Reduced-Order Models for Stochastic Partial Differential Equations

Howard C. Elman Department of Computer Science University of Maryland at College Park

> In honor of Martin Schultz Yale University, October 2012

> > Reduced-Order Models for Stochastic Partial Differential Equations

Yale Numerical Analysis Group, c. 1981

Reduced-Order Models for Stochastic Partial Differential Equations

Introduction: Partial Differential Equations with Uncertain Coefficients

- Problem Definition
- Monte-Carlo Simulation

2 Alternatives to Monte-Carlo: Spectral Methods

- The Stochastic Galerkin Method
- Collocation Methods
- Properties of These Methods

3 Reduced Basis Collocation Methods

- Reduced Basis Methods for Parameter-Dependent PDEs
- Reduced Basis + Sparse Grid Collocation
- Effectiveness of this Approach: Linear Examples

4 Concluding Remarks

Problem Definition Monte-Carlo Simulation

Partial Differential Equations with Uncertain Coefficients

Examples:

Diffusion equation: $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$ Navier-Stokes equations: $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla \vec{u}) + (\vec{u} \cdot \nabla)\vec{u} + \nabla p = \vec{f}$ $\nabla \cdot \vec{u} = 0$

Posed on $\mathcal{D} \subset \mathbb{R}^d$ with suitable boundary conditions Sources: models of diffusion in media with uncertain permeabilities multiphase flows

Uncertainty / randomness:

 $a = a(\mathbf{x}, \boldsymbol{\xi})$ is a random field: for each fixed $x \in \mathcal{D}$, $a(x, \boldsymbol{\xi})$ is a random variable depending on m random parameters ξ_1, \ldots, ξ_m In this study: $a(\mathbf{x}, \boldsymbol{\xi}) = a_0(\mathbf{x}) + \sum_{r=1}^m a_r(\mathbf{x}) \boldsymbol{\xi}_r$

Possible sources:

Karhunen-Loève or expansion

Piecewise constant coefficients on \mathcal{D}

Problem Definition Monte-Carlo Simulation

Monte-Carlo Simulation

Traditional approach:

```
Sample a(\mathbf{x}, \boldsymbol{\xi}) at all required \mathbf{x} \in \mathcal{D}, solve in usual way
```

Multiple realizations (samples) of $a(\mathbf{x}, \cdot) \longrightarrow$ Multiple realizations of $u \longrightarrow$ Statistical properties of u obtained by averaging

Done using spatial discretization, finite elements or finite differences \Longrightarrow multiple linear(ized) discrete problems

$$A_{\boldsymbol{\xi}} u_{\boldsymbol{\xi}}^{(h)} = f_h$$

for realization of discrete solution $u_{\boldsymbol{\xi}}^{(h)}$

Problem: convergence is slow, requires many discrete PDE solves

The Stochastic Galerkin Method Collocation Methods Properties of These Methods

Introduction: Partial Differential Equations with Uncertain Coefficients

2 Alternatives to Monte-Carlo: Spectral Methods

- The Stochastic Galerkin Method
- Collocation Methods
- Properties of These Methods

3 Reduced Basis Collocation Methods

4 Concluding Remarks

The Stochastic Galerkin Method Collocation Methods Properties of These Methods

The Stochastic Galerkin Method

Philosophy: Extend finite-element methodology to develop alternative to Monte-Carlo (Ghanem, Spanos, Babuška, Deb, Oden, Matthies, Keese, Karniadakis, Xue, Schwab, Todor)

Standard weak formulation of diffusion problem: find $u \in H^1_E(\mathcal{D})$ s.t. $a(u, v) = \ell(v)$ for all $v \in H^1_{E_0}(\mathcal{D})$,

where

$$a(u, v) = \int_{\mathcal{D}} a \nabla u \cdot \nabla v dx, \quad \ell(v) = \int_{\mathcal{D}} f v dx$$

Introduce extended (*stochastic*) weak formulation $\langle a(u, v) \rangle = \int_{\Omega} \int_{\mathcal{D}} a \nabla u \cdot \nabla v \, dx \, dP(\Omega) = \int_{\boldsymbol{\xi}(\Omega)} \int_{\mathcal{D}} a(\mathbf{x}, \boldsymbol{\xi}) \, \nabla u \cdot \nabla v \, d\mathbf{x} \, \rho(\boldsymbol{\xi}) \, d\boldsymbol{\xi}$ Bilinear form entails integral over image of random variables $\boldsymbol{\xi}$ Require joint density function associated with $\boldsymbol{\xi}$ $\boldsymbol{\xi}$ plays the role of a Cartesian coordinate

Reduced-Order Models for Stochastic Partial Differential Equations

The Stochastic Galerkin Method Collocation Methods Properties of These Methods

Result:

- From problem in *d*-dimensional physical space depending on m random parameters, get (d + m)-dimensional "continuous" problem
- d = 2 or 3, m = 5, 50, 100, ...

