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Abstract 

 
As the cost of sequencing gets cheaper, more personal genomes are being sequenced via large genome 

sequencing projects and clinical sequencing. These efforts have found a large number of genomic variants. 

An increasingly important challenge is to functionally annotate variants in personal genomes on a large 

scale, especially those regulatory variants located in the non-coding genome. This can be done by 

overlapping readouts from functional genomic assays such as RNA-seq and ChIP-seq. We focus on a 

specific class of regulatory variation that is made up of variants associated with allele-specific behavior, 

which is exhibited when a differential phenotypic effect, such as binding or transcription, is observed 

between the two alleles in a diploid genome. This effect can be reflected by an allelic imbalance in the 

signals from the functional genomic assays. Previous allele-specific analyses have based mainly on either 

a few deeply-sequenced, well-annotated genomes or a single assay over the genomes of a variety of 

individuals. Here, we endeavor to combine data across multiple studies to detect allele-specific variants. 

Unfortunately, allele-specific variants detection is sensitive to various technical issues such as 

heterozygous variant detection and read mapping. Hence, simply pooling the results of these disparate 

studies is not optimal. Moreover, different studies use various tools, parameters and thresholds. Therefore, 

it is imperative to subject each dataset to uniform processing. To this end, we pool DNA sequences, 

RNA-seq and ChIP-seq data from separate data sources. This amounted to 383 individuals from seven 

ancestries and we put them through a standardized processing pipeline. We consolidate the results in a 

database, AlleleDB. We are able to annotate ~168K putative variants that assess allele-specific binding 

(ASB) of DNA-binding factors and ~143K variants in allele-specific expression (ASE) of genes, using 

ChIP-seq and RNA-seq data respectively. Across the seven populations, the number of ASB and ASE 

SNVs vary, with the Africans possessing the most number of AS variants in general. Within a high 

coverage European personal genome, there is an average of ~1% and 2% SNVs of ASB and ASB SNVs 

among heterozygous SNVs. Additionally, using data from only unrelated individuals and ~1000 

categories of genomic annotations, we are able to define ~800 categories of non-coding genomic regions 

and ~800 protein-coding genes that are significantly enriched or depleted of ASB and ASE variants 

respectively, thereby ascertaining the susceptibility of allele-specific regulation to various elements of the 

human genome. These data and analyses will aid in the functional annotation of regulatory variation in 

personal genomes. 
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Introduction 

 
In recent years, the number of personal genomes has increased dramatically, from single individuals [cite 

Watson, venter] to large sequencing projects such as the 1000 Genomes Project,[cite] UK10K [cite] and 

the Personal Genome Project [cite]. These efforts have provided the scientific community with a massive 

catalog of human genetic variants, most of them rare.[cite] Subsequently, one of the major challenges is 

to functionally annotate all of these variants.  

 

Much of the characterization of variants so far has been focused on those found mainly in the protein-

coding regions, but the advent of large-scale functional genomic assays, such as ChIP-seq and RNA-seq, 

has facilitated the annotation of genome-wide variation. This can be accomplished by correlating some 

form of functional readouts from the assays to genomic variants, particularly in identifying regulatory 

variants, such as mapping of expression quantitative trait loci (eQTLs) and allele-specific (AS) 

variants.[cite] eQTLs are detected by assessing the effects of variants on expression profiles across a large 

population of individuals. A sizeable cohort is required in order to achieve statistical power to detect 

variants of low frequencies, which places a constraint in the annotation of variants in personal genomes. 

On the other hand, allele-specific approaches assess phenotypic differences at heterozygous loci within a 

single genome, so that each allele at these positions in a diploid genome acts as a perfectly matched 

control for the other allele. [cite old and new papers] As such, they can detect AS variants regardless of 

their allele frequencies. Therefore, it is very useful to identify AS variants on a large scale, in terms of 

functionally annotating personal genomes.  

