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Introduction: Partial Differential Equations with Uncertain Coefficients
Problem Definition
Monte-Carlo Simulation

Partial Differential Equations with Uncertain Coefficients

Examples:
Diffusion equation: =V - (a(x,&)Vu)=f
Navier-Stokes equations: — (a (x,&) Vi) +(7-V)i+Vp="F

-0=0
Posed on D C R? with swtable boundary conditions
Sources: models of diffusion in media with uncertain permeabilities
multiphase flows

Uncertainty / randomness:
a=a(x,&) is a random field: for each fixed x € D, a(x,&) is a
random variable depending on m random parameters &1, ...,&m

In this study: a(x, &) = ap(x) + >, a-(x) &,

Possible sources:

Karhunen-Loéve or Piecewise constant
expansion coefficients on D
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Introduction: Partial Differential Equations with Uncertain Coefficients
Problem Definition
Monte-Carlo Simulation

Monte-Carlo Simulation

Traditional approach:
Sample a(x, &) at all required x € D, solve in usual way

Multiple realizations (samples) of a(x, -) —
Multiple realizations of u —
Statistical properties of u obtained by averaging

Done using spatial discretization, finite elements or finite differences
= multiple linear(ized) discrete problems

Aguéh) = fh
(h)

for realization of discrete solution Ug

Problem: convergence is slow, requires many discrete PDE solves
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Properties of These Methods

Alternatives to Monte-Carlo: Spectral Methods

e Alternatives to Monte-Carlo: Spectral Methods
@ The Stochastic Galerkin Method
@ Collocation Methods
@ Properties of These Methods
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The Stochastic Galerkin Method
Collocation Methods
Properties of These Methods

Alternatives to Monte-Carlo: Spectral Methods

The Stochastic Galerkin Method

Philosophy: Extend finite-element methodology to develop alternative to
Monte-Carlo (Ghanem, Spanos, Babuska, Deb, Oden, Matthies, Keese,
Karniadakis, Xue, Schwab, Todor)

Standard weak formulation of diffusion problem: find u € HX(D) s.
a(u,v) =4£(v) forallve HEO(D),

where

a(u, v):/ aVu - Vvdx, é(v):/ fvdx
D D

Introduce extended (stochastic) weak formulation

(u,v) //aVu Vv dx dP(Q / / a(x,&)Vu-Vvdxp(&)de
Bilinear form entails / / /

integral over image of Require joint density
random variables & function associated
with &
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The Stochastic Galerkin Method
Collocation Methods
Properties of These Methods

Alternatives to Monte-Carlo: Spectral Methods

Result:
@ From problem in d-dimensional physical space depending on m
random parameters, get (d + m)-dimensional “continuous” problem
e d=2o0r3 m=5,50, 100, ...

Discretization / Finite dimensional spaces:
@ In physical space: Sy C HE (D), basis {¢;}1;
Example: piecewise linear “hat functions”
o In space of random variables: 7, C L3(T), basis {¢,}M,
Example: m-variate polynomials in & of total degree p

Block sparsity structure, m=6, p=4

Discrete solution:
uhP)(x, &) = .
Sy Sy e (X)the(€)
Requires solution of large coupled
system (right)
Stochastic dimension: M = (m;— p) SN N
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N The Stochastic Galerkin Method
Alternatives to Monte-Carlo: Spectral Methods Collocation Methods

Properties of These Methods

The Stochastic Collocation Method

Monte-Carlo (sampling) method: find u € Hx(D) s.t.

/ a(x, €¥)Vu-Vvdx forall v e HéD(D)
D
for a collection of samples {¢()} e L2(T)

Collocation (Xlu Hesthaven, Babuska, Nobile, Tempone, Webster)

Choose {¢( } in a special way (sparse grids), then
construct discrete solutlon ulbP)(x, &) € SE@ TP
to interpolate {us(x, £)}

Structure of collocation solution:
U (x,69) =Yg o, te(x €1 Lew (€)

Advantages (vs. stochastic Galerkin):
- decouples algebraic system (like MC)
- applies in a straightforward way to nonlinear random terms
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The Stochastic Galerkin Method
Collocation Methods
Properties of These Methods