Discretization / Finite dimensional spaces:

- In physical space: $S_h \subset H^1_{E_0}(\mathcal{D})$, basis $\{\phi_j\}_{j=1}^N$ Example: piecewise linear "hat functions"
- In space of random variables: T_p ⊂ L²(Γ), basis {ψ_ℓ}^M_{ℓ=1} Example: *m*-variate polynomials in ξ of total degree p

Discrete solution:

 $u^{(hp)}(\mathbf{x}, \boldsymbol{\xi}) = \sum_{j=1}^{N} \sum_{\ell=1}^{M} u_{j\ell} \phi_j(\mathbf{x}) \psi_{\ell}(\boldsymbol{\xi})$

Requires solution of large coupled system (right)

Stochastic dimension: $M = \begin{pmatrix} m+p \\ p \end{pmatrix}$

The Stochastic Galerkin Method Collocation Methods Properties of These Methods

The Stochastic Collocation Method

Monte-Carlo (sampling) method: find $u \in H^1_E(\mathcal{D})$ s.t.

$$\int_{\mathcal{D}} {\sf a}({\sf x},{m \xi}^{(k)})
abla u {\cdot}
abla v dx ext{ for all } v \in H^1_{E_0}(\mathcal{D})$$

for a collection of samples $\{\boldsymbol{\xi}^{(k)}\} \in L^2(\Gamma)$

Collocation (Xiu, Hesthaven, Babuška, Nobile, Tempone, Webster) Choose $\{\boldsymbol{\xi}^{(k)}\}$ in a special way (sparse grids), then construct discrete solution $u^{(hp)}(\mathbf{x}, \boldsymbol{\xi}) \in S_h^E \otimes \mathcal{T}^{(p)}$ to interpolate $\{u_h(\mathbf{x}, \boldsymbol{\xi}^{(k)})\}$

Structure of collocation solution:

$$u_{\rho}^{(h\rho)}(\mathbf{x}, \boldsymbol{\xi}^{(k)}) := \sum_{\boldsymbol{\xi}^{(k)} \in \Theta_{\rho}} u_{c}(x, \boldsymbol{\xi}^{(k)}) L_{\boldsymbol{\xi}^{(k)}}(\boldsymbol{\xi})$$

Advantages (vs. stochastic Galerkin):

- · decouples algebraic system (like MC)
- \cdot applies in a straightforward way to nonlinear random terms

The Stochastic Galerkin Method Collocation Methods Properties of These Methods

Examples of sparse grids

At right: 2D * Level
$$p = 1$$

× Level $p = 2$
• Level $p = 3$
• Level $p = 4$

Below: 3D

The Stochastic Galerkin Method Collocation Methods Properties of These Methods

Properties of These Methods

For both Galerkin and collocation

- Each computes a discrete function $u^{(hp)}$
- Moments of u estimated using moments of $u^{(hp)}$ (cheap)
- Convergence: $||E(u) E(u^{(hp)})||_{H_1(\mathcal{D})} \le c_1 h + c_2 r^p$, r < 1Exponential in polynomial degree

• Contrast with Monte Carlo: Perform N_{MC} (discrete) PDE solves to obtain samples $\{u_h^{(s)}\}_{s=1}^{N_{MC}}$ Moments from averaging, e.g., $\hat{E}(u_h) = \frac{1}{N_{MC}} \sum_{s=1}^{N_{MC}} u_h^{(s)}$ Error $\sim 1/\sqrt{N_{MC}}$

One other thing:

"*p*" has different meaning for Galerkin and collocation For comparable accuracy:

stochastic dof (Collocation) $\approx 2^{p}$ (# stochastic dof (Galerkin))

The Stochastic Galerkin Method Collocation Methods Properties of These Methods

Representative Comparison

Diffusion equation:

$$\nabla \cdot (\mathbf{a}(\mathbf{x}, \boldsymbol{\xi}) \nabla u) = \mathbf{f}$$

On unit square with 32×32 finite-difference discretization

Coefficient: Five-term Karhunen-Loève expansion:

 $a(\mathbf{x}, \boldsymbol{\xi}) = a_0(\mathbf{x}) + \sum_{r=1}^m \sqrt{\lambda_r} a_r(\mathbf{x}) \boldsymbol{\xi}_r, \ m = 5$

