
(?) Comparative Netomics - lessons from cross-disciplinary network comparison

A signature of biology in the “omic” era is the shift of attention from a few individual components to  the comprehensive collections of constituents [1]. For instanceIn the past, structural biologists studied the binding of a few proteins, in the past but nowadays they are able to probe the interactions between thousands of proteins. Similarly, geneticists who would used topreviously knockout a single gene for functional characterization can now employ high-throughput techniques in functional genomics to study the genetic relationships between all genes. In many cases, genome-wide scale information describing how components interact canould be captured by a network representation [2]. While researcherswe have been astonished by the complexity of such networks found in genomics or systems biology, many are not able to gain any intuition from these hairballs [3]. 

Is there any clue forWhat approaches might help deciphering decipher these hairballs? Throughout the history of science, many advances in biology were catalyzed by discoveries in other disciplines. For instance, the maturation of X-ray diffraction facilitated the discovery of the double helix, and later on the characterization of structures of thousands of different proteins. One may wonder if ideas in other areas of science could help us to decipher the hairballs. In this essay, we argue that, while the influx of ideas in the age of reductionism mostly originated from specific subfields of physics or chemistry, to understand biology via a systems perspective, we need a new wave of catalysts coming from disciplines as diverse as engineering, behavioral science and sociology. These new ideas are centered on the concept of network. Toward this end, biologists should think about performing cross-disciplinary network comparison. 

Drawing analogiesy is is by no meannot new to biologists. For instance, to illustrate the principles of selection, Dawkins came up with the idea of meme decades ago, which is a unit carrying cultural ideas analogous to gene in biology [4]. Thise comparison has been further elaborated in the protofield of phylomemetics, which concerns itself with phylogenetic analysis of non genetic data [5]. Nevertheless, comparing a bio-molecular network with a complex network from a disparate field, say a social network, may sounds like comparing apples to oranges. WSo what kinds of comparison could truly deepen our understanding? To understand this, weWe believe that it is useful to think of different descriptions of a cellular system as a spectrum. 

A spectrum of cellular descriptions
Given the complexity of a cell, a certain level of simplification is necessary for useful discussion. We could picture theThe depth of description of cellular systems can be seen as a spectrum (Figure 1). On one hand, there’s a simple parts list that just enumerates each component without specifying any relationships. On the otherone handextreme, there is a complete three or even four-dimensional picture of how cellular molecules interact in space and time. On the other extreme, there is a simple parts list that simply enumerates each component without specifying any relationships. However, the parts list description is not fully informative. It is well regarded widely appreciated that the characteristics of a cellular system cannot be explained by the characteristics of individual components – the whole is greater than the sum of its parts. Therefore, the parts list description is not fully informative. However, To describe the full picture, one would need the 3D structures of everything in the genome as well as representation of their dynamical movements. This level of detail is often too ambitious for the current state-of-the-art in data acquisition. 

The nNetwork representationdescription sits conveniently between these extremes. Itby capturesing the some of the relationships between the components onf the parts list in a flexible fashion, particularly especially those where topology rather than exact location determines the consequence. There are two particularly useful ways to think about networks. The first one, referred asOne can view a network as an association network, which is essentially a process of abstraction in which; meaning entries are connected via abstract mathematical association. On one hand, Aany mechanistic interaction could be abstracted as a mathematical association. However, the idea of association canould be generalized to statistical relationships between two components. An example is theThis approach is exemplified by disease networks [6] in which a gene (genotype) and a disease (phenotype) are connected via the statistical association between the existence of genomic variants and the occurrence of the disease. Networks derived from co-expression relationships provide another example. Meanwhile, mechanistic networks The second kind of network, referred as mechanistic network, on the contrary, represents a process of concretization. Unlike abstract association networksion that is moveing away from the complete 4D-picture, concrete mechanistic networks aim to more completelyization is pointing towardsdescribe this picture. It aims toMechanistic networks are intended to describe and integrate understand manymore of the physical processes happening inside a living system, for instance the processing of information, the chemistry of metabolites and the assembly of molecular machine, and therefore focuses on incorporating various details of interactions. Adding further mechanistic detail onto a simple nodes-and-edges skeleton can often be visualized by decorating edges with directionality, color, thickness etc. NeverthelessHowever, the incorporation ofincorporating too much detail makes the system intractable., The and network formalism generally breaks down if we try to load spatial or temporal details as well as higher-order interactions onto the diagram. At certain point, the actual four-dimensional picture is required.

On one hand, abstract association networks offer transferrable mathematical formalisms. Toward this end, by comparing similar network-based mathematical formalisms across disciplines, biologists will benefit in terms of algorithms or method development. On the other hand, mechanistic networks can serve as the skeletons for describing different complex systems in detail. In this case, because of systems-specific details, it is less likely that everything could be transferred from one discipline to another. Instead Here, it is important to focus on the conceptual resemblance instead of merely topological resemblance.  And, as we will seeC, comparison of appropriately matched networks can enable allow biologists to gain intuition into the interactions between molecular components of cells bys by examining analogous interactions in cross-disciplinary complex systems. in the way as the interactions between molecular components in cells. 

