively. Of the 1,030 genes showing significant differ-
ential expression only in the RNA-seq data, 432 genes were removed 
during quality control steps performed by Colantuoni et al.1, suggest-
ing that they may be more difficult to measure using oligonucleotide 
probes, and the remaining 598 were not included in the microarray 
design. These genes did not differ in functionality from those included 
on the microarray (all GO enrichment P values > 10−6).

Widespread differential expression of unannotated sequence
Surprisingly, many of the age-associated DERs, while contained 
within genes, contained expressed sequence annotated as intronic: 
21,033 significant regions (41.5%) overlapped at least one Ensembl- 
annotated intron (minimum overlap = 20 base pairs; see Online 
Methods). Furthermore, 4,214 regions (8.3%), which we term  
“intergenic,” did not map to any Ensembl annotated genes (that is, 
exonic or intronic regions); 29,813 regions (58.9%) crossed at least one 
annotated exon (Supplementary Fig. 3). Not surprisingly, the exonic 
DERs had, on average, much higher expression across all samples  
than DERs annotating to non-exonic sequence (140.8 normalized 
reads as compared to 14.0 and 8.2 normalized reads for intergenic and 
intronic DERs, respectively; P < 10−100 via linear regression) and were 
longer (190.3 bp versus 150.4 and 139.4 bp, respectively, P < 10−20). 
Nevertheless, of the 3,056 Ensembl genes containing intron-annotated 
DERs, 1,765 (57.7%) genes contained both intronic and exonic DERs. 
These intronic changes are not likely to be due to technical artifacts, 
and we observed significant enrichment (P < 10−100) of long non-
coding RNAs in the intergenic DERs (Online Methods). There were 
similar percentages of overlapping annotated features using the UCSC 
hg19 knownGene (based on RefSeq) database (19,575, 6,676 and 
26,886 for introns, intergenic and exons, respectively) and Gencode 
v19 (21,107, 3,994 and 30,016, respectively), further suggesting  
that the transcriptome contained in commonly accessed databases is 
notably incomplete, at least across human brain development.

The widespread differential expression across development and age 
of previously annotated intronic sequence may be due to an abundance 
of nuclear pre-mRNA present in the total RNA. We therefore sought to 
better distinguish pre-mRNA from spliced exonic mRNA by sequenc-
ing nuclear and cytosolic preparations from another six independent 
brain samples (three fetal and three adult; Supplementary Table 4).  
Quantifying the relative concentration of mRNA in the cytosolic 
and nuclear mRNA fractions provided initial evidence that our dif-
ferentially expressed regions were present in the cytosol: the mean 
concentration ratios of cytosolic to nuclear RNA were 204.0 ng/µl: 
17.6 ng/µl (11.6×) in the fetal samples and 137.0 ng/µl:17.6 ng/µl 
(7.7×) in the adult samples, showing that most polyadenylated RNA in 
total polyadenylated RNA originates from the cytosol. We sequenced 
each mRNA fraction from each sample to characterize the widespread 
differential expression observed in the total RNA. The relative log2 
fold changes of expression, comparing fetal to adult levels, were 
highly correlated across total and cytosolic poly(A)+ mRNA DERs  
(ρ = 0.914), including expression of annotated intronic (ρ = 0.664)  

and intergenic (ρ = 0.820) regions (Supplementary Fig. 4). There 
was especially high concordance in the directionality of the non-
exonic fetal versus adult fold changes: 96.4% were directionally  
consistent overall between cytosolic and total poly(A)+ mRNA. These 
results implicate developmental regulation of a potentially large  
subset of intron-containing mRNA in the cytosolic fraction of the 
human frontal cortex.

Age-associated DERs lack regional specificity
We next explored the representation of our age-associated DERs in 
other brain regions, including other cortical and subcortical nuclei 
and cerebellum, using publicly available BrainSpan data14, which 
included RNA-seq data across prenatal and postnatal developmental 
periods in 16 brain regions. Our DLPFC-identified DERs showed 
consistent age-related changes across each brain region with little 
inter-regional variability. The first principal component of only the 
BrainSpan normalized mean coverage data across the 50,650 DERs 
(explaining 59% of the variability) strongly correlated with age, par-
ticularly fetal versus postnatal, and not brain region (Fig. 2). The sec-
ond principal component (explaining 8.7% of the variability) strongly 
correlated with RNA quality (Supplementary Fig. 5). Subsequent 
lesser principal components differentiated the neocortical regions 
from the subcortical region and cerebellum (Supplementary Fig. 6).  
Within a secondary PCA on only non-exonic DERs, the first  
principal component remained age (here explaining 40.6% of the  
variance; Supplementary Fig. 7). There was also significant correla-
tion between log2 fold changes comparing fetal samples to adults in 
our DLPFC data set and the same fetal versus postnatal compari-
son within each brain region, including within previously annotated 
intronic and intergenic sequences (Table 1). The high correlations 
between fetal versus adult comparisons in our DLPFC samples and 
the BrainSpan DLPFC samples constitute an independent validation 
of our identified DERs, including the non-exonic sequences.

Age-associated DERs are conserved in the mouse cortex
We further examined our DERs, particularly the preponderance 
of non-exonic expression, by exploiting genetic synteny in mice to 
validate differential expression using a cross-species approach. We 
downloaded and renormalized publicly available data from mouse 
cerebral cortex, comparing embryonic day (E) 17 (N = 4) to adult 
(N = 3) C57BL/6 mice15, which had previously been interrogated for 
differences in gene-level expression across development. We used the 
liftOver tool12 to map the DERs to the mouse genome (mm10), of 
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2 Age-associated differentially expressed region (DER) expression 

patterns across multiple brain regions. PCA was performed on normalized 
coverage estimates across all DERs using all BrainSpan samples. Each 
point is a sample colored by age: purple, prenatal; green, postnatal; 
white, birth. PC, principal component; var, variance; PCW, postconception 
weeks. Abbreviations as in Table 1. For each box plot, center bold line 
indicates median, box limits indicate the 25th and 75th percentiles, and 
the whiskers extend to 1.5 times the box limit percentiles.
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which 37,428 mapped (73.9%, average synteny = 88.7%) and 25,372 
had an average coverage >5 reads in at least one sample (22,195, 
423 and 2,764 in human-annotated exonic, intergenic and intronic 
sequence, respectively), suggesting that a subset of these DERs are 
expressed in the developing mouse cortex. We identified significant 
correlation between the relative differences in fetal and adult human 
expression compared to E17 versus adult mouse expression in these 
syntenic regions (Fig. 3, ρ = 0.771, P < 10−100 via Z-score). The mag-
nitude and directionality of the expression changes in the mouse were 
similar to many of the human DERs (directionality concordance = 
84.1% overall), including those annotated as intronic and intergenic, 
suggesting these age-associated DERs represent conserved expression 
signatures in the developing mammalian brain.

Age-associated DERs expressed in other cells and tissues
We also explored the cell type specificity of these DERs, and respective 
intronic and intergenic expression, using publicly available RNA-seq 
data from human stem cells16 and somatic adult tissues17. After rea-
ligning and processing these public data sets, we observed that most 
DERs had on average >5 reads in at least one stem cell type (86.4%) or 
tissue type (84.0%), including non-exonic brain-expressed sequences 
(75.3% and 67.1% of non-exonic DER expression in at least one stem 
cell or tissue group, respectively). Furthermore, 53.3% of all DERs and 
26.5% of non-exonic DERs were expressed in all five stem cell condi-
tions in the data set (embryonic stem (ES) cells, BMP4-treated ES cells, 
then differentiation to mesenchymal, mesendodermal and neural pro-
genitor cells) with coverage >5 reads, whereas only 0.4% of the DERs 
were expressed at this same coverage level in all 16 tissue types.