 

Early high throughput implementations of AS approaches employed microarray technologies, and thus 

are restricted to a subset of loci.[cite 2002 Yan] Later studies have used ChIP-seq and RNA-seq 

experiments for genome-wide scans of AS variants but have been mostly limited to a few individuals with 

deeply-sequenced and well-annotated genomes,[cite] or a single assay with a variety of individuals.[cite] 

Consequently, there is a need to garner more RNA-seq and ChIP-seq data for more extensive allele-

specific analyses. While a straightforward strategy is to increase the number of individuals and 

experimental assays (e.g. number of transcription factors for ChIP-seq experiments on a single individual), 

this requires large amounts of resources. A less expensive alternative is to tap into the wealth of existing 

ChIP-seq and RNA-seq experimental data, by pooling already available datasets from numerous studies. 

For instance, GM12878, a very well-characterized lymphoblastoid cell-line from a Caucasian female, has 

several RNA-seq datasets and a huge trove of ChIP-seq data of more than 50 transcription factors (TFs) 

distributed in more than 1 studies.[cite, ENCODE, kasowski, Kilpinen] Merging of these datasets has 

obvious advantages in analyses, be it increasing statistical power or simply having more features for more 

inter-individual comparisons (such as TFs and populations).  

 

Unfortunately, allele-specific variant detection is extremely sensitive to the technical issues from SNV 

calling and RNA-seq and ChIP-seq experiments, such as heterozygous variant calling and read mapping.   

Moreover, studies with the appropriate datasets are typically designed for various purposes, resulting in 

disparate sets of computational tools, strategies and threshold parameters used in the processing of data in 

the respective studies. These portend that a simple pooling of results from multiple studies may not be 

optimal, even for the same biological sample. Further, suitable datasets are scattered in the literature. 

Thus, the tasks of searching and then merging have to be carried out in a uniform and meaningful manner 

to yield interpretable results. To this end, we organize and unify datasets from eight different studies into 

a comprehensive data corpus and repurpose it specifically for allele-specific analyses. In total, we 

reprocess 142 ChIP-seq and 475 RNA-seq datasets of 383 individuals in our uniform pipeline (Figure 1). 

Coupled with the construction of 383 personal genomes using variants from the 1000 Genomes Project, 

we detect more than 168K and 143K single nucleotide variants (SNVs) associated with ASB and ASE 

events respectively. We construct a database to house all the personal genomes and detected AS SNVs. 

Finally, using our consolidated data, we are able to present a systematic and unbiased survey of these 
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detected allele-specific SNVs in 382 unrelated individuals of seven ethnicities in various categories of 

genomic elements and to investigate the inheritance of allele-specific binding in eight different 

transcription factors in a Caucasian trio family. 

 

 

Results 
 

AlleleDB, a resource for allele-specific behavior genome annotation 
There are two layers of information with respect to an individual that needs to be integrated in order to 

more accurately detect allele-specific SNVs: (1) the DNA sequence of the individual, and (2) reads from 

either the RNA-seq or ChIP-seq experiment to look for SNVs associated with allele-specific expression 

(ASE) or binding (ASB) (Figure 1). Here, we implement a uniform pipeline (see Methods) to combine 

personal genomic, transcriptomic and binding data and to standardize our detection of potential allele-

specific SNVs. Eventually, our pipeline detected a total of 143,316 unique ASE SNVs for 382 unrelated 

individuals and 168,539 unique ASB SNVs from a collective ChIP-seq dataset of 19 transcription factors 

for 18 unrelated individuals. We also define a set of control SNVs, for each TF dataset (for ASB) and 

each individual expression dataset (for ASE). This is especially imperative in our enrichment analyses, 

which are highly dependent on the choice null expectation (controls). We first define a set of ‘accessible’ 

SNVs, which are heterozygous and possess at least the minimum number of reads that is determined 

separately for each ChIP-seq (grouped by TF, not by study) or RNA-seq dataset (Table 1). The control 

SNVs are a set of SNVs not identified to be allele-specific but is derived from the accessible SNVs. In 

other words, these controls are matched by both heterozygosity and statistical accessibility to the allele-

specific variants. Altogether, we identified a total of 665,860 and 409,708 accessible SNVs for ASE and 

ASB SNVs respectively. 

 

We build a database, AlleleDB (http://alleledb.gersteinlab.org/), to house the candidate allele-specific and 

accessible SNVs. AlleleDB can be downloaded as flat files or queried and visualized directly, in terms of 

gene or genomic locations, as a UCSC track in the UCSC Genome browser (Figure 1). [cite] This enables 

cross-referencing of allele-specific variants with other track-based datasets and analyses, and makes it 

amenable to all functionalities of the UCSC Genome browser. All heterozygous SNVs found in the 

stipulated query genomic region, including accessible SNVs, are color-coded (AS SNVs are red, others 

are black) in the displayed track.  