Comparison leverages mathematical formalism
The power of the network formalism lies in its simplicity.Lying at the heart of the power of network formalism is its simplicity. In the era of Big Data, the network is a very useful data structure with a wide variety of applications in both biology and other data intensive disciplines like computational social science. This is particularly true for abstract association networks. 

Formalism focusing on network topology
One of the first key applications of the abstract network formalism is to compare the organization organizing principles of various complex systems. The earliest and probably the most important observation is that networks organize themselves into scale free architectures in which a majority of the nodes contain very few connections (edges) while a few nodes (also called hubs) in the network are highly connected [7]. The behavior of scale-free networks is dominated by a relatively small number of nodes and this ensures that these such networks are resistant to random accidental failures but are vulnerable to coordinated attacks at hub nodes [8]. In other words, just as like the Internet functions without any major disruptions even though hundreds of routers malfunction at any given moment, different individuals belonging to the same biological species remain healthy in spite of considerable random variation in their genomic information. NeverthelessHowever, a cell is not likely to survive if a hub protein is knocked out. For example, highly connected proteins in the yeast protein-protein interaction network are three-times more likely to be essential than proteins with only a small number of links to other proteins [9]. A scale-free network is a kind of small-world network because hubs ensure that the distance between any two nodes in the network is small.[10][11]. For examples, the presence of hubs in the airport network makes it possible to travel between any two cities in the world within a short interval of time. Though counting the number of neighbors is very useful in determining the centrality of a node, a more sophisticated way to define centrality is to take into account the importance of neighbors. Toward this end, theThe PageRank algorithm plays ais a prominent roleexample of this approach. Faced with a search query, Google must has to decide which set of results to rank higher and place are ranked higher and appear on the first results page of the results page. Originally developed in social network analysis [12], PageRank utilizes an algorithm developed to rank relevant documents based on the rank of the websites that link to this document in a self-consistent manner  - i.e. being linked to by higher ranking nodes counts for morehas a larger impact on the document’s ranking. Thise algorithm was then adopted in food webs to prioritize nodes that are in danger of extinction [13] and was also usedalso to rank prognostic relevance for patients with cancers [14]. 
This has led to a
A second method measure of measuring a node’s centrality a nodes’ centrality in the network that is based on the the number of paths passing through iteffect of its removal on the communication pathways between all the other nodes in the network. Similar in spirit to heavily used bridges, highways, or intersections in transportation networks, a few centrally connected nodes termed bottlenecks funnel most of the paths between different parts of the network and removal of these nodes could reduce the efficiency (increase theof distance) of communication between nodes within these networks [15]. Indeed, it has been reported that changes to the sequences of bottlenecks in biological networks can be deleterious [16]. Apart from degrees and paths, one can easily observe that social networks tend to have communities within them due to the relatively larger number of interactions between people in the same neighborhood, school, or work place. People within the same social group tend to form strong ties in the form of cliques and form a single cohesive group. Analogous to closely-knit social groups, a large number of biological components can form a single functional macromolecular complex like the ribosome. More generally, a common feature of a large number of social, technological and biological networks isare that they are organized in the form ofcomposed of modules such that nodes within the same module have a larger number of connections with each other as compared to nodes belonging to different modules [17]. The quantity dubbed modularity tries to quantify this, comparing the number of intra and inter module links in athe network. 

Paragraph from RK
An example of a small-world network that is not scale-free is the mammalian cerebral cortex.  The cortical neuronal network is subdivided into more than 100 distinct, highly modular, areas [ref] that are dominated by connections internal to each area, with only ~20% of all connections being between neurons in different areas [ref].  Each area is considered to have a primary feature, for example in processing sensory or cognitive signals, and is an excellent analogue of the modular characteristics of intra-cellular molecular networks in which proteins in tightly controlled functional groups coordinate as part of larger pathways to achieve well defined cellular functions.  The cortical architecture has a high degree of clustering and small path-length and exhibits an exponential degree-distribution [ref]. 


Formalisms focusing on the interplay between topologies and the properties of nodes
Networks are extremely useful in data science because they can be used as a reference for mapping additional properties or features of different nodes. Similar questions and solutions have been come up inarisen when dealing with biological data as well as data from disciplines like computational social science. An important example is the inference  theof missing data usingby the idea of “guilt by association”, or the idea that nodes that have similar associations in the network tend to be  more similar in nature. For example, in a social context, if your friends in Facebook use Product Y, you are more likely to use product Y and the advertisements you view online are personalized based on these recommendation systems [18]. In a biological context, thise assumption is based on observations like thethat cellular components within the same module are more closely associated with the same set of cellular phenotypes than components belonging to different modules [19]., Furthermore,and the modules within gene coexpression networks also tend to contain genes with that are in the same biological pathway or have similar functions or in the same biological pathway [20]. As a result, one could infer the functions of a protein or a non-coding element based on the function of its neighbors in the underlying network. Networks play an important role in gene prioritization, an essential process for applications like disease gene discovery because of limited validation and characterization resources [21]. For examples, network properties of individual genes have been used to distinguish functionally essential and loss-of-function tolerant genes [22]. More formally, oneOne could prioritize the candidate genes based on how they are connected to the known genes. If  For example, if a gene is one -step away from a group of disease genes, it is very likely that the gene is associated with disease X. Of course, theThe influence of a node may not be restricted to its nearest neighbors; network flow algorithms are widely used to examine the long-range influence [23][24]. In a social science context, for example, researchersones  use cascade structured models to capture the information propagation on web blog networks, and predict the blog’s popularity [25]. 