PCA identified global expression similarities of these age-associated  
DERs between the fetal brain sample data and the stem cell and 
somatic tissue data (Fig. 4, via principal component 1). Notably, it was 
the postnatal brain samples that appeared qualitatively different from 
the diverse cell and tissue types with respect to these DERs (Fig. 4a).  

While the DERs overlapping intronic and intergenic Ensembl-annotated  
sequence aligned with the stem cells in its first principal component 
(Fig. 4b), these non-exonic DERs appeared to be particular to the 
fetal human brain. We then contrasted these patterns to the clustering  
of the global transcriptome based on read counts for all Ensembl- 
annotated genes (Supplementary Data 1). Here principal component 1  
distinguished the brain (fetal and postnatal) from non-brain (stem 
cell and somatic tissue) samples and principal component 2 distin-
guished developmentally active tissues (fetal brain and stem cells) 
from somatic postnatal tissues, including postnatal brain (Fig. 4c). 
Gene-level expression patterns across the entire transcriptome high-
light tissue-specific features, whereas the DERs target more general 
developmental transitions. Thus, although the overall transcriptomes 
of cells at different stages of early differentiation are clearly distinct, the 
DERs reflect common features of these differentiating cells.

Age-associated DERs overlap open chromatin
We next sought to better characterize the DERs with regard to func-
tionality, using publicly available histone data for human fetal brain25. 
We performed peak calling on chromatin immunoprecipitation and 
sequencing (ChIP-seq) data on six histone tail marks (H3K27me3, 
H3K36me3, H3K4me1, H3K4me3, H3K9ac and H3K9me3) and 
DNase I hypersensitive site sequencing (DNase-seq) data in fetal 
brain25,26 (see Online Methods) and calculated the overlap with 
the DERs (see Online Methods). There was highly significant over-
lap (at empirical P < 10−100; see Online Methods for permutation 
procedure) between the DERs and histone marks associated with 
active chromatin, including H3K36me3 (odds ratio (OR) = 13.32), 
H3K4me1 (OR = 3.00), H3K4me3 (OR = 5.66), and H3K9ac (OR =  
4.82). Notably, approximately half of the exonic (48.9%; 14,582 of 
29,813) and intronic (49.4%; 8,204 of 16,616) DERs were within 
1 kb of a significant H3K36me3 peak; a smaller proportion of the 
intergenic DERs were also within 1 kb (22.7%; 960 of 4,221). There 
was also significant overlap (P < 10−100) between open chromatin 
and the DERs (OR = 3.13, using the DNase-seq data). By contrast, 
there was little enrichment for histone marks associated with repres-
sion, including H3K27me3 (OR = 1.04) and H3K9me3 (OR = 1.43). 
These effects were largely consistent between the DERs annotated to 
exonic and intronic sequence, but weakened for the DERs annotated  

Table 1 Correlation of fetal versus adult fold changes across brain 
regions within DERs
BrainSpan  
region

All  
(N = 50,560)

Intragenic  
(N = 4,221)

Intronic  
(N = 16,616)

Exonic  
(N = 29,813)

DFC 0.863 0.702 0.490 0.895
VFC 0.851 0.684 0.429 0.888
MFC 0.858 0.705 0.485 0.891
OFC 0.845 0.674 0.360 0.891
M1C 0.841 0.675 0.388 0.882
S1C 0.830 0.657 0.326 0.878
IPC 0.849 0.681 0.464 0.882
A1C 0.860 0.698 0.517 0.888
STC 0.871 0.720 0.576 0.894
ITC 0.852 0.694 0.473 0.881
V1C 0.867 0.701 0.534 0.894
HIP 0.828 0.660 0.397 0.862
AMY 0.845 0.677 0.444 0.872
STR 0.788 0.607 0.428 0.816
MD 0.699 0.528 0.266 0.731
CBC 0.627 0.434 0.230 0.673

Spearman correlation coefficients were calculated between log2 fold changes  
comparing fetal to postnatal expression in the DLPFC discovery data set and each 
brain region in the BrainSpan database across the DERs (All), and within the DERs 
annotated to specific Ensembl features. DFC, dorsolateral prefrontal cortex; VFC, 
ventrolateral prefrontal cortex; MFC, anterior (rostral) cingulate (medial frontal cortex); 
OFC, orbital frontal cortex; M1C, primary motor cortex (M1, Brodmann area 4); S1C, 
primary somatosensory cortex (S1, areas 3, 1 and 2); IPC, posteroinferior (ventral) 
parietal cortex; A1C, primary auditory cortex (core); STC, posterior (caudal) superior 
temporal cortex (Tac); ITC, inferolateral temporal cortex (Tev, area 20); V1C, primary 
visual cortex (striate cortex, V1, area 17); HIP, hippocampus (hippocampal formation); 
AMY, amygdaloid complex; STR, striatum; MD, mediodorsal nucleus of thalamus;  
CBC, cerebellar cortex.
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to intergenic sequence (Supplementary 
Table 5), demonstrating that the DERs largely 
reside in actively transcribed regions in the 
human fetal brain.

Age-associated DERs overlap CNS 
disease-associated loci
We sought to identify potential overlap between 
the DERs and genetic loci conferring risk for 
neurodevelopmental disorders, starting with 
schizophrenia—specifically, the 108 genome-
wide significant loci from the latest Psychiatric Genomics Consortium 
(PGC) genome-wide association study (GWAS) of over 150,000 sub-
jects27. Specifically, 42 loci (of the 108; 38.9%) overlapped at least 
one DER, which was statistically significant via permutation analysis  
(P = 0.0013; see Online Methods and Table 2). Stratifying the list of 
DERs by annotation class yielded more significant overlap for exonic 
(P = 1.2 × 10−4) and intronic (P = 2.9 × 10−4) DERs but non-signifi-
cant overlap for intergenic DERs (P = 0.053). These effects represented 
odds ratios of approximately 2.0 for all, exonic and intronic DERs and 
1.8 for intergenic DERs (see Online Methods).

We also assessed the overlap between the genes containing DERs 
and a series of pre-defined gene sets associated with other neurode-
velopmental disorders, including autism, intellectual disability and 
syndromal neurodevelopmental disorders3. There was significant 
enrichment for genes associated with intellectual disability (P < 10−4), 
and marginal association with autism (P = 0.017, genes in the SFARI 
database28) and genes associated with syndromal neurodevelopmental 
disorders (P = 0.027). These associations were in line with a previously 
published report on genes showing differential expression comparing 
fetal to postnatal life using microarray data3. Overall, these results 
implicate the genes containing DERs as enriched in those associated 
with diverse neurodevelopmental disorders.

Lastly, we conducted several analogous analyses in other disorders 
not typically associated with neurodevelopment, including brain-
related (Alzheimer’s disease and Parkinson’s disease) and non-brain-
related (type 2 diabetes; see Online Methods) disorders. We identified 
significant overlap between the age-related DERs and Parkinson’s 
disease29 (P = 0.0039) marginal overlap with Alzheimer’s disease30 
(P = 0.039) and no overlap with type 2 diabetes31 (P = 0.25). Notably, 
while only a small fraction of DERs were most highly expressed in 
adult life or later (8.4%), 4 of 7 Alzheimer’s disease–associated and 
5 of 11 Parkinson’s disease–associated genetic loci overlapped at  
least one such later life DER (P = 7.19 × 10−5 and 1.01 × 10−4 respec-
tively), in contrast to those associated with schizophrenia and other 

neurodevelopmental syndromes, for which the enrichment was  
primarily for DERs highly expressed in fetal life.

