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Monte-Carlo Simulation

Partial Differential Equations with Uncertain Coefficients

Examples:

Diffusion equation: −∇ · (a(x, ξ)∇u) = f

Navier-Stokes equations: −∇ · (a (x, ξ)∇~u) + (~u · ∇)~u +∇p = ~f
∇ · ~u = 0

Posed on D ⊂ Rd with suitable boundary conditions

Sources: models of diffusion in media with uncertain permeabilities

multiphase flows

Uncertainty / randomness:
a = a(x, ξ) is a random field: for each fixed x ∈ D, a(x , ξ) is a

random variable depending on m random parameters ξ1, . . . , ξm
In this study: a(x, ξ) = a0(x) +

∑m
r=1 ar (x) ξr

Possible sources:
Karhunen-Loève
expansion

or Piecewise constant
coefficients on D
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Monte-Carlo Simulation

Traditional approach:

Sample a(x, ξ) at all required x ∈ D, solve in usual way

Multiple realizations (samples) of a(x, ·) −→
Multiple realizations of u −→
Statistical properties of u obtained by averaging

Done using spatial discretization, finite elements or finite differences
=⇒ multiple linear(ized) discrete problems

Aξu
(h)
ξ = fh

for realization of discrete solution u
(h)
ξ

Problem: convergence is slow, requires many discrete PDE solves
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The Stochastic Galerkin Method

Philosophy: Extend finite-element methodology to develop alternative to
Monte-Carlo (Ghanem, Spanos, Babuška, Deb, Oden, Matthies, Keese,
Karniadakis, Xue, Schwab, Todor)

Standard weak formulation of diffusion problem: find u ∈ H1
E (D) s.t.

a(u, v) = `(v) for all v ∈ H1
E0

(D),

where

a(u, v) =

∫
D

a∇u · ∇vdx , `(v) =

∫
D

fvdx

Introduce extended (stochastic) weak formulation

〈a(u, v)〉=
∫

Ω

∫
D

a∇u ·∇v dx dP(Ω)=

∫
ξ(Ω)

∫
D

a(x, ξ)∇u · ∇v dx ρ(ξ) dξ

Bilinear form entails
integral over image of
random variables ξ

Require joint density
function associated
with ξ

ξ plays the role
of a Cartesian
coordinate
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The Stochastic Galerkin Method
Collocation Methods
Properties of These Methods

Result:
From problem in d-dimensional physical space depending on m
random parameters, get (d + m)-dimensional “continuous” problem
d = 2 or 3, m = 5, 50, 100, . . .

Discretization / Finite dimensional spaces:
In physical space: Sh ⊂ H1

E0
(D), basis {φj}Nj=1

Example: piecewise linear “hat functions”
In space of random variables: Tp ⊂ L2(Γ), basis {ψ`}M`=1

Example: m-variate polynomials in ξ of total degree p

Discrete solution:

u(hp)(x, ξ) =∑N
j=1

∑M
`=1 uj`φj(x)ψ`(ξ)

Requires solution of large coupled
system (right)

Stochastic dimension: M =

(
m + p

p

)
Reduced-Order Models for Stochastic Partial Differential Equations
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The Stochastic Collocation Method

Monte-Carlo (sampling) method: find u ∈ H1
E (D) s.t.∫

D
a(x, ξ(k))∇u ·∇vdx for all v ∈ H1

E0
(D)

for a collection of samples {ξ(k)} ∈ L2(Γ)

Collocation (Xiu, Hesthaven, Babuška, Nobile, Tempone, Webster)

Choose {ξ(k)} in a special way (sparse grids), then
construct discrete solution u(hp)(x, ξ) ∈ SE

h ⊗ T (p)

to interpolate {uh(x, ξ(k))}

Structure of collocation solution:

u
(hp)
p (x, ξ(k)) :=

∑
ξ(k)∈Θp

uc(x , ξ(k))Lξ(k) (ξ)