We want to emphasize that networks are in general noisy. High-throughput experiments can be quite noisy. The resultant networks may result atcontain spurious links, and missing data is very common. in social science. Methods for link prediction and denoising are therefore very useful. Link prediction can be done by using the network information alone., Ffor instance, in a protein-protein interaction network, defective cliques were used to find missing interactions and determine the parts required to form a functional macromolecular complex [26]. More often, because Whetherwhether two nodes are connected depends on their intrinsic properties. Consequently,, one could employ machine-learning techniques to explore the relationships between connections and various features [27]. Recently, generative models of networks, such asay stochastic block models [28], are very have been popular in computational social science. Nevertheless, such models are not yet widely used in biological context yet, presumably because of the lack of gold standards for validation. 

Formalisms focusing on causal relationships and dynamics
The construction of various association networks is an active area of research for both biology and computational social science. While correlational relationships could potentially be easily calculated with the appropriate data, a fundamental question is the distinction between direct and indirect interactions. For example, ifa transcription factor X regulates gene Y and Z, one could would expect pairs like X-Y, X-Z and Y-Z are allto be correlated, but the key is to identify the direct regulatory interactions X-Y and X-Z. Established mathematical machineries like Bayesian networks, Markov random fields and other information theoretical frameworks [29] have been used for this purpose. 

The inference of causal relationships wcould be greatly benefited improved by time-series data. In social science, online retailers are interested to usein using purchase records to study how customers influence each other [30]. On the other hand, theThe same question is extremely common in biology, under the term “reverse engineering”. For example, how can we infer the developmental gene regulatory network from temporal gene expression dynamics? Ideally, one could write differential equations to fit the temporal data.; neverthelessHowever,  temporal data in most genomics experiments do not containhave enough time-points. To overcome thise drawback, data mining techniques such as matrix factorization are employed. For instance, given the genome-wide expression profile of at different time-points, one could project the high-dimensional gene expression data to low dimensional space and write differential equations to model the dynamics of the projections [31]. The inference of casual and direct relationships from statistical data points to the study of mechanistic networks. [?]

Apart fromIn addition to the actual dynamical processes occuringhappen in a network, one could explore the evolutionary dynamics of networks by comparing networks. In a biological context, pairs of orthologous genes (nodes) can be used to define conserved edges like interologs and regulogs. Furthermore, orthologous genes have been used to align networks from different species [32], and to detect conserved and specific functional modules across species [33]. More formally, a mathematical formalism has been developed to measure the evolutionary rewiring rate between networks across species using methodsin analogous to those quantifying sequence evolution. It was shown that metabolic networks rewire at a slower rate compared to various regulatory networks [34].

Comparison gains physical intuition
Now we shift discussion to "mechanistic" networks. Here, the network framework serves as a skeleton for different complex systems. From the standpoint of a biologist, network comparison can thus brings intuition from other disciplines to bear on molecular biology. 

Looking for mechanistic insights
The previous sections discussed universal frameworks and insights gained by applying the same formalisms to biological networks as well as to various social and technological networks. Such wide-ranging universal insights were possible only because the detailed identities of the nodes in the networks were neglected during the comparison.; Oonly the abstracted "association" between the various nodes was considered. On the other hand, if As one adds details are added to this picture, however, the insights about a system become more specific, and in a sense, more meaningful. However, it is in general harder to apply the same formalism to two networks. This transition from applying general formalisms to abstract networks to more mechanistic descriptions is well described when one tried to explain the scale-free degree distribution of various networks described above.[?]. 