Introduction: Partial Differential Equations with Uncertain Coefficients

Alternatives to Monte-Carlo: Spectral Methods

3 Reduced Basis Collocation Methods

- Reduced Basis Methods for Parameter-Dependent PDEs
- Reduced Basis + Sparse Grid Collocation
- Effectiveness of this Approach: Linear Examples

Reduced Basis Methods for Parameter-Dependent PDEs Reduced Basis + Sparse Grid Collocation Effectiveness of this Approach: Linear Examples

Reduced Basis Methods for Parameter-Dependent PDEs

Starting point for these examples:

Parameter-dependent PDE $\mathcal{L}_{\boldsymbol{\xi}} u = f$

In examples given:

 $\mathcal{L}_{\boldsymbol{\xi}} = -\nabla \cdot (a_0 + \sum_{r=1}^m a_r(\mathbf{x})\xi_r) \nabla$

Complication:

Expensive if many realizations (samples of $\boldsymbol{\xi}$) are required

Idea (Patera, Boyaval, Bris, Lelièvre, Maday, Nguyen, ...): Solve the problem on a *reduced space*

That is: by some means, choose $\boldsymbol{\xi}^{(1)}, \boldsymbol{\xi}^{(2)}, \dots, \boldsymbol{\xi}^{(n)}, n \ll N$ Solve $\mathcal{L}_{\boldsymbol{\xi}^{(i)}} u^{(i)} = f, u^{(i)} = u(\cdot, \boldsymbol{\xi}^{(i)}), i = 1, \dots, n$ For other $\boldsymbol{\xi}$, approximate $u(\cdot, \boldsymbol{\xi})$ by $\tilde{u}(\cdot, \boldsymbol{\xi}) \in span\{u^{(1)}, \dots, u^{(n)}\}$ Terminology: $\{u^{(1)}, \dots, u^{(n)}\}$ called snapshots Approximation at discrete level:

 $u_h(\cdot, \boldsymbol{\xi}) pprox \widetilde{u}_h(\cdot, \boldsymbol{\xi}) \in span\{u_h^{(1)}, \dots, u_h^{(n)}\}$

Matrix form:

Coefficient matrix A_{ξ} , nodal coefficients \mathbf{u}_h , $\tilde{\mathbf{u}}_h$, $\mathbf{u}^{(1)}$, ... $\mathbf{u}^{(n)}$ $Q = \text{orthogonal matrix whose columns span space spanned by} \{\mathbf{u}^{(i)}\}$

Galerkin condition: make residual orthogonal to spanning space

 $r = f - A_{\boldsymbol{\xi}} \tilde{\mathbf{u}}_h(\boldsymbol{\xi}) = f - A_{\boldsymbol{\xi}} Q \mathbf{y}_{\boldsymbol{\xi}}$ orthogonal to Q

Result is reduced problem: Galerkin system of order $n \ll N$: $[Q^T A Q] \mathbf{y}_{\boldsymbol{\xi}} = Q^T f, \quad \tilde{\mathbf{u}}_h(\boldsymbol{\xi}) = Q \mathbf{y}_{\boldsymbol{\xi}}$

Goal: Have reduced model capture features of the model at significantly lower cost

How are costs reduced?

Matrix A of order N

Reduced matrix $Q^T A Q$ of order $n \ll N$

Solving reduced matrix is cheap for small n

Note: making assumption that $\mathcal{L}_{\boldsymbol{\xi}}$ is affinely dependent on $\boldsymbol{\xi}$

$$\mathcal{L}_{\boldsymbol{\xi}} = \sum_{i=1}^{k} \phi_i(\boldsymbol{\xi}) \mathcal{L}_i$$

$$\Rightarrow A_{\boldsymbol{\xi}} = \sum_{i=1}^{k} \phi_i(\boldsymbol{\xi}) A_i$$

$$\Rightarrow Q^T A_{\boldsymbol{\xi}} A = \sum_{i=1}^{k} \phi_i(\boldsymbol{\xi}) [Q^T A_i Q]$$

Means: constructing reduced matrix for new $\boldsymbol{\xi}$ is cheap

Key question: does reduced basis capture features of model?