Fetal brain has the largest fraction of the expressed genome
We used the coverage-level RNA-seq data in our 36 discovery  
brain samples to barcode regions of expression within each age group 
(essentially a one-group generalization of the derfinder procedure) 
regardless of differential expression signal. After normalizing each  
sample to an 80-million-read library size, we identified contiguous 
regions where the average within-group expression levels were ≥5 
normalized reads. While we identified a similar number of expressed 
sequences across the six age groups, the fetal samples had the largest frac-
tion of the genome expressed across all six age groups - approximately  
4% - and had the lowest proportion of expressed sequences overlap-
ping Ensembl-annotated exons (Table 3). Surprisingly, each age group 
had a very similar proportion of all annotated Ensembl exons and 
introns covered (55–58%). Lastly, we observed that most PGC risk 
loci associated with schizophrenia27 contained expressed sequence 
in the DLPFC, one of the brain regions consistently implicated in 
schizophrenia32. We observed similar metrics and inference using 
a threshold of ≥10 reads as a sensitivity analysis. On the basis of 
these results, we have created a custom UCSC Track Hub33 called 
“LIBD Human DLPFC Development” that illustrates the coverage-
level sequencing data within each age group (Supplementary Fig. 8).  
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aFigure 4 Clustering analysis of differentially 
expressed regions (DERs). PCA of (a) all 
significant DERs, (b) non-exonic sequence 
within the DERs and (c) gene counts from 
Ensembl annotation. PCA was performed  
on log2-adjusted coverage estimates across 
several data sets, including our human brain 
samples and publicly available differentiating 
stem cell and somatic tissue data. Colors  
and shapes for each point represent data set 
and condition. Dashed boxes were added by 
visual classification of biological groups.  
h1, ES condition; h1-BMP4, BMP4-treated  
ES; h1-NPC, neural progenitor cell;  
h1-MES, mesendodermal stem;  
h1-MSC, mesenchymal stem. BodyMap refers  
to data from the Illumina BodyMap project17.

Table 2 Enrichment of DERs among GWAS-positive regions
Trait All Exon Intron Intergenic

Schizophrenia 0.0013 0.0001 0.0003 0.0530
Alzheimer’s disease 0.0385 0.2778 0.0117 0.6016
Parkinson’s disease 0.0039 0.0100 0.0035 0.0882
Type 2 diabetes 0.2500 0.1029 0.4307 0.1200

Shown are empirical P values determined by permutation assessing significant overlap 
between DERs and locations of GWAS-positive loci for schizophrenia, Alzheimer’s 
disease, Parkinson’s disease and type 2 diabetes.
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These data can allow easy visualization of our data integrated with the 
diverse functionality of the UCSC Genome Browser.

Expression changes across development associate with a 
changing neuronal phenotype
Changes in gene expression across the lifespan may reflect a combi-
nation of changes within individual cellular populations and com-
position changes of varying cell types in the underlying brain tissue. 
In particular, a comparison of fetal frontal cortex, which contains 
predominantly neurons and neural progenitor cells (NPCs), and adult 
prefrontal cortex, which contains a mixture of neurons and glia, may 
reflect primarily these changing cell constituents. We therefore per-
formed an in silico estimation34 of neuronal, non-neuronal and neural 
progenitor cell composition using DNA methylation (DNAm) data 
from our brain samples projected onto publicly available DNAm data 
derived from cell lines (Supplementary Table 6), including ES cell–
derived NPCs35, and adult cortex tissue separated by fluorescence-
activated cell sorting into neuronal and non-neuronal components 
using the NeuN antibody34,36. These composition estimates (the rela-
tive proportion of each cell type in each brain sample; Supplementary 
Fig. 9a–c) quantitatively confirmed the proliferation of non-neuronal 
cells across the lifespan (P = 5.56 × 10−5) and the loss of remaining 
NPCs at birth (P = 6.01 × 10−17).

We then correlated these cell type proportions with expression  
levels across individuals within each DER. Most DERs were signifi-
cantly associated with only the NPC relative composition estimate 
(92.2% of DERS, Bonferroni-corrected Pbonf < 0.05, Supplementary 
Fig. 9d) and not the NeuN− estimate (1.6% of DERs, Pbonf < 0.05).  
Multivariate statistical modeling incorporating both NPC and 
NeuN− proportions (which are negatively correlated at ρ = −0.53) 
indicated that the vast majority of DERs associated only with the loss 
of NPCs (N = 43,917), and very few DERs associated only with NeuN−  
(N = 6). These results suggest that the widespread expression  
changes in human brain1,2 at birth are more reflective of a chang-
ing neuronal phenotype—specifically, the differentiation of neural 
precursor and progenitor cells into mature neurons—than a rise in 
non-neuronal cell types.

DISCUSSION
We have identified widespread changes in the transcriptomes of  
the developing human prefrontal cortex, typically involving many 
genes previously implicated in brain development. However, unlike 
previous characterizations that rely on existing annotation, we 

observed extensive age-dependent expres-
sion of sequences previously annotated as 
intronic and intergenic in commonly accessed 
genomic databases (Ensembl, Gencode and 
UCSC). The majority of these DERs are 
most highly expressed in the fetal brain and 
decrease in expression across the lifespan. 
These developmental expression changes 
were largely present in cytosolic RNA from 
independent brain samples, were present in 
15 other brain regions across development, 
were conserved across mouse development 
using synteny, and showed considerable 
overlap with differentiating neural progeni-
tor cells. We further identified enrichment 
for active chromatin marks and for genomic 
regions associated with risk of schizophrenia  
and other neurodevelopmental disorders. 

Our in silico data suggest that most of these DERs, regardless of anno-
tation (exonic, intronic or intergenic), reflect a changing neuronal 
phenotype, depicting differentiation and maturation across human 
brain development.

These developmental expression changes at single base reso-
lution complement recent approaches characterizing the entire  
brain transcriptome within particular age groups, such as fetal7,37 or  
postnatal38—for example, comparing expression changes across brain 
regions39. On the basis of our integration with BrainSpan data, we 
identified regions that do not appear to be regionally regulated, but 
rather appear to be generic developmental switches in the brain. This 
is in contrast to those genes recently reported by Pletikos et al.39 as 
possibly related to regional parcellation. For example, while most of 
the genes identified as regionally associated by Pletikos et al.39 were 
expressed in our data as based on gene level measures (reads per 
kilobase per million mapped > 1)—87.0% of adult, 81.3% of fetal and 
88.2% of infant genes—only a smaller subset were present in the DER-
overlapping 5,985 RefSeq genes: 44.4% of adult, 38.2% of fetal, and 
29.4% of infant regionally associated genes. In contrast, those genes 
overlapped by DERs were not likely to be differentially expressed 
by region: of the 5,985 genes that overlapped DERs, only 5.1% were 
present in the adult regional association gene list, 16.3% of fetal and 
0.09% of infant. We therefore hypothesize that genes associated with 
regional specificity are a separate subset from those associated with 
overall developmental processes, perhaps reflecting developmental 
changes arising from shifting cellular phenotypes in the latter case 
and regional changes representing different underlying cellular con-
nectivities in the former.