 

Enrichment analyses 
Of great interest, is the annotation of these allele-specific SNVs with respect to known genomic elements, 

both coding and non-coding. Only ~56% of our candidate ASE SNVs and ~6% of ASB SNVs are found 

in coding DNA sequences (CDS). Using the AlleleDB variants found in the personal genomes of 380 

unrelated individuals from Phase 1 of the 1000 Genomes Project and the 2 parents of the trio, we further 

investigate the enrichment (or depletion) of these AS SNVs in ~20,000 CDS regions of protein-coding 

genes from GENCODE and 953 categories of non-coding genomic elements, including annotations from 

GENCODE, DNaseI hypersensitivity sites [cite], enhancers [cite] and transcription binding motifs from 

ENCODE.[cite, Methods] The comparisons are performed using Fisher’s exact test with respect to the 

control set of accessible SNVs within the regions tested. Overall, for ASB SNVs, we observe statistical 

significance (p≤0.05) for 787 non-coding categories and 15 genes and for ASE SNVs, 598 non-coding 

categories and 831 genes.  

 

Figure 2 shows the enrichment of elements more closely related to a gene structure, namely enhancers, 

promoters, CDS, introns and untranslated regions (UTR). In general, both categories of AS SNVs are 

more likely found in the 5’ and 3’ UTRs, suggesting allele-specific regulatory roles in these regions. [any 

lit evidence? For regulation? Regulatory role allelespecific] On the other hand, intronic regions seem to 

exhibit a dearth of allele-specific regulation. For SNVs associated with allele-specific expression (ASE), a 
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greater enrichment in 3’ UTR than 5’ UTR regions might be, in part, a result of known RNA-seq 

bias.[cite] For SNVs associated with allele-specific binding (ASB), we also observe an enrichment in the 

promoters, hinting at functional roles in these variants found in TF binding motifs or peaks found near 

transcription start sites in the promoter regions to regulate gene expression. However, we observe variable 

enrichments of ASB SNVs of particular TFs in promoter regions such as RPB2 and SA1, while depletion 

in others, such as PU.1 and POL2 (Figure 2, Supp fig). These differences imply that some TFs are more 

likely to participate in allele-specific regulation than others. Enrichments of ASE, as well as, ASB SNVs 

are both observed in CDS. Several studies have found that many TFs bind in the protein-coding regions, 

for instance to regulate codon usage. [cite, Supp table] More ASB SNVs found in these regions might 

suggest an allele-specific mechanism to such regulatory roles of the TFs.  

 

We also compute the enrichment of AS SNVs in various gene categories. Some of them have been known 

to be involved in monoallelic expression (MAE), namely (1) imprinted genes [cite], and three sets of 

genes known to undergo allelic exclusion: (2) olfactory receptor genes [cite], (3) immunoglobulin, (4) 

genes associated with T cell receptors and the major histocompatibility complex [cite]. (5) A list of genes 

found to experience random monoallelic expression in a study by Gimelbrant et al is also included. [cite]. 

As expected, all of these MAE gene sets have been found to be significantly enriched in ASE SNVs, 

especially when compared to the constitutively expressed housekeeping genes, which show no 

enrichment at all (Figure 2). We also see that the overall enrichment of CDS regions in all genes (Figure 2) 

is largely a consequence of highly enriched MAE gene sets (Supp fig). However, in terms of ASB SNVs, 

almost all the MAE gene categories are enriched except for the olfactory receptor genes. This might 

imply that allele-specific expression is coordinated by allele-specific binding events at most MAE loci, 

while at the olfactory receptor genes, another mechanism might predominate for allele-specific expression. 

It could also be due to missing TFs from our dataset that might be coordinating the allele-specific 

expression. Also interestingly, a statistically significant enrichment of ASB SNVs is observed in the 

housekeeping genes, without resulting in any allele-specific expression. 