Alternatives to Monte-Carlo: Spectral Methods

Examples of sparse grids

® o s © ®
At right: 2D« Level p=1 o ' : °
x Level p=2 Yoovoooeooosoch
o Level p=3 o o
T ; 3 0,08

Below: 3D

Level p=5 Level p=6
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The Stochastic Galerkin Method
Collocation Methods
Properties of These Methods

Alternatives to Monte-Carlo: Spectral Methods

Properties of These Methods

For both Galerkin and collocation
e Each computes a discrete function u("P)
o Moments of u estimated using moments of u("?) (cheap)

o Convergence: ||E(u) — E(u")[|pp) < crth+ carP, r < 1
Exponential in polynomial degree

@ Contrast with Monte Carlo:

Perform Ny (discrete) PDE solves to obtain samples {uf,s)}g’:’”f

Moments from averaging, e.g., E(up) = = S 4{®)

Nuc
Error ~ 1/v/Npmc

One other thing:
“p" has different meaning for Galerkin and collocation
For comparable accuracy:

# stochastic dof (Collocation) ~ 2P (# stochastic dof (Galerkin))
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The Stochastic Galerkin Method
Collocation Methods
Properties of These Methods

Alternatives to Monte-Carlo: Spectral Methods

Representative Comparison

Diffusion equation: -V - (a(x,&)Vu)=f

On unit square with 32 x 32 finite-difference discretization

Coefficient: Five-term Karhunen-Loéve expansion:

a(x,E) = ao(X) + ZT:I \/)‘»"af(x) &, m=5

—+—Galetkin
—&—Collocation

4=~ Galerkin: Model
—&-~Collocation: Model

time (non-dimensional)
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Reduced Basis Methods for Parameter-Dependent PDEs
Reduced Basis + Sparse Grid Collocation

Reduced Basis Collocation Methods Effectiveness of this Approach: Linear Examples

9 Reduced Basis Collocation Methods
@ Reduced Basis Methods for Parameter-Dependent PDEs
@ Reduced Basis + Sparse Grid Collocation
@ Effectiveness of this Approach: Linear Examples
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Reduced Basis Methods for Parameter-Dependent PDEs
Reduced Basis + Sparse Grid Collocation

Reduced Basis Collocation Methods Effectiveness of this Approach: Linear Examples

Reduced Basis Methods for Parameter-Dependent PDEs

Starting point for these examples:
Parameter-dependent PDE Leu = f

In examples given:
Le=-V-(a0+3 " a(x)¢)V

Complication:
Expensive if many realizations (samples of &) are required

Idea (Patera, Boyaval, Bris, Lelievre, Maday, Nguyen, ...):
Solve the problem on a reduced space

That is: by some means, choose 5(1)7£(2), e ,E("), n<N
Solve EE(;)U(i) =f ul) = u(o,ﬁ(i)), i=1,...,n
For other &, approximate u(-, &) by (-, &) € span{u®, ... u(M}
Terminology: {u®), ..., u("} called snapshots
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Reduced Basis Methods for Parameter-Dependent PDEs

Reduced Basis + Sparse Grid Collocation

Reduced Basis Collocation Methods Effectiveness of this Approach: Linear Examples

Approximation at discrete level:
un(-,€) ~ Tn(-,€) € span{ufl,...,uf"}

Matrix form:
Coefficient matrix Ag, nodal coefficients up, @y, u®, ... u("
Q = orthogonal matrix whose columns span space spanned by

{u}

Galerkin condition: make residual orthogonal to spanning space

r=1f— Agiip(§) = f — A¢ Qye orthogonal to Q

Result is reduced problem: Galerkin system of order n < N:

[QTAQlye = QTf, n(¢) = Qye

Goal: Have reduced model capture features of the model
at significantly lower cost
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Reduced Basis Methods for Parameter-Dependent PDEs
Reduced Basis + Sparse Grid Collocation

Reduced Basis Collocation Methods Effectiveness of this Approach: Linear Examples

How are costs reduced?
Matrix A of order N
Reduced matrix QTAQ of order n < N
Solving reduced matrix is cheap for small n
Note: making assumption that L¢ is affinely dependent on §
Le=Tr1 4i(E)L;
= Ae = Y1 6i(€)A;
= QTAA =31, 0i(€)QAQ]