Advantages (vs. stochastic Galerkin):
· decouples algebraic system (like MC)
· applies in a straightforward way to nonlinear random terms
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Examples of sparse grids

At right: 2D ∗ Level p = 1
× Level p = 2
◦ Level p = 3
� Level p = 4

Below: 3D

Level p = 5 Level p = 6
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Properties of These Methods

For both Galerkin and collocation

Each computes a discrete function u(hp)

Moments of u estimated using moments of u(hp) (cheap)

Convergence: ‖E (u)− E (u(hp))‖H1(D) ≤ c1h + c2rp, r < 1
Exponential in polynomial degree

Contrast with Monte Carlo:
Perform NMC (discrete) PDE solves to obtain samples {u(s)

h }
NMC
s=1

Moments from averaging, e.g., Ê (uh) = 1
NMC

∑NMC

s=1 u
(s)
h

Error ∼ 1/
√

NMC

One other thing:
“p” has different meaning for Galerkin and collocation
For comparable accuracy:

# stochastic dof (Collocation) ≈ 2p (# stochastic dof (Galerkin))
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Representative Comparison

Diffusion equation: −∇ · (a(x, ξ)∇u) = f

On unit square with 32× 32 finite-difference discretization

Coefficient: Five-term Karhunen-Loève expansion:

a(x, ξ) = a0(x) +
∑m

r=1

√
λr ar (x) ξr , m = 5
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Reduced Basis Methods for Parameter-Dependent PDEs

Starting point for these examples:

Parameter-dependent PDE Lξu = f

In examples given:

Lξ = −∇ · (a0 +
∑m

r=1 ar (x)ξr )∇

Complication:

Expensive if many realizations (samples of ξ) are required

Idea (Patera, Boyaval, Bris, Lelièvre, Maday, Nguyen, . . .):

Solve the problem on a reduced space

That is: by some means, choose ξ(1), ξ(2), . . . , ξ(n), n� N

Solve Lξ(i) u(i) = f , u(i) = u(·, ξ(i)), i = 1, . . . , n

For other ξ, approximate u(·, ξ) by ũ(·, ξ) ∈ span{u(1), . . . , u(n)}
Terminology: {u(1), . . . , u(n)} called snapshots

Reduced-Order Models for Stochastic Partial Differential Equations
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Approximation at discrete level:

uh(·, ξ) ≈ ũh(·, ξ) ∈ span{u(1)
h , . . . , u

(n)
h }

Matrix form:

Coefficient matrix Aξ, nodal coefficients uh, ũh, u(1), . . .u(n)

Q = orthogonal matrix whose columns span space spanned by
{u(i)}

Galerkin condition: make residual orthogonal to spanning space

r = f − Aξũh(ξ) = f − AξQyξ orthogonal to Q

Result is reduced problem: Galerkin system of order n� N:

[QTAQ]yξ = QT f , ũh(ξ) = Qyξ

Goal: Have reduced model capture features of the model
at significantly lower cost

Reduced-Order Models for Stochastic Partial Differential Equations
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How are costs reduced?

Matrix A of order N

Reduced matrix QTAQ of order n� N

Solving reduced matrix is cheap for small n

Note: making assumption that Lξ is affinely dependent on ξ

Lξ =
∑k

i=1 φi (ξ)Li

⇒ Aξ =
∑k

i=1 φi (ξ)Ai

⇒ QTAξA =
∑k

i=1 φi (ξ)[QTAiQ]

Means: constructing reduced matrix for new ξ is cheap

Key question: does reduced basis capture features of model?