The significant enrichment between the age-associated DERs  
and genetic loci associated with schizophrenia offers support for the 
neurodevelopmental hypothesis of the disorder40. The state-of-the- 
art GWAS study of schizophrenia, involving over 150,000 subjects, 
identified 108 independent loci associated with risk for illness, and 
these loci contain approximately 340 potential gene candidates. 
Because many of the candidates that map to these loci may not be 
participating in the population level association, a more finely grained 
analysis of the DERs that map to these loci may help eliminate some 
of the genes in these loci from the candidate list. Still, the mechanisms 
by which genes associated with schizophrenia lead to the emergence 
of the clinical syndrome in early adult life have been increasingly 
linked to early developmental processes involving both prenatal and 
postnatal factors40. Our evidence from the DER analysis supports 
this assumption. Similar enrichment of DERs was found for gene 

Table 3 Expressed sequences/regions by age group defined by five or more adjusted reads 
across consecutive bases, adjusted for library size

Age group

Fetal Infant Child Teen Adult Age ≥50

No. of regions 459,426 481,029 413,202 365,903 437,935 420,294
No. in DERs  46,813  37,618  33,958  31,818  32,849  31,563
Coverage (Mb) 121.8 107.5 97.1 90.5 92.9 91.4
Genome covered  4.1%  3.6%  3.2%  3.0%  3.1%  3.0%
Exonic 44.0% 46.8% 54.0% 58.8% 53.1% 54.1%
Intronic 77.1% 72.8% 71.1% 70.2% 69.9% 68.9%
Intergenic 11.9% 13.3% 12.9% 12.5% 12.9% 13.4%
Exons (Ensembl) 55.2% 56.8% 56.9% 55.3% 56.5% 55.8%
Introns (Ensembl) 57.6% 58.1% 57.7% 55.4% 57.2% 56.0%
108 PGC2 for SZ 83 84 83 82 83 88
Intronic, ≥10 reads 73.2% 65.6% 64.6% 64.4% 63.7% 62.4%

Exonic, intronic and intergenic rows give the percentages of the expressed regions overlapping annotated features; 
exons and introns rows give the converse, being the proportion of all Ensembl features (313,836 unique exons and 
266,102 unique introns) covered by expressed sequences in each age group. The 108 PGC2 for SZ row gives the 
number of latest PGC schizophrenia-associated loci overlapping at least one expressed sequence in DLPFC. Lastly,  
we show, as a sensitivity analysis, the percentage of expressed regions when defined using ten or more adjusted reads.
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sets associated with risk for autism, intellectual disability and various 
neurodevelopmental encephalopathy syndromes, all of which involve 
obvious early developmental clinical phenomena, thus supporting 
further clinical relevance of the DERs we have identified. Notably, 
while there was enrichment between DERs and loci implicated in 
neurodegenerative disorders, these genomic loci showed greater 
enrichment for DERs that reflect increased gene expression in adult 
life rather than fetal life.

While the age-associated DERs identified using a conservative sta-
tistical threshold occupied a relatively small proportion of the genome 
(8.63 Mb, 0.3% of the genome), we observed a much larger propor-
tion of the genome being expressed across all age groups, particularly 
among fetal samples (121.8 Mb, 4.0%). As there were extensive dif-
ferences among these proportions (for example, 4.0% in fetal brain 
versus 3.1% in adult brain), our derfinder approach depended on 
differential expression across six age groups, rather than focusing on 
fetal versus nonfetal expression differences, which are widespread1,2. 
We note that these differences in the proportion of genome expressed 
could result from the more diverse cellular phenotypes in the fetal 
brain samples, particularly the residual NPC signature. We ran der-
finder with especially conservative parameters (for example, the 
single-base threshold), sacrificing statistical power in exchange for 
reducing the number false positive DERs, an important distinction 
given the extent of newly identified transcriptional activity outside 
of previously defined exonic regions. The public availability of our 
data allow re-analyses with varying statistical thresholds and post hoc 
tests, particularly within individual genes of interest. We note that our 
DERs are, by definition, elements of transcripts and not full mRNAs. 
The limitations of relatively short sequence read length makes full 
transcript assembly challenging, but the DERs provide entry points 
to explore targeted transcript assembly with other methods. We also 
note that our RNA capture approach using poly(A) RNA pulldown has 
limitations, particularly with respect to uncovering noncoding RNAs, 
many of which are not polyadenylated, and observable 3′ biases.

Future biological experiments may better characterize the functions 
of these DERs, particularly the intronic and intergenic regions. Earlier 
RNA-seq characterization in commercially available fetal and adult 
brain mRNA also identified widespread intronic expression, which 
was hypothesized to facilitate co-transcriptional splicing41. The gen-
eration of more ChIP-seq-based functional histone tail marks in fetal 
brain can potentially generate more specific activity classes42. Also, 
translating ribosome affinity purification (TRAP)-based assays may 
elucidate potential translation of DERs in particular cellular systems. 
For example, we find preliminary evidence in the mouse genome that 
at least 15% of the intronic and intergenic DERs, and almost all exonic 
DERs, are likely incorporated into translated protein products on 
the basis of one small data set consisting exclusively of E14.5 mouse 
forebrain43. The translatomes from more diverse cell types in human 
tissue at various stages of development and cell lines may identify 
additional functional roles of our DLPFC-identified DERs. Similarly, 
we find little overlap between the DERs and reported lncRNAs from 
mouse neural stem cells of the subventricular zone44 (only 2–3% of 
DERs, regardless of annotation), suggesting that lncRNA databases 
may be incomplete for human brain and that specialized subpopula-
tions of cells may have unique transcriptomic signatures difficult to 
ascertain in tissue homogenates.

This study is the first, to our knowledge, to quantitatively estimate 
the influence of cellular composition changes on transcriptome 
dynamics across brain development, particularly when compar-
ing prenatal and postnatal samples. Our results suggest that many 
reported differences in expression occurring across birth, and their 

subsequent association with or enrichment in brain disorders4,6, may 
be driven principally by changing neuronal phenotypes, rather than 
by the commonly considered rise of non-neuronal cell types. The 
observation that many DERs result from a shifting cellular land-
scape cannot fully explain the widespread expression of non-exonic 
sequences, as a subset of these regions are more highly expressed in 
non-fetal samples. However, further research—for example, via the 
Epigenomics Roadmap Project25—will better refine the composition 
profiles in bulk tissue, particularly in the uniform generation of more 
numerous replicates (for example, NPCs) and cell types.

We anticipate that these data, both processed and raw, will be a 
resource for interrogating expression change across the lifespan. Our 
custom UCSC Track Hub can be used to visually discover transcrip-
tional activity in candidate genes, and can be integrated with the other 
functional genomics tracks. The approach taken here explored one 
specific question within this rich data set, and our results under-
score the complexity of gene expression and cellular differentiation  
that occurs during brain development and the incomplete nature of 
current transcriptome annotation.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. BioProject: PRJNA245228. The Track Hub is  
currently available at: http://genome.ucsc.edu/cgi-bin/hgTrack
s?db=hg19&hubUrl=https://s3.amazonaws.com/DLPFC_n36/
humanDLPFC/hub.txt. Values for gene reads per kilobase per  
million mapped (RPKM) are available in Supplementary Data 1.  
R code from analyses is available in Supplementary Data 2


.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

Ac



knowleDgmenTS

We are grateful for the vision and generosity of the Lieber and Maltz families,  
who made this work possible. We thank the families who donated to this  
research and we thank R. Straub for criticism of the data analyses. This work  
was supported by the Lieber Institute for Brain Development. A.E.J. was  
partially supported by 1R21MH102791 and L.C.T. was supported by CONACyT 
México (351535).

AUTHoR conTRIBUTIonS
All authors contributed to the writing of the manuscript, plus the following 
individual contributions: A.E.J. designed the study, performed data analyses  
on summarized DERs: BrainSpan, mouse, cell and tissue types, histone tail–  
and disease-associated enrichments, and cell composition. J.S. performed data 
analysis involving processing the RNA-seq data. L.C.-T. performed data analysis 
involving the initial global derfinder approach. J.T.L. performed data analysis 
involving the initial global derfinder approach. R.T. performed RNA extractions 
and cytosolic separations. C.L. performed RNA extractions and cytosolic 
separations. Y.G. created sequencing libraries and oversaw the data generation 
for the discovery data. Y.J. created sequencing libraries and oversaw the data 
generation for the validation data. B.J.M. assisted in the biological interpretation  
of the computational findings. T.M.H. provided brain tissue and demographic  
data and assisted in biological interpretation of the computational findings.  
J.E.K. oversaw the project, provided brain tissue and demographic data, and 
assisted in biological interpretation of the computational findings. D.R.W. designed 
the project, oversaw the project and assisted in biological interpretation of the 
computational findings. 

comPeTIng FInAncIAl InTeReSTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription in the 
human prefrontal cortex. Nature 478, 519–523 (2011).