Reduced Basis Methods for Parameter-Dependent PDEs Reduced Basis + Sparse Grid Collocation Effectiveness of this Approach: Linear Examples

Strategy for generating a basis / choosing snapshots (Patera, et al.):

For $\tilde{u}_h(\cdot, \boldsymbol{\xi}) \approx u_h(\cdot, \boldsymbol{\xi})$ (equivalently, $\tilde{\mathbf{u}}_{\boldsymbol{\xi}} \approx \mathbf{u}_{\boldsymbol{\xi}}$), use an error indicator $\eta(\tilde{u}_h) \approx ||e_h||$, $e_h = u_h - \tilde{u}_h$

Given: a set of candidate parameters $\mathcal{X} = \{\xi\}$, an initial choice $\xi^{(1)} \in \mathcal{X}$, and $u^{(1)} = u(\cdot, \xi^{(1)})$ Set $Q = \mathbf{u}^{(1)}$ while $max_{\xi \in \mathcal{X}} (\eta(\tilde{u}_h(\cdot, \xi))) > \tau$ compute $\tilde{u}_h(\cdot, \xi)$, $\eta(\tilde{u}_h(\cdot, \xi))$, $\forall \xi \in \mathcal{X}$ % use current reduced let $\xi^* = argmax_{\xi \in \mathcal{X}} (\eta(\tilde{u}_h(\cdot, \xi)))$ % basis if $\eta(\tilde{u}_h(\cdot, \xi^*)) > \tau$ then augment basis with $u_h(\cdot, \xi^*)$, update Q with \mathbf{u}_{ξ^*} endif end

Potentially expensive, but just viewed as "offline" *preprocessing* "*Online*" simulation done using reduced basis

Reduced Basis Methods for Parameter-Dependent PDEs Reduced Basis + Sparse Grid Collocation Effectiveness of this Approach: Linear Examples

Reduced Basis + Sparse Grid Collocation

Adapt to sparse grid collocation: Recall collocation solution

$$u_{q}^{(hp)}(x,\boldsymbol{\xi}^{(k)}) = \sum_{\boldsymbol{\xi}^{(k)} \in \Theta_{q}} u_{c}(x,\boldsymbol{\xi}^{(k)}) L_{\boldsymbol{\xi}^{(k)}}(\boldsymbol{\xi})$$
(1)

Main ideas:

1. Use sparse grid collocation points as candidate set \mathcal{X} ,

2. Use reduced solution as coefficient $u_c(\cdot, \boldsymbol{\xi}^{(k)})$ whenever possible

for each sparse grid level
$$p$$
 Algorithm
for each point $\boldsymbol{\xi}^{(k)}$ at level p
compute reduced solution $u_R(\cdot, \boldsymbol{\xi}^{(k)})$
if $\eta(u_R(\cdot, \boldsymbol{\xi}^{(k)})) \leq \tau$, then
use $u_R(\cdot, \boldsymbol{\xi}^{(k)})$ as coefficient $u_c(\cdot, \boldsymbol{\xi}^{(k)})$ in (1)
else
compute snapshot $u_h(\cdot, \boldsymbol{\xi}^{(k)})$, use it as $u_c(\cdot, \boldsymbol{\xi}^{(k)})$ in (1)
augment reduced basis with $u_h(\cdot, \boldsymbol{\xi}^{(k)})$, update Q with $\mathbf{u}_{\boldsymbol{\xi}^{(k)}}$
end
end

Reduced Basis Methods for Parameter-Dependent PDEs Reduced Basis + Sparse Grid Collocation Effectiveness of this Approach: Linear Examples

To Assess Effectiveness

Benchmark problems: Diffusion equation $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$ in \mathbb{R}^2

Piecewise constant diffusion coefficient parameterized as a random variable $\boldsymbol{\xi} = [\xi_1, \cdots, \xi_{N_D}]^T$ independently and uniformly distributed in $\Gamma = [0.01, 1]^{N_D}$

(a) Case 1: N_D subdomains (b) Case 2: $N_D = \tilde{N} \times \tilde{N}$ subdomains

To assess effectiveness: consider

Full snapshot set, set of snapshots for all possible parameter values: $S_{\Gamma} := \{u_h(\cdot, \boldsymbol{\xi}), \, \boldsymbol{\xi} \in \Gamma\}$

Finite snapshot set, for finite $\Theta \subset \Gamma$: $S_{\Theta} := \{u_h(\cdot, \xi), \xi \in \Theta\}$

Question:

How many samples $\{\xi\} / \{u_h(\cdot, \xi)\}\$ are needed to accurately represent the features of S_{Γ} ?