 

Allele frequency analyses 
To examine the occurrence of ASE and ASB SNVs in the human population, we consider the population 

minor allele frequencies (MAF) from Phase 1 of the 1000 Genomes Project. Table 1 shows the 

breakdown of the accessible and AS SNVs in seven ethnic populations and allele frequencies. YRI 

(Yoruba from Nigeria) contributes the most to both ASE and ASB variants at each allele frequency 

category. While very rare AS SNVs with MAF ≤ 0.005 comprise a considerable proportion in each 

population, it is about two folds higher in the YRI (~48% ASE SNVs and ~34% ASB SNVs with MAF ≤ 

5%) than the other European sub-populations of comparable (CEU, FIN) or larger (TSI) population sizes.  

 

In general, rare variants do not form the majority of all the AS variants. Nonetheless, we observe a skew 

towards very low allele frequencies in AS SNVs, peaking at MAF ≤ 0.5%, compared to other MAF 

categories (Figure 3). However, such an enrichment of very rare SNVs is exhibited more in non-allele-

specific SNVs (ASE-, ASB-) than in the corresponding allele-specific SNVs (ASE+, ASB+). Comparing 

ASE+ to ASE- gives an odds ratio of 0.67 (hypergeometric p < 2.2e-16), while comparing ASB+ to ASB-, 

gives an odds ratio of 0.96 (p=0.0021), signifying statistically significant depletion of AS variants relative 

to non-AS variants in both cases.  

 

Common SNVs (MAF > 5%) constitute the majority of the ASE and ASB variants in all populations. 

This is especially useful in functional annotation of variants via aggregation analyses [cite]. In the high-

coverage personal genome of NA12878, 2% of heterozygous sites (~2,000 SNVs) potentially tag for ASE 

(Supp Table) and 1%. 

 

ASB Inheritance analyses using CEU trio 
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The CEU trio is a well-studied family and particularly, many ChIP-seq studies were performed on 

different TFs. Unifying these studies and pooling the data presents an opportunity to investigate the 

inheritance of allele-specific behavior using data from more TFs. While previous studies have also 

observed strong inheritance, the datasets are usually limited to a few TFs [cite McDaniel Kilpinen]. Using 

variants derived from high-coverage genomes of the CEU family trio, we investigate the inheritance of 

allele-specific binding events in eight DNA-binding proteins (Figure 4 and Supp fig). For the DNA-

binding protein CTCF, we observe a high parent-child correlation, i.e. significantly more points in the B 

and C quadrants (red boxes in Figure 4) compared to the A and D quadrants (grey boxes in Figure 4), 

denoting great similarity in allelic directionality (binomial p=5.7e-48 and p=2.0e-54). The inheritance of 

AS SNVs in the same allelic direction from parent to child implies a sequence dependency in allele-

specific behavior. While there is also a high correlation between the unrelated parents, the number of 

common allelic SNVs in both parents is substantially lower. We interpret this as a combined effect of the 

sequence heritability of AS behavior and genetic similarity within the same population. Besides CTCF, 

PU.1 (p=xx) and POL2 (p=xx) also show AS inheritance. On the contrary, MYC (binomial p=8.2e-5 and 

p=1.1e-7), PAX5 (p=xx), RPB2 (p=xx) and SA1 (p=xx) exhibit enrichment of points in quadrants B and 

C with very much lower statistical significance, indicating that AS inheritance is not as apparent in some 

TFs – inheritance of AS behavior may not be a universal phenomenon.  

 

 

Discussion 

 
It has been known that there is considerable inter-individual variability in gene regulation. [cite] Genetic 

variants associated with allele-specific regulation constitute a portion of cis-regulatory variation. Research 

on regulatory variants so far has also focused on eQTL mapping and consequently common variants. AS 

approaches provide several advantages that can be complementary to eQTL mapping. First, for eQTLs to 

be detected, it has to exist in significant allele frequencies relative to the population and effect sizes.[cite] 

On the other hand, allele-specific behavior can be detected across any heterozygous site, regardless of its 

allele frequency. This is extremely important in light of two aspects: the vast number of rare variants 

found to be present in the human population by the 1000 Genomes Project and a sizeable proportion of 

AS SNVs that are rare variants, as observed in our study and others.[cite] Second, in eQTL mapping, 

correlation is drawn between total expression measured between individuals and their genotypes, that is, 

allele-insensitive. As such, effects from factors such as negative feedback mechanism that sought to 

reduce total expression variance across individual genomes with different genotypes will not be detected. 

