Decoding neuroproteomics: integrating the

proteome with the transcriptome and genome

Page 4: [2] Deleted	Rob	6/5/14 5:01 PM
but almost all have reported y	alues between 50 70%:	

but almost all have reported values between 50-70%;

Page 7: [3] Deleted	Rob	6/5/14 5:23 PM
aim to more tightly i	ntegrate analyses of the proteome	with the transcriptome.
Experimental methodo	logies such as ribosome profiling,	single molecule RNA-
sequencing, and top-do	wn MS/MS profiling of intact proteins	enable greater selectivity
and sensitivity to mole	ecules that are actively involved in	the process of protein
production and greate	r specificity to the exact structure of	of these transcripts and
isoforms. Similarly,		

Page 7: [4] Moved to page 7 (Move #3) Rob	6/5/14 5:24 PM
Utilising ribosome footprinting to identify coding sequences and	translation initiation
sites has produced moderate increases in the yield of peptide s	pectra in the same
samples ⁵⁸ .	

Page 7: [5] Deleted	Rob	6/5/14 5:27 PM
Utilising ribosome for	ootprinting to identify coding sequences a	and translation initiation
sites has produced	moderate increases in the yield of peptic	de spectra in the same
samples ⁵⁸ .		

Page 7: [6] Deleted	Rob	6/5/14 5:31 PM
information obtained from various		

Page 7: [7] Deleted	Rob	6/5/14 5:43 PM
dynamics cellular processes through		

Page 9: [8] Moved to page 7 (Move #1)	Rob	5/5/14 12:34 PM
---------------------------------------	-----	-----------------

Alternative RNA-splicing (AS) is well known to be a highly tissue-specific process⁹ that greatly increases the complexity of the potential set of RNA molecules produced from multi-exon genes. Splicing in the brain has been extensively profiled using transcriptomics and specific instances of alternative transcript usage have been implicated in neuropsychiatric disorders⁷⁸. During CNS cell development, for example,

alternative splicing (AS) in neuronal progenitor stem cells has revealed different isoform usage at different stages of maturation to the final neuronal state⁷⁹. The differential expression of DISC1 isoforms that are associated with schizophrenia⁸⁰, not to mention the translocation itself⁸¹. Validation of splicing events by MS/MS is quite common, either in terms of determining the contribution of known isoforms in a given experiment [ref], or verifying the existence of novel exon junctions identified by RNA-sequencing⁸².[1]

A recent result that potentially has a significant impact on both the future analyses of the CNS and interpretation of proteomics data is the finding that most genes, in a given celltype or tissue, tend to express only a single dominant transcript/isoform⁸³. The myelin basic protein (MBP), for example, expresses a completely different isoform in the brain compared to all other healthy human tissues⁸³. This has a direct impact on the so-called interactome, in which differential isoform usage between CNS cell types and during the progression of neurological disorders affects protein-protein interactions, as exemplified in the Autism Spliceform Interaction Network⁸⁴. Currently full-length transcript^{85,86} and isoform⁸⁷ profiling technologies are immature⁸⁸, however an early example of full-length transcript profiling in the brain directly observed the various isoforms of neurexin, showing their production mediates distinct protein interactions across the synapse⁸⁹. Such investigations will only become more common, and have great potential to significantly simplify the process of integrating and interpreting genome-wide measurements of RNA and protein in the near future.

Page 10: [9] Deleted

Rob

6/5/14 4:40 PM

There have been many proteomic studies of the CNS by MS/MS, and these have been enumerated in previous reviews⁸⁸⁻⁹⁰. More recent applications of MS/MS to the CNS include the profiling of neural tissue in model organisms such as the fruit fly⁹¹ and neurodegeneration in zebrafish⁹², as well as profiling cultures of specific CNS cell-types in primary culture such as neurons⁹³ and oligodendroglial cells⁹⁴. Fluorescence activated cell sorting (FACS) of microglia has provided more than 100 genes that are enriched compared to neurons and other oligodendrocytes⁹⁵ and enabled MS/MS assessment of synaptic proteins⁹⁶. A novel method, fluorescence activated nuclei sorting (FANS), in combination with an antibody against the neuronal-specific splicing protein, NeuN, has been successfully applied to purify neuronal nuclei from primary tissue in order to provide a quantitative comparison of the abundance of nuclear proteins with astrocytes and oligodendrocytes⁹⁷.

Page 11: [10] Deleted

Rob

Monitoring rates of protein production and degradation can be achieved fairly straightforwardly in cultured cells by pulse-labelling followed by SILAC proteomics⁹⁸. Similarly, nascent peptide chains can be captured as they are synthesised by the ribosome using a biotin-puromycin labelling approach⁹⁹. However these approaches do not lend themselves to assessment of rates of protein turnover in mammalian and human tissues. Integration with transcriptome profiling, specifically ribosome profiling, is an increasingly attractive proxy to direct measurement of protein synthesis. Similarly, non-invasive imaging methods are potentially valuable methods by which differential rates of protein synthesis can be repeatedly observed in the mammalian CNS¹⁰⁰, both over long and relative short periods of time.

The major obstacle to any genome/transcriptome/proteome wide study of neuronal cells derives from their immense heterogeneity.

Page 14: [11] Deleted	Rob	6/5/14 10:38 PM
ruge I n [II] Deleteu	1105	0,0,11,10,00,1,01

There are methods to monitor protein dynamics, but these are not particularly applicable to the mammalian CNS.

Monitoring rates of protein production and degradation can be achieved fairly straightforwardly in cultured cells by pulse-labelling followed by SILAC proteomics⁹⁸. Similarly, nascent peptide chains can be captured as they are synthesised by the ribosome using a biotin-puromycin labelling approach⁹⁹. However these approaches do not lend themselves to assessment of rates of protein turnover in mammalian and human tissues. Integration with transcriptome profiling, specifically ribosome profiling, is an increasingly attractive proxy to direct measurement of protein synthesis. Similarly, non-invasive imaging methods are potentially valuable methods by which differential rates of protein synthesis can be repeatedly observed in the mammalian CNS¹⁰⁰, both over long and relative short periods of time.