Experiment: to gain insight into this, estimate "rank" of S_{Γ} Generate a large set Θ of samples of ξ Generate the finite snapshot set S_{Θ} associated with Θ Construct the matrix S_{Θ} of coefficient vectors \mathbf{u}_{ξ} from S_{Θ} Compute the rank of S_{Θ}

Results follow. Used 3000 samples

Experiment was repeated ten times with similar results

Reduced Basis Methods for Parameter-Dependent PDEs Reduced Basis + Sparse Grid Collocation Effectiveness of this Approach: Linear Examples

Estimated ranks of \mathcal{S}_{Γ} for two classes of benchmark problems

Case 1	Grid	2	3	4	5	6	7	8	9	10
	$\begin{array}{r} 33^2 = 1089 \\ 65^2 = 4225 \\ 129^2 = 16641 \end{array}$	3 3 3	12 12 12	18 18 18	30 30 28	40 40 39	53 48 48	55 55 55	76 70 72	84 87 81
Case 2	N _D Grid	4	9	1	.6	25	36	49)	64

ise 2	Grid	4	9	16	25	36	49	64
	$33^2 = 1089$	27	121	193	257	321	385	449
	$65^2 = 4225$	28	148	290	465	621	769	897
	$129^2 = 16641$	28	153	311	497	746	1016	1298

Trends:

- Rank is dramatically smaller than problem dimension N
- Rank is independent of problem dimension (\sim (mesh size)⁻²)
- In most cases, cost of treating reduced problem of given rank is low

Reduced Basis Methods for Parameter-Dependent PDEs Reduced Basis + Sparse Grid Collocation Effectiveness of this Approach: Linear Examples

Comparison with algorithm performance

Case 1, 5 \times 1 subdomains, 05 \times 05 grid, rank
--

q	6	7	8	9	10	11	12	13	16
$ \Theta_q $ tol	11	61	241	801	2433	7K	19K	52K	870K
10^3	10	9	0	0	0	0	0	0	0
10^{-4}	10	11	1	0	0	0	0	0	0
10 ⁻⁵	10	13	0	0	0	0	0	0	0

Case 1, 9×1 subdomains, 65×65 grid, rank=70, tol = 10^{-4}

q	10	11	12	13	14	15	16	17
$ \Theta_q $	19	181	1177	6001	26017	100897	361249	1218049
N _{full solve}	18	34	2	1	1	0	0	0

Reduced Basis Methods for Parameter-Dependent PDEs Reduced Basis + Sparse Grid Collocation Effectiveness of this Approach: Linear Examples

Comparison with algorithm performance

Case 2, 2×2 subdomains, 65×65 grid, rank=28

q	5	6	7	8	9	10	11	12	15
$ \Theta_q $ tol	9	41	137	401	1105	2.9K	7.5K	18.9K	272K
10 ⁻³	7	11	3	0	0	0	0	0	0
10^{-4}	7	12	3	0	0	0	0	0	0
10^{-5}	7	13	2	3	0	0	0	0	0

Case 2, 4×4 subdomains, 65×65 grid, rank=290, $tol = 10^{-4}$

q	17	18	19	20	21
$ \Theta_q $	33	545	6049	51137	353729
N _{full solve}	32	168	27	3	4

Reduced Basis Methods for Parameter-Dependent PDEs Reduced Basis + Sparse Grid Collocation Effectiveness of this Approach: Linear Examples

To assess accuracy: Examine error (vs. reference solution) in expected values of full or reduced collocation solution:

Full collocation
$$\epsilon_h := \left\| \tilde{\mathbb{E}} \left(u_q^{hsc} \right) - \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0 / \left\| \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0$$

Reduced collocation $\epsilon_R := \left\| \tilde{\mathbb{E}} \left(u_q^{rsc} \right) - \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0 / \left\| \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0$

Reduced-Order Models for Stochastic Partial Differential Equations

Reduced Basis Methods for Parameter-Dependent PDEs Reduced Basis + Sparse Grid Collocation Effectiveness of this Approach: Linear Examples

Different example: diffusion coefficient with KL expansion:

Diffusion coefficient
$$a_0 + \sigma \sum_{r=1}^m \sqrt{\lambda_r} a_r(\mathbf{x}) \xi_r$$

From covariance function $c(\mathbf{x}, \mathbf{y}) = \sigma \exp\left(-\frac{|x_1-y_1|}{c} - \frac{|x_2-y_2|}{c}\right)$

Smaller correlation length $c \sim$ more terms mExamine c = 4, m = 4 and c = 2.5, m = 8.

Reduced-Order Models for Stochastic Partial Differential Equations

Concluding Remarks

For PDEs with uncertain, parameter-dependent coefficients:

- Spectral methods: stochastic Galerkin, stochastic collocation, offer prospects for fast solution
- They suffer from "the curse of dimensionality"
- Costs of collocation can be reduced using reduced basis methodology