Reduced-Order Models for Stochastic Partial Differential Equations
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Strategy for generating a basis / choosing snapshots (Patera, et al.):

For ũh(·, ξ) ≈ uh(·, ξ) (equivalently, ũξ ≈ uξ), use an

error indicator η(ũh) ≈ ‖eh‖, eh = uh − ũh

Given: a set of candidate parameters X = {ξ},
an initial choice ξ(1) ∈ X , and u(1) = u(·, ξ(1))

Set Q = u(1)

while maxξ∈X (η(ũh(·, ξ))) > τ

compute ũh(·, ξ), η(ũh(·, ξ)), ∀ ξ ∈ X % use current reduced

let ξ∗ = argmaxξ∈X (η(ũh(·, ξ)) % basis

if η(ũh(·, ξ∗)) > τ then

augment basis with uh(·, ξ∗), update Q with uξ∗

endif

end

Potentially expensive, but just viewed as “offline” preprocessing
“Online” simulation done using reduced basis

Reduced-Order Models for Stochastic Partial Differential Equations
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Reduced Basis + Sparse Grid Collocation

Adapt to sparse grid collocation: Recall collocation solution

u
(hp)
q (x , ξ(k)) =

∑
ξ(k)∈Θq

uc(x , ξ(k))Lξ(k) (ξ) (1)

Main ideas:
1. Use sparse grid collocation points as candidate set X ,
2. Use reduced solution as coefficient uc(·, ξ(k)) whenever possible

for each sparse grid level p Algorithm
for each point ξ(k) at level p

compute reduced solution uR(·, ξ(k))

if η(uR(·, ξ(k))) ≤ τ , then

use uR(·, ξ(k)) as coefficient uc(·, ξ(k)) in (1)
else

compute snapshot uh(·, ξ(k)), use it as uc(·, ξ(k)) in (1)

augment reduced basis with uh(·, ξ(k)), update Q with uξ(k)

endif
end

end
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To Assess Effectiveness

Benchmark problems: Diffusion equation −∇ · (a(x, ξ)∇u) = f in R2

Piecewise constant diffusion coefficient parameterized as a random
variable ξ = [ξ1, · · · , ξND

]T independently and uniformly distributed in
Γ = [0.01, 1]ND

D1 DND· · ·

...

...

...

..

.
..
.

..

.

D11 DÑ1

D1Ñ DÑÑ

(a) Case 1: ND subdomains (b) Case 2: ND = Ñ × Ñ subdomains
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To assess effectiveness: consider

Full snapshot set, set of snapshots for all possible parameter values:
SΓ := {uh (·, ξ) , ξ ∈ Γ}

Finite snapshot set, for finite Θ ⊂ Γ:
SΘ := {uh (·, ξ) , ξ ∈ Θ}

Question:
How many samples {ξ} / {uh (·, ξ)} are needed to accurately
represent the features of SΓ?

Experiment: to gain insight into this, estimate “rank” of SΓ

Generate a large set Θ of samples of ξ
Generate the finite snapshot set SΘ associated with Θ
Construct the matrix SΘ of coefficient vectors uξ from SΘ

Compute the rank of SΘ

Results follow. Used 3000 samples
Experiment was repeated ten times with similar results

Reduced-Order Models for Stochastic Partial Differential Equations
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Estimated ranks of SΓ for two classes of benchmark problems

Case 1 PPPPPPPPGrid
ND 2 3 4 5 6 7 8 9 10

332 = 1089 3 12 18 30 40 53 55 76 84
652 = 4225 3 12 18 30 40 48 55 70 87

1292 = 16641 3 12 18 28 39 48 55 72 81

Case 2 PPPPPPPPGrid
ND 4 9 16 25 36 49 64

332 = 1089 27 121 193 257 321 385 449
652 = 4225 28 148 290 465 621 769 897

1292 = 16641 28 153 311 497 746 1016 1298

Trends:

Rank is dramatically smaller than problem dimension N

Rank is independent of problem dimension (∼ (mesh size)−2)

In most cases, cost of treating reduced problem of given rank is low
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Comparison with algorithm performance Case 1