Q2Q2

Q3Q3

http://www.nature.com/doifinder/10.1038/nn.3898
http://www.nature.com/doifinder/10.1038/nn.3898
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA245228
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&hubUrl=https://s3.amazonaws.com/DLPFC_n36/humanDLPFC/hub.txt
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&hubUrl=https://s3.amazonaws.com/DLPFC_n36/humanDLPFC/hub.txt
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&hubUrl=https://s3.amazonaws.com/DLPFC_n36/humanDLPFC/hub.txt
http://www.nature.com/doifinder/10.1038/nn.3898
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html
Andrew
Cross-Out

Andrew
Inserted Text
 and J.T.L was supported by 1R01GM105705-01A1

Andrew
Sticky Note
The data has already been made public

Andrew
Inserted Text
 of



� advance online publication   nature neurOSCIenCe

r e S O u r C e

2. Kang, H.J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 
483–489 (2011).

3. Birnbaum, R., Jaffe, A.E., Hyde, T.M., Kleinman, J.E. & Weinberger, D.R. Prenatal 
expression patterns of genes associated with neuropsychiatric disorders.  
Am. J. Psychiatry 171, 758–767 (2014).

4. Gulsuner, S. et al. Spatial and temporal mapping of de novo mutations in 
schizophrenia to a fetal prefrontal cortical network. Cell 154, 518–529 (2013).

5. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals 
unannotated transcripts and isoform switching during cell differentiation.  
Nat. Biotechnol. 28, 511–515 (2010).

6. Parikshak, N.N. et al. Integrative functional genomic analyses implicate specific 
molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013).

7. Willsey, A.J. et al. Coexpression networks implicate human midfetal deep cortical 
projection neurons in the pathogenesis of autism. Cell 155, 997–1007 (2013).

8. Steijger, T. et al. Assessment of transcript reconstruction methods for RNA-seq. 
Nat. Methods 10, 1177–1184 (2013).

9. Frazee, A.C., Sabunciyan, S., Hansen, K.D., Irizarry, R.A. & Leek, J.T. Differential 
expression analysis of RNA-seq data at single-base resolution. Biostatistics 
(2014).

10. Jaffe, A.E. et al. Bump hunting to identify differentially methylated regions in 
epigenetic epidemiology studies. Int. J. Epidemiol. 41, 200–209 (2012).

11. Flicek, P. et al. Ensembl 2014. Nucleic Acids Res. 42, D749–D755 (2014).
12. Hinrichs, A.S. et al. The UCSC Genome Browser Database: update 2006. Nucleic 

Acids Res. 34, D590–D598 (2006).
13. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis 

of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 
(2012).

14. BrainSpan. Atlas of the Developing Human Brain. 



http://developinghumanbrain.org/ 

(2011).
15. Dillman, A.A. et al. mRNA expression, splicing and editing in the embryonic and 

adult mouse cerebral cortex. Nat. Neurosci. 16, 499–506 (2013).
16. Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic 

stem cells. Cell 153, 1134–1148 (2013).
17. Farrell, C.M. et al. Current status and new features of the Consensus Coding 

Sequence database. Nucleic Acids Res. 42, D865–D872 (2014).
18. Wang, Y., Lin, L., Lai, H., Parada, L.F. & Lei, L. Transcription factor Sox11 is 

essential for both embryonic and adult neurogenesis. Dev. Dyn. 242, 638–653 
(2013).

19. Curtis, M.A. et al. Human neuroblasts migrate to the olfactory bulb via a lateral 
ventricular extension. Science 315, 1243–1249 (2007).

20. Hyde, T.M. et al. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 
in cortical development and schizophrenia. J. Neurosci. 31, 11088–11095 
(2011).

21. Frankland, P.W., O’Brien, C., Ohno, M., Kirkwood, A. & Silva, A.J. Alpha-CaMKII-
dependent plasticity in the cortex is required for permanent memory. Nature 411, 
309–313 (2001).

22. Krug, A. et al. The effect of neurogranin on neural correlates of episodic memory 
encoding and retrieval. Schizophr. Bull. 39, 141–150 (2013).

23. Morris, D.W. et al. Confirming RGS4 as a susceptibility gene for schizophrenia.  
Am. J. Med. Genet. B. Neuropsychiatr. Genet. 125B, 50–53 (2004).

24. Wang, K. et al. Common genetic variants on 5p14.1 associate with autism spectrum 
disorders. Nature 459, 528–533 (2009).

Q5Q5

25. Bernstein, B.E. et al. The NIH Roadmap Epigenomics Mapping Consortium.  
Nat. Biotechnol. 28, 1045–1048 (2010).

26. Ji, H. et al. An integrated software system for analyzing ChIP-chip and ChIP-seq 
data. Nat. Biotechnol. 26, 1293–1300 (2008).

27. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological 
insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 
(2014).

28. Banerjee-Basu, S. & Packer, A. SFARI Gene: an evolving database for the autism 
research community. Dis. Model. Mech. 3, 133–135 (2010).

29. Nalls, M.A. et al. Large-scale meta-analysis of genome-wide association data 
identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989–993 
(2014).

30. Lambert, J.C. et al. Meta-analysis of 74,046 individuals identifies 11 new 
susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458  
(2013).

31. Morris, A.P. et al. Large-scale association analysis provides insights into the genetic 
architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 
(2012).

32. Callicott, J.H. et al. Complexity of prefrontal cortical dysfunction in schizophrenia: 
more than up or down. Am. J. Psychiatry 160, 2209–2215 (2003).

33. Raney, B.J. et al. Track data hubs enable visualization of user-defined genome-wide 
annotations on the UCSC Genome Browser. Bioinformatics 30, 1003–1005 
(2014).

34. Houseman, E.A. et al. DNA methylation arrays as surrogate measures of cell mixture 
distribution. BMC Bioinformatics 13, 86 (2012).

35. Kim, M. et al. Dynamic changes in DNA methylation and hydroxymethylation when 
hES cells undergo differentiation toward a neuronal lineage. Hum. Mol. Genet. 23, 
657–667 (2014).

36. Guintivano, J., Aryee, M.J. & Kaminsky, Z.A. A cell epigenotype specific model for 
the correction of brain cellular heterogeneity bias and its application to age, brain 
region and major depression. Epigenetics 8, 290–302 (2013).

37. Miller, J.A. et al. Transcriptional landscape of the prenatal human brain. Nature 
508, 199–206 (2014).

38. He, Z., Bammann, H., Han, D., Xie, G. & Khaitovich, P. Conserved expression of 
lincRNA during human and macaque prefrontal cortex development and maturation. 
RNA 20, 1103–1111 (2014).

39. Pletikos, M. et al. Temporal specification and bilaterality of human neocortical 
topographic gene expression. Neuron 81, 321–332 (2014).

40. Kleinman, J.E. et al. Genetic neuropathology of schizophrenia: new approaches to 
an old question and new uses for postmortem human brains. Biol. Psychiatry 69, 
140–145 (2011).

41. Ameur, A. et al. Total RNA sequencing reveals nascent transcription and  
widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 
18, 1435–1440 (2011).

42. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human 
cell types. Nature 473, 43–49 (2011).

43. Hupe, M., Li, M.X., Gertow Gillner, K., Adams, R.H. & Stenman, J.M. Evaluation 
of TRAP-sequencing technology with a versatile conditional mouse model. Nucleic 
Acids Res. 42, e14 (2014).

44. Ramos, A.D. et al. Integration of genome-wide approaches identifies lncRNAs of 
adult neural stem cells and their progeny in vivo. Cell Stem Cell 12, 616–628 
(2013).

http://developinghumanbrain.org/


nature neurOSCIenCedoi:10.1038/nn.3898

ONLINE METhODS
Post-mortem brain samples. Post-mortem human brain tissue was obtained by 
autopsy primarily from the Offices of the Chief Medical Examiner of the District 
of Columbia and those of the Commonwealth of Virginia, Northern District, all 
with informed consent from the legal next of kin (protocol 90-M-0142 approved 
by the NIMH/NIH Institutional Review Board). Additional post-mortem fetal, 
infant, child and adolescent brain tissue samples were provided by the National 
Institute of Child Health and Human Development Brain and Tissue Bank  
for Developmental Disorders 




(http://www.BTBank.org/) under contracts 

NO1-HD-4-3368 and NO1-HD-4-3383. The Institutional Review Board of the 
University of Maryland at Baltimore and the State of Maryland approved the 
protocol, and the tissue was donated to the Lieber Institute for Brain Development 
under the terms of a material transfer agreement. Clinical characterization, 
diagnoses, and macro- and microscopic neuropathological examinations  
were performed on all samples using a standardized procedure. Details of tissue 
acquisition, handling, processing, dissection, clinical characterization, diagnoses, 
neuropathological examinations, RNA extraction and quality control measures 
were described previously in Lipska et al.45. The Brain and Tissue Bank cases  
were handled in a similar fashion (http://medschool.umaryland.edu/btbank/
methods.asp). Toxicological analysis was performed on every case, and subjects 
with evidence of macro- or microscopic neuropathology, drug use, alcohol abuse 
or psychiatric illness were excluded.

We selected 6 samples per age group for our discovery data set, balancing for 
sex (4 male, 2 female) and RNA integrity number (RIN, mean = 8 per group), 
as our larger collection of fetal samples typically had higher RNA quality (for 
example, in Colantuoni et al.1). We then selected 36 more samples, also consist-
ing of 6 samples across the 6 age groups as above (fetal, infant, child, teen, adult, 
and >50), to serve as a replication cohort. Additional demographic information 
for our discovery and validation data sets is available in Supplementary Table 1,  
including accession numbers in the Sequencing Read Archive (SRA) for the  
discovery samples.

RnA extraction and sequencing. Post-mortem tissue homogenates of dorsola-
teral prefrontal cortex gray matter (DLPFC) approximating BA46/9 in postnatal 
samples and the corresponding region of PFC in fetal samples were obtained from 
all brains. Total RNA was extracted from ~100 mg of tissue using the RNeasy 
kit (Qiagen) according to the manufacturer’s protocol. The poly(A)-containing  
RNA molecules were purified from 1 µg DNase-treated total RNA and, fol-
lowing purification, fragmented into small pieces using divalent cations under 
elevated temperature. Reverse transcriptase and random primers were used to 
copy the cleaved RNA fragments into first-strand cDNA, and the second-strand 
cDNA was synthesized using DNA polymerase I and RNase H. We performed 
the sequencing library construction using the TruSeq RNA Sample Preparation 
v2 kit by Illumina. Briefly, cDNA fragments undergo an end repair process using 
T4 DNA polymerase, T4 polynucleotide kinase and Klenow DNA polymerase 
with the addition of a single adenosine using a Klenow polymerase lacking 3′ to 
5′ exonuclease activity, and then ligated to the Illumina paired-end (PE) adapt-
ers using T4 DNA ligase. An index/barcode was inserted into Illumina adapters, 
allowing samples to be multiplexed in one lane of a flow cell. These products were 
then purified and enriched with PCR to create the final cDNA library for high 
throughput DNA sequencing using an Illumina HiSeq 2000.

RnA sequencing data processing. The Illumina Real Time Analysis (RTA)  
module performed image analysis, base calling and ran the BCL converter  
(CASAVA v1.8.2), generating FASTQ files containing the sequencing  
reads. These reads were aligned to the human genome (UCSC hg19 build)  
using the spliced-read mapper TopHat (v2.0.4) using the reference transcrip-
tome to initially guide alignment, on the basis of known transcripts of Ensembl  
Build GRCh37.67 (the “-G” argument in the software)46. The total number 
of aligned reads across the autosomal and sex chromosomes (dropping reads 
mapping to the mitochondrial chromosome) per sample are provided in 
Supplementary Table 1.

Derfinder analysis. We implemented the derfinder pipeline, available from 
http://bioconductor.org/packages/release/bioc/html/derfinder.html, on the 
36 discovery samples (Supplementary Table 1). Base-level coverage data (the 
number of reads crossing each base in the genome) was created from the aligned 
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reads (BAM files). The statistical model was fit at every base, after performing 
coarse filtering to remove bases without at least 5 reads in at least 1 sample:

y Mij i i j i j ij= + + +a b g eGroup

for coverage yij at base i for sample j, where Groupj is a categorical indicator  
variable for the six age groups and Mj is the scaled and log-transformed total 
number of mapped reads per sample, which adjusts for differences in library size 
between samples. This model is compared to the null model

y Mij i i j ij= + +a g e

by constructing an F-statistic Fi, and the vector of these F-statistics is then  
thresholded across the genome. Contiguous regions above the threshold form 
candidate differentially expressed regions (DERs), ranked by their area statistic 
(average F-statistic times region width), described in Jaffe et al.10. We used a 
per-base cutoff of F = 20.509, which corresponded to a per-base P value < 10−8 
for our given statistical model and sample size. Empirical P values were cal-
culated by permuting the age group variable, keeping the coverage and library 
size fixed, 1,000 times and rerunning the full procedure within each permuted 
data set, recording the null area statistics. R code is available at https://github.
com/lcolladotor/libd_n36/. The family-wise error rate (FWER) for each candi-
date DER was calculated on the basis of the null distribution of the maximum 
area statistic within each permutation47. Our initial F-statistic cutoff was quite 
conservative: 246 of 1,000 permutations did not result in a single genome-wide 
F-statistic greater than the threshold. We retained the 63,135 significant DERs 
at a FWER ≤ 5%.

We then assessed the DERs in an independent but analogous data set of  
36 samples. Average coverage per DER was calculated within each of these  
replication samples, and then we calculated one F-statistic per DER using  
equations (1) and (2) above, where yij is now the sample-specific average cover-
age within the DER. We retained DERs that were at least marginally significant  
(P < 0.05) in this replication data set, yielding 50,560 (80.1%) genome-wide  
significant DERs that were also differentially expressed in this independent 
DLPFC data set, which were used for the analyses described below. Unreplicated 
DERs, as compared to replicated DERs, were narrower (83.0 bp versus 170.3 bp,  
P < 10−100), had smaller areas (mean 2,633.9 versus 7,034.9, P < 10−100)  
and therefore lower ranks, and lower coverage (mean 6.6 reads versus 108.7 reads, 
P < 10−100), assessed via linear regression.

gene annotations. We constructed “genomic state” objects for Ensembl version 
p12, UCSC build hg19 knownGene, and Gencode v19 for rapid annotation of 
DERs, which, briefly, assigns a single state (exonic, intronic or intergenic) to 
each base in the genome on the basis of the gene annotation. For a given base, 
we prioritize exon > intron > intergenic, such that any exonic sequence in any 
transcript, even if other transcripts were annotated as intronic, was assigned the 
exon state. Any intronic sequence not overlapping annotated exons was assigned 
the intron state, and the remaining genome is assigned the intergenic state. We 
required 20 base pairs (bp) of overlap between significant DERs and Ensembl 
annotation to be considered overlapping. The 100-bp mappability/alignability 
and Encode-excluded tracks were obtained from the UCSC Track Browser  
(http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=141011952&g=wgEncode
Mapability). LncRNA and microRNA tracks were obtained from the respective 
UCSC hg19 tracks as implemented in the TxDb.Hsapiens.UCSC.hg19.lincRNAs-
Transcripts48 and TxDb.Hsapiens.UCSC.hg19.knownGene49 R/Bioconductor 
packages. Pseudogenes were identified from the latest PseudoPipe Human 
Database, version 61 (ref. 50).