However, in an AS approach, difference in expression between alleles can still be detected. Such a 

within-individual control in an AS approach also eliminates normalization issues across multiple assays, 

since factors that phenotypic differences between individuals due to various environmental conditions are 

being controlled for. Third, eQTL mapping is contingent on population size for sufficient statistics, while 

the allele-specific approach works for a single individual’s genome. This makes it an attractive strategy 

for biological samples such as primary cells and tissues that are difficult to obtain in large numbers. 

 
Even though AS variant detection works very well for a personal genome, the enrichment of rare variants 

in the human variant catalog and considerable unexplained inter-individual variability in gene regulation 

indicate that it is still valuable to gather more personal genomes and their corresponding functional 

datasets to discover more private SNVs that might be involved in regulation. More personal genomes also 

allow more comprehensive inter-individual comparisons. Previous ChIP-seq and RNA-seq studies have 

focused mainly on a few genomes for either ASE or ASB analyses. [cite a few papers] Also, studies 

investigating ASB has been limited to a few DNA-binding proteins, such as CTCF and POL2. As such, 

the main motivation is to develop a scalable uniform pipeline to capitalize on existing ChIP-seq and 

RNA-seq datasets that might have been used for other research objectives and repurpose them for allele-

specific analyses, without having to generate new ones.  
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A search for datasets shows a dearth of personal genomes with ChIP-seq and RNA-seq data in non-

European and non-African populations. It could be a strong reflection on the lack of large-scale functional 

genomics assays in specific ethnic groups – a concern echoed previously in population genetics and is 

recently being increasingly addressed.[cite Bustamente review on research diversity] Also, since many 

AS variants have been found to be rare at both the individual and the sub-population level, it is of great 

interest and importance that more individuals of diverse ancestries be represented. 

 

Our analyses place an emphasis on relating allele-specific activity to known genomic elements, such as 

CDS and various non-coding regions. Together, these aid in the enduring effort of characterizing genomic 

variants on two levels: firstly, at the single nucleotide level, where our detected AS SNVs can serve as an 

annotation to the 1000 Genomes Project variant catalog in terms of allele-specific cis-regulation; secondly, 

by associating AS SNVs with gene models such as promoters and enhancers, we might be able to define 

categories of genomic regions more susceptible to allele-specific activity. A comparison between 

enrichment of ASB and ASE SNVs in the same category of genomic region can also help shed light on 

coordination of regulation by allele-specific TF binding and allele-specific expression in genes. More 

experimental characterization would be required to determine if such allele-specific or differential binding 

(evidenced by ChIP-seq experiments) do exist and if so, whether it leads to any phenotypic differences at 

all. A recent paper found that many TFs do not actually elicit any change in gene expression when 

knocked out. [cite 2014 paper by pritchard and gilad] 

 

In our analyses, we also assess the enrichment of rare variants, defined by minor allele frequencies in the 

human population (from the 1000 Genomes Project). There is a substantial number of very rare AS SNVs 

with MAF ≤ 0.5% (~17% in ASE and ~5% in ASB, Figure 3). This group of SNVs is inaccessible to 

eQTL mapping and the number is expected to increase with more personal genomes. Also, the enrichment 

of rare variants has been shown to be a considerable indicator for negative selection, where conserved, 

and probably functional, regions are shown to possess an enrichment of rare variants.[cite] Even though 

rare variants constitutes a considerable proportion in each AS and non-AS allele frequency spectrum, our 

results show lower enrichment of rare variants in AS SNVs when compared to non-AS SNVs. This posits 

that, as a whole, AS SNVs are under less selective constraints than non-AS SNVs. This observation was 

also noted in previous studies using only a high-coverage single individual [cite encodenets, alleleseq]. A 

weaker selection may also account for more toleration to varying gene expression profiles across 

individuals.  