A number of different stochastic models and explanations can lead to the formation of scale-free graphs. First let's consider the hub-and-spoke system of the airline network, one of the paradigms of scale-free structure. How does this come about? Every time a new airport is created, the airlines have to create a balance between the resources and customer satisfaction, i.e., the cost of adding a new flight and customer comfort due to connectivity between the new airport and a larger number of airports. The most efficient use of these limited resources occurs if the new airport connects to pre-existent hubs in the network as it reduces the travel time of the average customer. This model is called the preferential attachment as newly created nodes prefer to connect to pre-existent hubs in the network [7] and,  it in this case, it emphasizes the small -world property of scale-free networks [11]. In contrast, one explains the evolution and growth of the WWW, which is also scale free, in somewhat different way. Here, 
duplication divergence model. In this model, a random pre-existing node and its associated edges (for example, a webpage with all its pre-existing links) are duplicated [PMID: 18632555]. After duplication, subtle changes to the connectivity pattern of both nodes may occur such that a large proportion of their edges are likely to be shared [PMID:12727455]. Such a randomly. After duplication, the edges associated with these two nodes diverge independent of one another.  The duplication-divergence model leads to the formation of scale-free networks because the connectivity of a hub increases as one of its neighbors has a higher chance of getting duplicated. The same duplication-divergence mechanism can describe the patterns and occurrence of “memes” in online media [32]. As gene duplication is one of the major mechanisms for the evolution of protein families, the formation of scale-free behavior in the protein-protein interaction network was proposed to evolve via the duplication-divergence model [31] [PMID:12727455]. However, for protein networks there are additional twists in this explanation because one can actually resolve each of the nodes in the network as molecules with specific 3D geometry. In particular, uponon analyzing the structural interfaces involved in protein-protein interactions, there are great differences in hubs that interact with many proteins by reusing the same structural interface versus those that simultaneously use many different interaction interfaces. The duplication divergence model only applies to the former situation  (with the duplicated protein reusing the same interface as its parent)  [34]. 

[[KKY2all: may be cut this paragraph. It does Not fit]]
Yet another mechanistic model giving rise a power-law distribution in the components usage in both bacterial genomes and in software systems. It has been reported that the frequency of appearance of individual enzymes across different bacterial genomes and the frequency of local installations of individual packages in multicomponent software projects follow a broad distribution [35]. Recently, it has been suggested that the observations can be explained by the corresponding multi-levels dependency networks (enzyme A is connected to enzyme B if A is used to decompose the output metabolites of enzyme B; package A is connected to package B if the installation of package A depends on the installation of package B). The essence is, to incorporate an additional component; one has to ensure the presence of the depending factors present in the network [35]. 

For scale free networks, one has athere exists a common mathematical formalism but somewhat different mechanistic explanations in many of different domains (e.g. airline networks vs gene networks). Some of the domains share the same mechanistic explanation -- i.e. the scale-free structure in both protein-protein interaction and web-link networks can be explained by duplication and divergence. Moreover, this later commonality gives provides one additional intuition about the protein interaction network throughby comparison to the web-link network, which is a bit more commonplace and better connected with the average person's experience. This ability to gainet intuition about the often-arcane world of molecular biology by comparison to commonplace systems is even stronger for comparisons with social networks, where people have very strong intuition for how a system can work. 

Looking for common design principles
Transfering an intuitive understanding network hierarchy is aA good example of this type of comparison  is with regard to hierarchy (see Box 1). Many biological networks, for instancesuch as transcription regulatory networks, have an intrinsic direction of information flow, forming a loose hierarchical organization. Likewise, many social structures are naturally are organized into a hierarchical structure -- e.g. a militarily command chain or a corporate "org-chart" [36]. In the purest form of the military hierarchy each person on a lower-level reports to a single individual on a higher level and there are fewer and fewer individuals on the upper levels, eventually culminating in a single supreme commander at the top ruling over an whole entire army. This structure naturally leads to information flow bottlenecks as all the orders and information related to many low-rank privates hasmust to flow through a very limited number of mid-level corporeals and majors. In a biological hierarchy of TFs, one sees a somewhat similar pattern with a high betweenness of bottlenecks in the middle. In many cases, theseThis bottlenecks create vulnerabilities (eg the major getting knocked out) . Indeed, it has been shown that many of the bottlenecks are essential in gene knockout experiments [16].Moreover, in biological networks one can quantify this through measuring the essentiality of genes (and essentiality in certain conditions) in knockout experiments [[ref]]. HiearchiesHierarchies can insulate themselves from this vulnerability by allowing middle managers to co-regulate those under them. This eases information flow bottlenecks in an obvious way (eg if one major gets knocked out, the privates under him can receive orders from a second major).  Mand many commenters have mentioned that,  in order to smoothly function smoothly,ally social heirarchies it is imperative for social hierarchies to have the middle managers working together [37]. Strikingly, . [[refs]] In looking at hte structure of biological rregulatory networks one can see they employ the sameis strategy by, often having two mid-level TFs co-regulate targets below them [38]. Thus, one can get an intuition for the reason behind afor a particular biological structure through analogies to commonplace social networks.