Technical exploration of widespread differential expression of novel transcrip-
tional activity. RNA-seq data processing and analysis involves a number of well-
documented technical biases51–54, but we found little evidence for the significant 
DERs originating from technical or computational artifacts. For example, 93.7% 
of DERs had average alignability/mappability measurements of 100-bp reads 
greater than 99%, only 61 and 7 regions were in tracks excluded by the Duke site 
and Data Analysis Center of the Encode project, consisting mainly of BSR/beta 
satellite repeats, respectively, and only 1.9% of regions mapped to known pseu-
dogenes. We did observe evidence of 3′ bias in the entire set of DERs mapping 

(1)(1)

(2)(2)
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within genes (the average proportion of nearest exon number to the total number 
of exons was 0.65, where 1 means the DER was in the last exon and 0.5 means 
the DER was in the middle exon), a well-described aspect of poly(A) RNA-seq55. 
However, there was substantial variability in this exonic location proportion when 
stratified by gene: 43.8% of genes had a DER before their middle exon (that is, the 
minimum exonic proportion was less than 0.5, by gene) while 52.3% of genes had 
a DER at the last exon (that is, the maximum exonic proportion was 1.0, by gene). 
Analyzing the sequence composition, the introns containing a DER had only  
an average 1.4-fold enrichment for poly(A) (P = 1.58 × 10−3) and poly(T)  
(P = 8.61 × 10−5) repeats for almost all run lengths beyond 6 bp, as compared to 
sequences of introns that do not contain a differentially expressed region, assessed 
by logistic regression, adjusting for intron length. The average GC content of 
the exonic DERs was significantly higher than the intronic and intergenic DERs 
(0.492 in exonic, as compared to 0.454 and 0.449 in intergenic and intronic, 
respectively; P < 10−100) assessed via linear regression , although there was a 
wide range of values (interquartile range spanned ~0.15 for each annotation cat-
egory) and the GC content for all three annotation class was higher than for the 
background genome (~0.42, as based on the hg19 build). Only 23 regions cross 
an annotated miRNA, but each also overlapped an annotated intron or exon, 
which is an important negative control given that our poly(A)+ RNA library 
preparation should not capture these short RNAs. Lastly, of the DERs annotated 
as intergenic by Ensembl, 12.4% cross a known lncRNA (as determined using 
the TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts database48), as compared 
to 3.7% of all DERs (P < 10−100) assessed via a Chi-squared test.

Purification of cytosolic and nuclear RnA. We separated total RNA into nuclear 
and cytosolic fractions using the Cytoplasmic and Nuclear RNA Purification Kit 
by Norgen (cat. no. 21000, 37400) following the manufacturer’s protocol with an 
extra step of DNase I treatment in the cytosolic fraction in three independent 
adult and three independent fetal samples. Sequencing libraries were constructed 
as above, using the poly(A) protocol. These were then sequenced on one lane of 
an Illumina HiSeq 2000, generating approximately 25 M reads per sample. One 
sample over-clustered in the sequencer, generating ~100 M reads, but its expres-
sion was highly correlated with the expression of other samples of the same type 
(after adjusting for library size), and it was therefore included in downstream 
analyses; see Figure 4. Further demographic material for these independent  
validation samples is provided in Supplementary Table 4.

BrainSpan RnA-seq analysis. Normalized sample-level RNA-seq coverage 
data were obtained in the bigwig file format (http://download.alleninstitute.
org/brainspan/MRF_BigWig_Gencode_v10/) and matched to phenotype data 
indicating the brain region and age of each sample. Mean coverage levels for 
each sample within each DER were computed, and log2 fold changes comparing 
fetal to postnatal samples were calculated within each of the 16 brain regions 
that had at least 10 individuals (see Table 1). Principal component analysis 
(PCA) on the log2(normalized coverage + 1) matrix is visualized in Figure 2 and 
Supplementary Figures 5, 6 and 7. Spearman correlation was used to compare 
fetal versus adult coverage in our DLPFC samples to the fetal versus nonfetal 
coverage within each brain region.

mouse RnA-seq analysis. We downloaded raw single-end 80-bp sequencing 
reads in the FASTQ file format from the study by Dillman et al.15, available from 
the Sequence Read Archive (SRA)56 at accession code SRX172890. Reads were 
aligned to the mouse genome (build mm10) using TopHat (version 2.0.9)46, 
first aligning to the reference transcriptome (“-G” option, as described above). 
Significant DERs identified in the developing human brain (UCSC hg19)  
were mapped to the mouse genome (UCSC GRCm38/mm10) using the liftO-
ver tool12 implemented in the rtracklayer R/Bioconductor package57. Note 
that single human regions could result in multiple smaller subregions during  
the liftOver process, which were used to extract coverage-level data from  
the aligned mouse data, rather than the absolute range of the lifted over  
region. log2 fold changes were calculated as log2(mean adjusted fetal cover-
age + 1) − log2(mean adjusted adult coverage + 1), where each sample was  
normalized by the total number of mapped reads (in millions) and then  
averaged within each age group. Spearman correlations and directionality  
concordances were calculated for each human-annotated Ensembl feature,  
comparing the fold changes in mouse and human.

Public RnA-seq data processing. We downloaded raw sequencing reads from 
the Illumina BodyMap project17 from SRA at accession code ERP000546 in the 
FASTQ file format. Note that each tissue sample had one replicate sequenced 
in a paired-end configuration (50-bp reads) and another replicate sequenced 
using single-end reads. Paired-end reads were therefore treated as single-end 
reads for alignment with TopHat (using the “-G” option, as described above) to 
obtain base-level coverage estimates (which does not use paired-end informa-
tion), resulting in three measurements per tissue replicate. We note that single- 
and paired-end replicates clustered at the DER and gene count level (Fig. 4). 
Additionally, all samples labeled as “16 tissue mixture” had very low alignment 
rates (range: 16.4–40.6%); these were much higher in the single-tissue samples 
(range: 86.5–96.0%).

We also downloaded 101-bp paired-end raw sequencing reads from 
the UCSC Epigenome Project on differentiating stem cells16 from SRA at  
accession SRP000941. These were aligned to the hg19 genome using TopHat as 
described above.

cross-tissue analysis. Gene counts for the Lieber Institute post-mortem brain 
data and publicly available sample data were computed using the featureCounts 
program58 using the Ensembl Homo_sapiens.GRCh37.73 gtf file, which were 
converted into the reads per kilobase per million mapped (RPKM) normalized 
count. Both raw and normalized coverage estimates (by total mapped reads) 
were extracted at the significant replicated brain DERs (N = 50,560) and the 
subset of DERs that did not overlap an Ensembl-annotated exon (N = 20,837). 
Raw coverage counts were used to confirm coverage of >5 reads across tissue 
and cell line group means.