 

The final data and results are centralized in AlleleDB, which conveniently plugs into the UCSC genome 

browser for query and visualization. Since many in the scientific community are familiar with the genome 

browser, we hope that this would increase the accessibility and usability of AlleleDB. The query results 

are also available for download in the BED format, which is compatible with other tools, such as the 

Integrated Genome Viewer [cite]. More in-depth analyses can be performed by downloading the full set 

of AS results. For ASB, the output will be delineated by the sample ID and the associated TFs; for ASE, 

the output will be categorized by individual and the associated gene. We also provide the raw counts for 

each accessible SNV and indicate if AlleleSeq identified it as an AS SNV. AlleleDB also serves as an 

annotation of allele-specific regulation of the 1000 Genomes Project SNV catalog, for use by the 

scientific community especially for research in gene expression. 

 
Finally, we have shown that there is great value and utility in pooling of data and it has to be processed in 

a uniform fashion to eliminate issues of heterogeneity in various standards and parameters etc. However, 

there are still several concerns. First, our current catalog of AS SNVs are detected in lymphoblastoid cell 

lines (LCLs) and most genomic sequences and functional genomic datasets in the literature are 

predominantly derived from LCLs. However, it has already been known that there is considerable 

variability in regulation of gene expression in different tissues.[cite] More extensive projects are already 

underway to involve functional assays and sequencing in other tissues and cell lines, such as GTex [cite] 
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and ENCODE [cite]. Further, more accurate allelic information is also being achieved with the advent of 

longer reads to help in haplotype reconstruction and phasing in next-generation sequencing, [cite phased 

HeLa, Shendure, Church, Illumina, PacBio]. In light of the evolution of technology, and the availability 

of more personal genomes and functional genomics data, AlleleDB is intended as a scalable resource. 

This study provides an infrastructure that can accommodate new individual genomes (of potentially 

diverse ancestries), tissue and cell types, which can be similarly processed. Such should be especially 

valuable, not only for researchers interested in allele-specific regulation but also for the scientific 

community at large. 

 

 

Materials and Methods 

 

Genomic annotation 
Categories of genomic regions are obtained from (1) GENCODE and (2) ENCODE. (3) Genes for 

random monoallelic expression are from Gimelbrant et. al. [cite] (4) The olfactory receptor gene list is 

from [cite]; (5) immunoglobulin, T cell receptor and MHC gene lists are from [cite]. Enhancer lists are 

obtained from data at http://www.ebi.ac.uk/~swilder/Superclustering/concordances4/ [Hoffman et al, 

NAR, 2013; Hoffman et al, Nature Methods, 2013; and Ernst and Kellis, Nature Methods, 2012] and 

http://encodenets.gersteinlab.org/metatracks/ (described in Yip et al, Genome Biol, 2012). Promoter 

regions are set as 2kbp upstream of all transcripts annotated by GENCODE. Transcription factor motifs 

and peaks are obtained from TRANSFAC.[cite] 

 

Construction of diploid personal genomes 

There are a total of 383 genomes used in this study: 380 unrelated genomes, of low-coverage (average 

depth of 2.2 to 24.8) from Utah residents in the United States with Northern and Western European 

ancestry (CEU), Han Chinese from Beijing, China (CHB), Finnish from Finland (FIN), British in England 

and Scotland (GBR), Japanese from Tokyo, Japan (JPT), Toscani from Italy (TSI), and Yorubans from 

Nigeria (YRI) and 3 high-coverage genomes from the CEU trio family (average read depth of 30x from 

Broad Institute’s, GATK Best Practices v3; variants are called by UnifiedGenotyper). Each diploid 

personal genome is constructed from the SNVs and short indels (both autosomal and sex chromosomes) 

of the corresponding individual found in the 1000 Genomes Project. This is constructed using the tool, 

vcf2diploid. [cite] Essentially, each variant (SNV or indel) found in the individual’s genome is 

incorporated into the human reference genome, hg19. Most of the heterozygous variants are phased in the 

1000 Genomes Project; those that are not, are randomly phased. As a result, two haploid genomes for 

each individual are constructed. When this is applied to the family of CEU trio, for each child’s genome, 

these haploid genomes become the maternal and paternal genomes, since the parental genotypes are 

known. Subsequently, at a heterozygous locus in the child’s genome, if at least one of the parents has a 

homozygous genotype, the parental allele can be known. However, for each of the genomes of the 380 

unrelated individuals, the alleles, though phased, are of unknown parental origin. 