The element goal ofin this comparison is the transferring transfer of ideas on the relationship between network structure and "function" fromin athe social context to athe more difficult to think aboutless intuitive biological context. This underscores a more general point: Lying at the heart of deciphering biological networks mediated by mechanistic interactions is this mapping between architecture and function. The mapping points to simple biological circuits that solve common functional problems – effectively a component toolbox for systems biology [39]. As it is in general veryoften hard to define a “function”, comparison with various technological or engineered components with that possess basic and well-defined functions is particularly insightful. As an example, we are familiar with electronic oscillators, in which two essential elements are a source of negative feedback and a source of time delay. Indeed, this is true also for a biochemical oscillator. Nevertheless, different oscillators (e.g. for circadian rhythms, for cell cycle, or from various organisms) have a certain level of variation because of additional design objectives or strategies. This is just like the case that not all electronic devices use the same oscillator design because of other design objectives. The striking similarity between biological systems and technological systems has long been identified. A decade ago, Uri Alon pointed out several common design principles in biological and engineering networks such as modular organization and robustness to perturbation  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"d8921gtep","properties":{"formattedCitation":"[41]","plainCitation":"[41]"},"citationItems":[{"id":26,"uris":["http://zotero.org/users/632759/items/3NIXFTHC"],"uri":["http://zotero.org/users/632759/items/3NIXFTHC"],"itemData":{"id":26,"type":"article-journal","title":"Biological Networks: The Tinkerer as an Engineer","container-title":"Science","page":"1866-1867","volume":"301","issue":"5641","source":"CrossRef","DOI":"10.1126/science.1089072","ISSN":"0036-8075, 1095-9203","shortTitle":"Biological Networks","author":[{"family":"Alon","given":"U."}],"issued":{"date-parts":[["2003",9,26]]},"accessed":{"date-parts":[["2012",5,14]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [40][41]. Robustness is obviously a preferred design objective because it makes a system tolerate tolerant of stochastic fluctuations, from either intrinsic ally or from external sources. Modularity, on the other hand, makes a system more evolvable. For instance in software design, modular programming that separates functionality of a program into independent modules connected by an interface is widely practiced  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"bu3cpqtgv","properties":{"formattedCitation":"[42]","plainCitation":"[42]"},"citationItems":[{"id":125,"uris":["http://zotero.org/users/632759/items/A2I4ZT6V"],"uri":["http://zotero.org/users/632759/items/A2I4ZT6V"],"itemData":{"id":125,"type":"article-journal","title":"Evolution of a modular software network","container-title":"Proceedings of the National Academy of Sciences","page":"19985-19989","volume":"108","issue":"50","source":"www.pnas.org","DOI":"10.1073/pnas.1115960108","ISSN":"0027-8424, 1091-6490","journalAbbreviation":"PNAS","author":[{"family":"Fortuna","given":"Miguel A"},{"family":"Bonachela","given":"Juan A"},{"family":"Levin","given":"Simon A"}],"issued":{"date-parts":[["2011",12,13]]},"accessed":{"date-parts":[["2012",2,22]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [41][42]. The same is for biological networks because modules can be readily reused to adapt new functions. [[KKY2all: have cut the oscillator example]]

Looking for the commonalities and differences between tinkerer and engineer
The comparison of biological networks and technological networks should is best be performed in the light of evolution. As Alon’s highlighted by the phrase “the tinkerer as an engineer”  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"eg1fu84bm","properties":{"formattedCitation":"[41]","plainCitation":"[41]"},"citationItems":[{"id":26,"uris":["http://zotero.org/users/632759/items/3NIXFTHC"],"uri":["http://zotero.org/users/632759/items/3NIXFTHC"],"itemData":{"id":26,"type":"article-journal","title":"Biological Networks: The Tinkerer as an Engineer","container-title":"Science","page":"1866-1867","volume":"301","issue":"5641","source":"CrossRef","DOI":"10.1126/science.1089072","ISSN":"0036-8075, 1095-9203","shortTitle":"Biological Networks","author":[{"family":"Alon","given":"U."}],"issued":{"date-parts":[["2003",9,26]]},"accessed":{"date-parts":[["2012",5,14]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [40][41] highlights, it is remarkable that “good engineering solutions” are found in biological systems that have evolved by random tinkering. Indeed, comparison between biological and technological networks should manifest the nature of thesee two very different approaches.: Eevolution isas a tinkerer that neither consciously designs components nor systematically builds larger systems— it settles on systems that have, historically, conveyed a survival benefit (and if aadopts better methods if they comebetter way comes along, it will adopt that). On the other hand, technological networks are essentially blueprints drawn by engineers who have a grand plan that makes sure everything works harmoniously. Biologists often tend to distinguish the two approaches cautiously so as to avoid the notion of intelligent design – the existence of an intelligent agent that constructs living organisms on purpose.. NeverthelessHowever, the distinction is not clear-cut. Both biological networks and man-made technological ones like roadways and electronic circuits are complex adaptive systems; there are plenty of examples showing that many great innovations are results of trial and error, and all technological systems are subjected to selection such aslike users requirements. In a recent review, Wagner summarized nine commonalities between biological and technological innovation, such asincluding descent with modification, extinction and replacement, and horizontal transfer  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"19dvop7fl3","properties":{"formattedCitation":"[43]","plainCitation":"[43]"},"citationItems":[{"id":1557,"uris":["http://zotero.org/users/632759/items/WC24K6PH"],"uri":["http://zotero.org/users/632759/items/WC24K6PH"],"itemData":{"id":1557,"type":"article-journal","title":"Spaces of the possible: universal Darwinism and the wall between technological and biological innovation","container-title":"Journal of The Royal Society Interface","page":"20131190","volume":"11","issue":"97","source":"rsif.royalsocietypublishing.org","abstract":"Innovations in biological evolution and in technology have many common features. Some of them involve similar processes, such as trial and error and horizontal information transfer. Others describe analogous outcomes such as multiple independent origins of similar innovations. Yet others display similar temporal patterns such as episodic bursts of change separated by periods of stasis. We review nine such commonalities, and propose that the mathematical concept of a space of innovations, discoveries or designs can help explain them. This concept can also help demolish a persistent conceptual wall between technological and biological innovation.\nWe report on the experiments on orientation of a migratory songbird, the garden warbler (Sylvia borin), during the autumn migration period on the Courish Spit, Eastern Baltics. Birds in experimental cages, deprived of visual information, showed the seasonally appropriate direction of intended flight with respect to the magnetic meridian. Weak radiofrequency (RF) magnetic field (190 nT at 1.4 MHz) disrupted this orientation ability. These results may be considered as an independent replication of earlier experiments, performed by the group of R. and W. Wiltschko with European robins (Erithacus rubecula). Confirmed outstanding sensitivity of the birds' magnetic compass to RF fields in the lower megahertz range demands for a revision of one of the mainstream theories of magnetoreception, the radical-pair model of birds' magnetic compass.","DOI":"10.1098/rsif.2013.1190","ISSN":"1742-5689, 1742-5662","note":"PMID: 24850903","shortTitle":"Spaces of the possible","journalAbbreviation":"J. R. Soc. Interface","language":"en","author":[{"family":"Wagner","given":"Andreas"},{"family":"Rosen","given":"William"}],"issued":{"date-parts":[["2014",8,6]]},"accessed":{"date-parts":[["2014",6,25]]},"PMID":"24850903"}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [42][43]. Thus, to a certain extent, an engineer is a tinkerer (see Box 2). 