Case 1, 5× 1 subdomains, 65× 65 grid, rank=30

q 6 7 8 9 10 11 12 13 16
PPPPPPPtol

|Θq|
11 61 241 801 2433 7K 19K 52K 870K

10−3 10 9 0 0 0 0 0 0 0
10−4 10 11 1 0 0 0 0 0 0

10−5 10 13 0 0 0 0 0 0 0

Case 1, 9× 1 subdomains, 65× 65 grid, rank=70, tol = 10−4

q 10 11 12 13 14 15 16 17
|Θq| 19 181 1177 6001 26017 100897 361249 1218049

Nfull solve 18 34 2 1 1 0 0 0
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Comparison with algorithm performance
Case 2

Case 2, 2× 2 subdomains, 65× 65 grid, rank=28

q 5 6 7 8 9 10 11 12 15
PPPPPPPtol

|Θq|
9 41 137 401 1105 2.9K 7.5K 18.9K 272K

10−3 7 11 3 0 0 0 0 0 0
10−4 7 12 3 0 0 0 0 0 0
10−5 7 13 2 3 0 0 0 0 0

Case 2, 4× 4 subdomains, 65× 65 grid, rank=290, tol = 10−4

q 17 18 19 20 21
|Θq| 33 545 6049 51137 353729

Nfull solve 32 168 27 3 4
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To assess accuracy: Examine error (vs. reference solution) in expected
values of full or reduced collocation solution:

Full collocation εh :=
∥∥∥Ẽ (uhsc

q

)
− Ẽ

(
uhsc

r

)∥∥∥
0

/∥∥∥Ẽ (uhsc
r

)∥∥∥
0

Reduced collocation εR :=
∥∥∥Ẽ (ursc

q

)
− Ẽ

(
uhsc

r

)∥∥∥
0

/∥∥∥Ẽ (uhsc
r

)∥∥∥
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 q=6  q=7

 q=8
 q=9

q=10

q=11

q=12 q=13

q=14

q=15

q=16

number of sample points

e
rr

o
r

 

 

Monte Carlo
full collocation
Reduced Collocation

10
0

10
2

10
4

10
6

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 q=5
 q=6

 q=7
 q=8

q=9 q=10

q=11 q=12

q=13

q=14
q=15

number of sample points

e
rr

o
r

 

 

Monte Carlo
full collocation
Reduced Collocation

Case 1: vertical subdomains Case 2: square subdomains

Reduced-Order Models for Stochastic Partial Differential Equations



Introduction: Partial Differential Equations with Uncertain Coefficients
Alternatives to Monte-Carlo: Spectral Methods

Reduced Basis Collocation Methods
Concluding Remarks
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Different example: diffusion coefficient with KL expansion:

Diffusion coefficient a0 + σ
∑m

r=1

√
λr ar (x)ξr )

From covariance function c(x, y) = σ exp
(
− |x1−y1|

c − |x2−y2|
c

)
Smaller correlation length c ∼ more terms m
Examine c = 4, m = 4 and c = 2.5, m = 8.

10
1

10
2

10
3

10
4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 q=6

q=7

q=8

q=9

 q=10

number of sample points

e
rr

o
r

 

 

tol=1e−5 
tol=1e−6
tol=1e−7
tol=1e−8
Monte Carlo
full collocation

10
1

10
2

10
3

10
4

10
5

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 q=9

q=10

q=11

q=12
 q=13

number of sample points

e
rr

o
r

 

 

tol=1e−5 
tol=1e−6
tol=1e−7
tol=1e−8
Monte Carlo
full collocation

m = 5 m = 8

Reduced-Order Models for Stochastic Partial Differential Equations



Introduction: Partial Differential Equations with Uncertain Coefficients
Alternatives to Monte-Carlo: Spectral Methods

Reduced Basis Collocation Methods
Concluding Remarks

Concluding Remarks

For PDEs with uncertain, parameter-dependent coefficients:

Spectral methods: stochastic Galerkin, stochastic collocation, offer
prospects for fast solution

They suffer from “the curse of dimensionality”

Costs of collocation can be reduced using reduced basis methodology
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