 

CNV genotyping is also performed for each genome by CNVnator,[cite] which calculates the average 

read depth within a defined window size, normalized to the genomic average for the region of the same 

length. For each low coverage genome, a window size of 1000 bp is used, while for the high coverage 

genomes, a window size of 100 bp is used. SNVs found within genomic regions with a normalized 

abnormal read depth <0.5 or >1.5 are filtered out, since these would mostly likely give rise to spurious AS 

detection. 

 

Allele-specific SNV detection  

AS SNV detection is generally performed by AlleleSeq. For each ChIP-seq or RNA-seq dataset, reads are 

aligned against each of the derived haploid genome (maternal/paternal genome for trio) using Bowtie 

1.[cite] No multi-mapping is allowed and only a maximum of 2 mismatches per alignment is permitted. 
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Sets of mapped reads from various datasets are merged into a single set for allele counting at each 

heterozygous locus. Here, a binomial p-value is derived by assuming a null probability of 0.5 sampling 

each allele. To correct for multiple hypothesis testing, AlleleSeq calculates FDR. Since statistical 

inference of allele-specificity of a locus is dependent on the number of reads of the ChIP-seq or RNA-seq 

dataset, this is performed using an explicit computational simulation, as described in the original 

AlleleSeq publication [cite]. Briefly, for each iteration of the simulation, AlleleSeq randomly assigns a 

mapped read to either allele at each heterozygous SNV and performs a binomial test. At a given p-value 

threshold, the FDR can be computed as the ratio of the number of false positives (from the simulation) 

and the number of observed positives. An FDR cutoff of 10% is used for ChIP-seq data and 5% for RNA-

seq data, since the latter is typically of deeper coverage. Furthermore, we allow only significant AS SNVs 

to have a minimum of 6 reads. For ChIP-seq data, AS SNVs have to be also within peaks. Peak regions 

are provided as per those called from each publication of origin, except for the dataset from McVicker et 

al. [cite], in which there are no peak calls. In the latter case, we determine the peaks by performing 

PeakSeq [cite] using the unmapped control reads provided via personal communication with the author 

[cite, parameters? Arif?].  

 

Enrichment analyses 
Accessible SNVs, in addition to being heterozygous, also exceed the minimum number of reads 

detectable statistically by the binomial test. This is an additional criterion imposed, besides the minimum 

threshold of 6 reads used in the AlleleSeq pipeline. The minimum number of reads varies with the pooled 

size (coverage) of the ChIP-seq or RNA-seq dataset. Given a fixed FDR cutoff, for a larger dataset, the 

binomial p-value threshold is typically lower, making the minimum number of reads (N) that will produce 

the corresponding p-value, larger. This alleviates a bias in the enrichment test for including SNVs that do 

not have sufficient reads in the first place. Considering an extreme allelic imbalance case where all the 

reads are found on one allele (all successes or all failures), this minimum N can be obtained from a table 

of expected two-tailed binomial probability density function (Supp Figure), such that accessible SNVs are 

all SNVs with number of reads, n = max(6,N). The control (non-AS) ASB or ASE SNVs are accessible 

SNVs excluding the respective ASB or ASE SNVs. Enrichment analyses are performed using the Fisher’s 

exact test. P-values are considered significant if < 0.05. 

 

AS inheritance analyses 

We compute the allelic ratio as the proportion of reads that align to the reference allele with respect to the 

total number of reads mapped to either allele of a particular site, for each pair of individuals in the trio 

family, i.e. parent-child and parent-parent. Since AS events can only be detected at heterozygous sites, we 

consider two scenarios: (1) when an AS SNV is heterozygous in all three individuals but common to the 

two individuals being compared, and (2) when an AS SNV is heterozygous in two individuals and 

homozygous (reference or alternate) in the third. P values are generated by a binomial test of quadrants B 

and C against a random null distribution (probability = 0.5). The p values are then ranked to determine a 

‘degree’ of allele-specific inheritance.  
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Figure caption 

 

Figure 1. Uniform processing of data from 343 individuals and construction of AlleleDB. For each of 

the 383 individuals, a diploid personal genome is first constructed using the variants from the 1000 

Genomes Project. Next, reads from ChIP-seq or RNA-seq data are mapped onto each of the chromosome 
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of the diploid genome. At each heterozygous SNV, a comparison is made between the number of reads 

that map to either allele, and a statistical significance (after multiple hypothesis test correction) is 

computed to determine if a SNV is allele-specific (AS). All the candidate AS variants are then deposited 

in AlleleDB database. Additional information such as raw read counts of both accessible non-AS and AS 

variants can be downloaded for further analyses. The database can also be queried and visualized directly 

as a track by the UCSC Genome Browser.  