Under such a united framework, we could picture that both the engineer and tinkerer are working on an optimization problem with similar underlying design objectives. Like all optimization problems, there is no methodway thatto optimizes all objectives and thus tradeoffs are unavoidable in both biological and technological systems. This is essentially the conventional wisdom – there’s no free lunch [43][44]. Despite their similaritiesy, tinkerers and engineers take different views whenin balancing different constraints and tradeoffs. Their optimal choices are exhibited in the topology of their corresponding networks. In biological networks, for example, more connected components (as measured by their hubbiness or betweenness) tend to be under stronger constraint than less connected ones. This is exhibited seen in numerous studies that have analyzed the evolutionary rate of genes in many networks (e.g. protein interaction networks and transcription regulatory networks) in many organisms (e.g humans, worms, yeast, E. coli) using many different metrics of selection (e.g. variation within population or dN/dS for fixed differences) [45][46][47][48]. To some degree constraint is connected togoes with connectivity in biological systems. One's intuition here is obvious: the more connected components are more vulnerable to changes, particularly since mutation and change occurs randomly in biology. But is this truism in general -- or could it be otherwisefinding true in general? Comparison can provide intuition. 

Consider software systems, software engineers tend to reuse certain code, leading to modularity. However, intuitivelyIntuitively one would expect that the robustness of software would be reduced if a piece of code is highly called by many disparate processes -- ie if it's highly connected. Analysis of the evolution of a canonical software system, the Linux kernel, revealed that the rate of evolution of its functions (routines) is distributed in a bimodal fashion and thus a significant fraction of functions are updated often [49]. Therefore, unlike biological systems in which the majority of components are rather conserved and thus prefer a more independent organization to maintain robustness, software engineers pay the price of reusability and robustness by constantly tweaking the system. Indeed, further analysis of the underlying network of Linux kernel, the so-called call graph, showsed that more central components inat the call graph actually require more fine-tuning. These patterns seems to  be hold for other software systems like the organization of packages in the statistical computing language R (Figure 2). In other words, unlike biological networks whose hubs tend to evolve slowly, hubs in the software system evolve rapidly. This seems to be run counter to ones the intuition that an engineer should not meddle too much with highly connected components. However, there is another intuition factor to considerin play: rational designers may believe that they can modify a hub without disrupting it. -- This is in in contrast to athe situation with in which random changes dominate. Moreover, the central points in a system are often those that are in the greatest use and hence are in the most need of the designer's attention. Thise situation is analogous to road networks: one sees comparatively moreuch construction on highly used bottlenecks (e.g. the George Washington Bridge) as opposedcompared to out of the way thoroughfares  (see Box 2).

Conclusion
Biology is a subject with a strong tradition of doing utilizing comparative methodsison. One hundred years ago, biologists compared the phenotypes of different species. Since the discovery of DNA, biologists have been comparing the sequences of different genes, and then all sorts of ‘omes’ across species. Perhaps, it is a time to extend this tradition even further to compare networks in biology to those in other disciplines. Here, we have tried to describe how these comparisons are beginning to take place. First, we have described how association networks that just show simple connections between entities are abstract enough to allow the application of mathematical formalisms across disciplines. NextThen, we show how more mechanistic details can be placed onto these simple networks and enableallowing them to better explain a real process such as transcriptional regulation or software code development. Here In this case, the networks are often too detailed to allow for direct transfer of formalisms but often one can gain meaningful intuition about a biological system through comparing it to a more commonplace network such as a social system via the same mechanistic description.