Principal component analysis (PCA) was performed on the normalized  
coverage levels (scaled with log2 and an offset of 32) of the total set of DERs  
(Fig. 4a) and the subset of DERs that were non-exonic (Fig. 4b). PCA was  
performed on the gene RPKMs (Supplementary Data 1), scaled with log2  
with an offset of 1 (Fig. 4c). Log2 fold changes were calculated as above for  
all samples (our brain data and the publicly available data), relative to our adult 
(ages 20–50) adjusted coverage levels.

We further performed co-expression analyses within the three expression sum-
marizations (individual DERs, the subset of non-exonic DERs and the overall 
gene counts) within the combined cell and tissue type data. To better understand 
the global patterns described in the main text, we computed fold changes for 
mean adjusted expression levels for each tissue and cell type relative to the mean 
of the adult (total RNA) brain samples. The pairwise Spearman correlations and 
concordances (both invariant to scaling) were computed for each cell and tissue 
type. Notably, there was high correlation (ρ = 0.603) and concordance (κ = 0.738) 
between the fetal brain sample and neural progenitor cell (NPC) fold changes 
in the DERs which was the only non-brain sample with concordance > 70% 
(other groups with high concordance were infant brain, and then the cytosolic 
and nuclear fractions of fetal brains). Conversely, these fetal brain samples were 
explicitly discordant with the other somatic non-brain tissues (all relative to adult 
brain expression levels). These results are consistent with a recent report59, who 
found that NPCs had significantly correlated gene expression levels measured 
on microarrays to first trimester, but not second trimester, frontal cortex. The 
combination of these results suggests that cortex-derived DERs may represent a 
more general early developmentally conserved feature of the transcriptome.

enrichment with chromatin marks and disease-associated loci. We down-
loaded the aligned reads (BED files) from the Epigenome Roadmap Project  
from the following GEO accession numbers: GSM621393, GSM669625, 
GSM806937, GSM806945, GSM916061, GSM621410, GSM806938, GSM806946, 
GSM706850, GSM806934, GSM806942, GSM621457, GSM669624, GSM806935, 
GSM806943, GSM669623, GSM621427, GSM806936, GSM806944, GSM916054, 
GSM1027328, GSM530651, GSM595913, GSM595920, GSM595922, GSM595923, 
GSM595926, GSM595928, GSM665804, GSM665819, GSM878650, GSM878651, 
GSM878652, GSM669944, GSM706851, GSM806948 and GSM817243. These 
were fetal brain epigenomic data from H3K27me3, H3K36me3, H3K4me1, 
H3K4me3, H3K9ac, H3K9me3, chromatin accessibility and input. CisGenome 
was used to call one set of significant peaks, comparing each set of biological repli-
cates per mark to the inputs using the default settings26. We tiled the hg19 genome 
into 1-kb bins, dropping bins in the known gaps (centromeres, telomeres, etc.), 
and then counted how many bins overlapped both a DER and ChIP-seq peak, 
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only a DER, only a ChIP-seq peak, or neither. Each mark therefore generated a 
2 × 2 table that summed to the number of genome-wide bins (N = 2,861,069), 
and we computed the odds ratio of each 2 × 2 table. Significance was assessed 
with a chi-squared test.

We performed a similar analysis for the PGC2 schizophrenia GWAS results 
using the chr:start-end of the 108 genomic loci from Supplementary Table 3 of 
that publication27. First we calculated the observed proportion of 108 genomic 
loci that overlapped at least one DER. Then we performed permutation analysis 
to determine if this overlap was statistically significant: for a given permutation, 
we sampled 108 regions of the same widths from the genome (after removing the 
gaps as described above). Performing this permutation procedure 100,000 times 
resulted in 100,000 null overlap proportions. We then calculated an empirical  
P value, defined as the number of null proportions greater than the observed  
proportion. An R package for this analysis is available from GitHub60.  
The observed proportions were based on a list of (i) all DERs, (ii) exonic DERs, 
(iii) intronic DERs and (iv) intergenic DERs. The odds ratios for enrichment  
were calculated as above, using 1-kb genomic bins and counting the number of 
bins that overlapped PGC loci and DERs.

An analogous procedure was performed on genome-wide significant and rep-
licated rs numbers available from main or supplementary tables for Alzheimer’s 
disease30, Parkinson’s disease29 and type 2 diabetes31. For each list of rs num-
bers, we used the SNAP tool61 to find all SNPs with R2 > 0.6 in Caucasian 1000 
Genomes samples (mirroring the summary statistics from the schizophrenia 
associations) and then created a linkage disequilibrium–based locus for each 
index SNP. These loci were lifted over to hg19 and then used to assess the overlap 
with the significant DERs, both together and stratified by annotated feature.

Lastly, enrichment for disease-associated genes was calculated by first obtain-
ing gene sets for neurodevelopmental gene sets as defined by Birnbaum et al.3 
directly from their Supplementary Table 1. We computed the proportion of genes 
in each gene set that contained at least 1 DER and assessed the significance of 
these observed proportions using permutation analysis. Specifically, we defined 
expressed genes using the featureCounts RPKM output (as described above) 
greater than 1.0 and resampled the same number of genes per gene set from the 
expressed genes (by symbol). For each permutated gene set, we calculated the 
proportion of null genes containing at least 1 DER and then calculated empirical 
P values based on 1,000 permutations (as above).

expressed sequence analysis. Base-level coverage counts per sample were nor-
malized to an 80-million-read library size (by dividing by 80 million, akin to the 
computation of RPKM) to identify contiguous regions above some coverage level 
that we defined as “expressed”. Average normalized coverage levels were averaged 
within each age group, and these mean age group coverages were smoothed using 
a running mean operation with a window size of 7 bases to improve sensitiv-
ity and specificity10,62 by reducing the number of very short ‘expressed’ regions 
(unlike in the multi-group derfinder procedure, which did not utilize smoothing). 
These smoothed age group means were thresholded at a coverage level of 5 reads, 
a threshold that we previously validated using PCR and that corresponds roughly 
to a one-sided P value <0.05 for a one-sample t-test with a sample size of 6, the 
number of samples per group here. We used a threshold of 10 reads as a sensitivity 
analysis that had similar results compared to using 5 reads.

Track Hub description. The track hub covers the entire genome at base-level 
resolution and displays the following by default: (i) the 50,560 significant DERs 
in dense visibility, (ii) the F-statistic for group differences, with the cutoff used 
to determine DERs, and (iii) the mean expression levels across the six samples in 
each of the six age groups, adjusted to an 80-million-read library size for easier 
interpretability and colored to match Figure 1. Additional tracks are available 
but hidden by default. These consist of the average adjusted expression within 
the fetal and infant nuclear and cytosolic mRNA fractions.

composition analysis using DnA methylation (DnAm) data. We implemented 
in silico estimation of the relative proportions of three cell types (ES-derived 
NPCs from culture35, and adult cortex neuronal and non-neuronal cells from  
tissue36) using epigenome-wide DNAm data using a recently published  
algorithm34. All data were obtained using the Illumina HumanMethylation450 
microarray platform. After normalizing the publicly available data together 
using the preprocessQuantile function in the minfi Bioconductor package63,  
we picked the cell type–discriminating probes as outlined by Jaffe and Irizarry64. 
This resulted in 227 unique probes that distinguished the three cell types 
(Supplementary Table 6). We then normalized the DNAm data from our  
36 discovery samples and estimated the composition of our samples from  
the methylation profiles of the homogenate cell types at the 227 probes using 
nonlinear mixed modeling34. Composition estimates were regressed against  
the normalized and log2-transformed expression levels within each DER across 
the 36 samples, and we obtained a moderated t-statistic and corresponding  
P value65 for each cell type and DER. The Bonferroni-adjusted P value was set  
at 0.05/50,560, or P < 9.89 × 10−7.
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