 

 

Figure 2. Some genomic regions are more susceptible to allele-specific regulation. We can map 

variants associated with allele-specific binding (ASB; green) and expression (ASE; blue) to various 

genomic categories, such as coding DNA sequences (CDS), untranslated regions (UTRs), enhancer and 

promoter regions, to survey the human genome for susceptibility to allelic behavior.  Using the accessible 

non-AS SNVs as the expectation, we can compute the log odds ratio of ASB and ASE SNVs individually, 

via Fisher’s exact tests. The number of asterisks depicts the degree of significance: *, p<0.05; **, p<0.01; 

***, p<0.001. For each transcription factor (TF) in AlleleDB, we also calculate the log odds ratio of ASB 

SNVs in promoters, providing a proxy of allele-specific regulatory role for each available TF. Genes 

known to be monoallelically expressed such as imprinted and olfactory receptor genes (CDS regions) are 

highly enriched for both ASB and ASE SNVs (>1.5); the actual log odds ratio of T cell receptor genes for 

ASE SNVs and MHC genes for ASB and ASE SNVs are indicated on the bars.  

 

Figure 3. A considerable fraction of AS variants are rare but do not form the majority. Lesser 

proportion of AS SNVs than non-AS SNVs are rare, suggesting less selective constraints in AS 
SNVs. The minor allele frequency (MAF) spectra of ASB (green filled circle), accessible non-ASB SNVs 

(green open circle), ASE (blue filled circle) and accessible non-ASE SNVs (blue open circle) are plotted 

at a bin size of 100. The inset zoomed in on the histogram at MAF < 3%. 

 

Figure 4. Inheritance of allele-specific binding events is evident in some TFs but not so apparent in 

others. Here, the TFs CTCF (top row) and MYC (bottom row) are being examined for inheritance. For 

each TF, three plots compares two individuals in the CEU trio (Father: NA12891, Mother: NA12892, 

Daughter: NA12878), with the identity of the individual on the x-axis denoted by blue and that on the y-

axis by red. Each point on the plot represents the allelic ratio of a common ASB SNV between the two 

individuals, by computing the proportion of reads mapping to the reference allele at that SNV, i.e. SNVs 

in the red quadrants (quadrants B and C in legend) signify that the allelic behavior is in the same direction 

in both individuals. The significance is statistically evaluated by the p value of a binomial test (under each 

plot). In CTCF (top row), there is an enrichment of points in quadrants B and C (red quadrants) versus A 

and D (grey quadrants) in parent-child comparisons (first 2 columns), with very significant p values. This 

signifies that inheritance of ASB is evident in CTCF. For parent-parent transmission (third column), both 

parents belong to the same ancestry, thus we expect ASB SNVs to be similar (B+C quadrants than in 

A+C quadrants), with a p value lower than those of parent-child comparisons. They are unrelated, so there 

is also a lower number of common ASB SNVs between the parents. However, MYC (bottom row) shows 

the trend to a much lesser degree, with smaller number of overlap between parent and child and less 

deviation between quadrants B+C and A+D, as suggested by the lower significance of the p values. For 

MYC, AS inheritance does not seem apparent. 

  

 

Table 1. 
Table 1 shows the breakdown of SNVs in each ethnic population: heterozygous (HET), accessible (ACC) 

and ASE SNVs in Table 1A and ASB SNVs in Table 1B. For each of the last 3 columns, each category of 

HET, ACC and AS SNVs is further stratified by the minor allele frequencies: common (MAF > 0.05), 

rare (MAF ≤ 0.01) and very rare (MAF ≤ 0.005). The number of AS SNVs is given as a percentage of the 
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ACC SNVs. Table 1 also provides the number of individuals from each ethnic population with RNA-seq 

and ChIP-seq data available for the ASE and ASB analyses respectively. 