What's next? We envision that these cross-disciplinary network comparisons will become more and more increasingly common. Networks are one of the central key structures used for the analysis of large datasets in the emerging field of data science. for the analysis of large datasets and theseThese datasets are becoming increasingly common in many fields. We anticipate that this will make possibleenable further fruitful comparisons with biology . One area that is especially ripe for comparison is multiplex networks. Over the past few years, efforts have been spent on concatenating networks together to formforming a multiplex structure [50][51]. This framework is commonly used in social science in which an individual may participate in multiple social circles: family, friends, colleagues, or in online setting: Facebook, LinkedIn and Twitter.; However, it hasbut not been very well explored in biology. Nevertheless, this direction is of particular interest to biology because of rapid advancements in data acquisition., Tthe structure of biological data now extendsgoes  beyond a single layer of network to a multiplex structure: the multiple layers could either be formed by different categories of relationships (co-expression, genetic interactions, etc.), MoreoverFurthermore,  mechanistically, biological regulation happens occurs atin multiple levels: transcriptional, regulation, post-transcriptional, regulation, and even post-translational regulation in a manner in analogous to a city with electrical networks, water pipes, and cell phone lines. We are looking forward to some of the methods developed in other contexts to be applied in biology. 

So far we have focused on leveraging the ideas and methods developed in multiple disciplines through comparison. We can even imagine a way that these comparisons will lead to new real connections between biological networks and those in other disciplines. For instance, there is an increassing amounte of attention among biologists and sociologists on the connection between genomics information and sociological information such as whether phenotypes or genotypes are correlated in friendship networks [52]. Indeed, various scientific disciplines form a network in the intellectual universe where knowledge emerges when things connect.


Potential exhibits:

Figure 1 Caption

Figure 2 Caption

?A table showing examples of the two types networks.
(Give more examples of association networks, like genetic interaction networks.)

?A table highlighting problems studied in the framework of association networks, and the corresponding problems arise in computational social science.

Table/Figure summarizing all comparisons/references.

Box 0 Network science 101?