Means: constructing reduced matrix for new & is cheap

Key question: does reduced basis capture features of model?
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Reduced Basis Methods for Parameter-Dependent PDEs
Reduced Basis + Sparse Grid Collocation

Reduced Basis Collocation Methods Effectiveness of this Approach: Linear Examples

Strategy for generating a basis / choosing snapshots (Patera, et al.):

For fin(-, &) =~ un(-, &) (equivalently, iz ~ ug), use an
|, en = up — Oy

error indicator 7(i) = | en

Given: a set of candidate parameters X = {£},
an initial choice ¢ € X, and u® = u(-, W)
Set Q=u®
while maxecx (N(Un(-,€))) > 7
compute p(-, &), n(n(-,€)), VE € X % use current reduced
let £ = argmaxgcx (n(in(-, £)) % basis
if p(dp(-, €7)) > 7 then
augment basis with up(-,£€*), update Q with ug-
endif

end

Potentially expensive, but just viewed as “offline” preprocessing
“Online’ simulation done using reduced basis
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Reduced Basis Methods for Parameter-Dependent PDEs
Reduced Basis + Sparse Grid Collocation

Reduced Basis Collocation Methods Effectiveness of this Approach: Linear Examples

Reduced Basis + Sparse Grid Collocation

Adapt to sparse grid collocation: Recall collocation solution

uéhp)(Xf(k)) = Zg(k)eeq “c(Xa‘S(k))LE‘“(‘S) (1)

Main ideas:
1. Use sparse grid collocation points as candidate set X/,
2. Use reduced solution as coefficient uc(-,é(k)) whenever possible

for each sparse grid level p Algorithm

for each point £(k) at level p
compute reduced solution uR(~,§(k))
if7KuRC,£M)» <7, then
use ug(-, €M) as coefficient uc(-, %)) in (1)
else
compute snapshot us(-,£€X), use it as uc(-, %) in (1)
augment reduced basis with uh(-,E(k)), update @ with ugu
endif

end
end
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Reduced Basis Methods for Parameter-Dependent PDEs
Reduced Basis + Sparse Grid Collocation

Reduced Basis Collocation Methods Effectiveness of this Approach: Linear Examples

To Assess Effectiveness

Benchmark problems: Diffusion equation —V - (a(x,£)Vu) = f in R?

Piecewise constant diffusion coefficient parameterized as a random
variable & = [&1,- -+ ,&n,] " independently and uniformly distributed in
I =[0.01,1]"0

Din| Pk
Dy Dy, :
bl Iy,

(a) Case 1: Np subdomains (b) Case 2: Np = N x N subdomains
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Reduced Basis Methods for Parameter-Dependent PDEs
Reduced Basis + Sparse Grid Collocation

Reduced Basis Collocation Methods Effectiveness of this Approach: Linear Examples

To assess effectiveness: consider
Full snapshot set, set of snapshots for all possible parameter values:
Sr= {uh (',E)a £ r}
Finite snapshot set, for finite © C I':
So :={un(-€), £ €O}

Question:
How many samples {€} / {up (-, &)} are needed to accurately
represent the features of Sp?

Experiment: to gain insight into this, estimate “rank” of Sr
Generate a large set © of samples of £
Generate the finite snapshot set Sg associated with ©
Construct the matrix Sg of coefficient vectors ug from Sg
Compute the rank of Sg

Results follow. Used 3000 samples
Experiment was repeated ten times with similar results
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Reduced Basis Methods for Parameter-Dependent PDEs

. N Reduced Basis + Sparse Grid Collocation
Reduced Basis Collocation Methods Effectiveness of this Approach: Linear Examples

Estimated ranks of Sr for two classes of benchmark problems

Case 1

m] Crid Nolo 3 4 5 6 7 8 9 10
332=1089 |3 12 18 30 40 53 55 76 84
652=4225 |3 12 18 30 40 48 55 70 87

1292 =16641 |3 12 18 28 39 48 55 72 81

Case 2 N

E;ﬂ Grid bl a 9 16 25 36 49 64
332=1089 |27 121 193 257 321 385 449
652 = 4225 | 28 148 290 465 621 769 897

1292 = 16641 | 28 153 311 497 746 1016 1298

Trends:

@ Rank is dramatically smaller than problem dimension N

e Rank is independent of problem dimension (~ (mesh size)~2)

@ In most cases, cost of treating reduced problem of given rank is low
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Reduced Basis Methods for Parameter-Dependent PDEs
Reduced Basis + Sparse Grid Collocation

Reduced Basis Collocation Methods

Effectiveness of this Approach: Linear Examples

Comparison with algorithm performance Case 1

1]

Case 1, 5 x 1 subdomains, 65 x 65 grid, rank=30

q 6 7 8 9 10 11 12 13 16
1o O] 11 61 241 801 2433 7K 19K 52K 870K
1073 10 9 0 0 0 0 0 0 0
o__* J10 1 1 o0 0 _ 0 0 0 0
107° 10 13 0 0 0 0 0 0 0

Case 1, 9 x 1 subdomains, 65 x 65 grid, rank=70, tol = 10~*

q 10 11 12 13 14 15 16 17
|9g| 19 181 1177 6001 26017 100897 361249 1218049
Nfull solve 18 34 2 1 1 0 0 0
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Reduced Basis Methods for Parameter-Dependent PDEs
Reduced Basis + Sparse Grid Collocation

Reduced Basis Collocation Methods

Effectiveness of this Approach: Linear Examples

Case 2
Comparison with algorithm performance E:ﬂ
Case 2, 2 x 2 subdomains, 65 x 65 grid, rank=28
q 5 6 7 8 9 10 11 12 15
tol ©al 9 41 137 401 1105 29K 7.5K 189K 272K
1073 7 11 3 0 0 0 0 0 0
107 7 12 3 0 0 0 0 0 0
107° 7 13 2 3 0 0 0 0 0

Case 2, 4 x 4 subdomains, 65 x 65 grid, rank=290, to/ = 10~*

q 17 18 19 20 21
|©q| 33 545 6049 51137 353729
Nensove | 32 168 27 3 4
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. N Reduced Basis + Sparse Grid Collocation
Reduced Basis Collocation Methods Effectiveness of this Approach: Linear Examples

To assess accuracy: Examine error (vs. reference solution) in expected
values of full or reduced collocation solution:

Full collocation e = || (uise) — & (uf<)|| /& (u=)]|
0 0
Reduced collocation eg := H]E (ur) — K (uf*) ‘ /H]E (ufsc) ‘
0 0
Case 1: vertical subdomains Case 2: square subdomains
o 2
1 —e—Monte Carlo 1 —e—Monte Carlo
—&—full collocation —e—full collocation
107 —+—Reduced Collocation o 45 —+—Reduced Collocation
10
10°
10°
8 10° g
5 5
10"
10"
10° "
10° gsl8 10°
10* 10° 10° 10* 10° 10° 10° 10° 10" 10°

number of sample points number of sample points
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. N Reduced Basis + Sparse Grid Collocation
Reduced Basis Collocation Methods Effectiveness of this Approach: Linear Examples

Different example: diffusion coefficient with KL expansion:

Diffusion coefficient a0+ oY VAa(x)E)

From covariance function c(x,y) = o exp (,M - M)
c c
Smaller correlation length ¢ ~ more terms m
Examinec =4, m=4and ¢ =25, m=38.
m=25 m=238
10° 10° . - -
107 \9\9/5\" o \N
" y
10 [ w'] &
_10° _10°
g g
®10® ®10°
—+—tol=1e-5 ——tol=1e-5
107 ——tol=1e-6 10 ——tol=1e-6
tol=1e-7 tol=1e-7
|| ——tol=1e-8 | | tol=1e-8
10 —e—Monte Carlo 10 —e—Monte Carlo
» —s—full collocation \\)q:m » —=—full collocation
10 10
10" o ? 10 10! ’ 3 10°

number of sample points

number of sample points




Concluding Remarks

Concluding Remarks

For PDEs with uncertain, parameter-dependent coefficients:
@ Spectral methods: stochastic Galerkin, stochastic collocation, offer
prospects for fast solution
@ They suffer from “the curse of dimensionality”

@ Costs of collocation can be reduced using reduced basis methodology
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