Box 1 Hierarchical organization of networks
Many biological networks possess an intrinsic direction of information flow, forming a hierarchical network organization. The hierarchical organization in biological networks resemble the chain of command in human society, like in military context and corporate hierarchy [36]. For instance, in a transcriptional regulatory network more influential transcription factors (regulators whose expression are more highly correlated with the expression of target genes) tend to be better connected (have more interacting partners) and higher in the hierarchy  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"1gheo08dti","properties":{"formattedCitation":"[49]","plainCitation":"[49]"},"citationItems":[{"id":316,"uris":["http://zotero.org/users/632759/items/NQNCS5E8"],"uri":["http://zotero.org/users/632759/items/NQNCS5E8"],"itemData":{"id":316,"type":"article-journal","title":"Architecture of the human regulatory network derived from ENCODE data","container-title":"Nature","page":"91-100","volume":"489","issue":"7414","source":"www.nature.com","abstract":"Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.","DOI":"10.1038/nature11245","ISSN":"0028-0836","language":"en","author":[{"family":"Gerstein","given":"Mark B."},{"family":"Kundaje","given":"Anshul"},{"family":"Hariharan","given":"Manoj"},{"family":"Landt","given":"Stephen G."},{"family":"Yan","given":"Koon-Kiu"},{"family":"Cheng","given":"Chao"},{"family":"Mu","given":"Xinmeng Jasmine"},{"family":"Khurana","given":"Ekta"},{"family":"Rozowsky","given":"Joel"},{"family":"Alexander","given":"Roger"},{"family":"Min","given":"Renqiang"},{"family":"Alves","given":"Pedro"},{"family":"Abyzov","given":"Alexej"},{"family":"Addleman","given":"Nick"},{"family":"Bhardwaj","given":"Nitin"},{"family":"Boyle","given":"Alan P."},{"family":"Cayting","given":"Philip"},{"family":"Charos","given":"Alexandra"},{"family":"Chen","given":"David Z."},{"family":"Cheng","given":"Yong"},{"family":"Clarke","given":"Declan"},{"family":"Eastman","given":"Catharine"},{"family":"Euskirchen","given":"Ghia"},{"family":"Frietze","given":"Seth"},{"family":"Fu","given":"Yao"},{"family":"Gertz","given":"Jason"},{"family":"Grubert","given":"Fabian"},{"family":"Harmanci","given":"Arif"},{"family":"Jain","given":"Preti"},{"family":"Kasowski","given":"Maya"},{"family":"Lacroute","given":"Phil"},{"family":"Leng","given":"Jing"},{"family":"Lian","given":"Jin"},{"family":"Monahan","given":"Hannah"},{"family":"O’Geen","given":"Henriette"},{"family":"Ouyang","given":"Zhengqing"},{"family":"Partridge","given":"E. Christopher"},{"family":"Patacsil","given":"Dorrelyn"},{"family":"Pauli","given":"Florencia"},{"family":"Raha","given":"Debasish"},{"family":"Ramirez","given":"Lucia"},{"family":"Reddy","given":"Timothy E."},{"family":"Reed","given":"Brian"},{"family":"Shi","given":"Minyi"},{"family":"Slifer","given":"Teri"},{"family":"Wang","given":"Jing"},{"family":"Wu","given":"Linfeng"},{"family":"Yang","given":"Xinqiong"},{"family":"Yip","given":"Kevin Y."},{"family":"Zilberman-Schapira","given":"Gili"},{"family":"Batzoglou","given":"Serafim"},{"family":"Sidow","given":"Arend"},{"family":"Farnham","given":"Peggy J."},{"family":"Myers","given":"Richard M."},{"family":"Weissman","given":"Sherman M."},{"family":"Snyder","given":"Michael"}],"issued":{"date-parts":[["2012",9,6]]},"accessed":{"date-parts":[["2012",9,6]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [53][49]. Moreover, in order to avoid information bottlenecks, the transcription factors in the middle layer tend to be more cooperative [38], resulting at many cross-links between pathways. Such a situation has been well studied in management science, where in certain corporate settings middle managers interact the most with peers to manage subordinates below them [37]. These observations reflect a democratic hierarchy as opposite to a conventional autocratic organization  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"11ua7nckdd","properties":{"formattedCitation":"[50]","plainCitation":"[50]"},"citationItems":[{"id":1631,"uris":["http://zotero.org/users/632759/items/KFVVGI6Q"],"uri":["http://zotero.org/users/632759/items/KFVVGI6Q"],"itemData":{"id":1631,"type":"article-journal","title":"Attractors and Democratic Dynamics","container-title":"Science","page":"1016-1017","volume":"323","issue":"5917","source":"www.sciencemag.org","abstract":"Cellular transcription networks are conceptualized as distributed control systems that regulate gene expression.","DOI":"10.1126/science.1163225","ISSN":"0036-8075, 1095-9203","note":"PMID: 19229023","journalAbbreviation":"Science","language":"en","author":[{"family":"Bar-Yam","given":"Yaneer"},{"family":"Harmon","given":"Dion"},{"family":"Bivort","given":"Benjamin de"}],"issued":{"date-parts":[["2009",2,20]]},"accessed":{"date-parts":[["2014",8,5]]},"PMID":"19229023"}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [54][50].

Of particular interest for hierarchical organization is the so-called bow-tie structure, meaning the intermediate layers have fewer components than the input and output layers. For example, in a signaling network, a large number of receptors corresponding to diverse stimuli and many transcription factors form the input and output layers, whereas the intermediate layer refers to a few key molecules like calcium and cAMP that mediate the inputs and outputs  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"t1tk20ufc","properties":{"formattedCitation":"[51]","plainCitation":"[51]"},"citationItems":[{"id":1621,"uris":["http://zotero.org/users/632759/items/2BNPBSMG"],"uri":["http://zotero.org/users/632759/items/2BNPBSMG"],"itemData":{"id":1621,"type":"article-journal","title":"G-Protein Coupled Receptor Signaling Architecture of Mammalian Immune Cells","container-title":"PLoS ONE","page":"e4189","volume":"4","issue":"1","source":"PLoS Journals","abstract":"A series of recent studies on large-scale networks of signaling and metabolic systems revealed that a certain network structure often called “bow-tie network” are observed. In signaling systems, bow-tie network takes a form with diverse and redundant inputs and outputs connected via a small numbers of core molecules. While arguments have been made that such network architecture enhances robustness and evolvability of biological systems, its functional role at a cellular level remains obscure. A hypothesis was proposed that such a network function as a stimuli-reaction classifier where dynamics of core molecules dictate downstream transcriptional activities, hence physiological responses against stimuli. In this study, we examined whether such hypothesis can be verified using experimental data from Alliance for Cellular Signaling (AfCS) that comprehensively measured GPCR related ligands response for B-cell and macrophage. In a GPCR signaling system, cAMP and Ca2+ act as core molecules. Stimuli-response for 32 ligands to B-Cells and 23 ligands to macrophages has been measured. We found that ligands with correlated changes of cAMP and Ca2+ tend to cluster closely together within the hyperspaces of both cell types and they induced genes involved in the same cellular processes. It was found that ligands inducing cAMP synthesis activate genes involved in cell growth and proliferation; cAMP and Ca2+ molecules that increased together form a feedback loop and induce immune cells to migrate and adhere together. In contrast, ligands without a core molecules response are scattered throughout the hyperspace and do not share clusters. G-protein coupling receptors together with immune response specific receptors were found in cAMP and Ca2+ activated clusters. Analyses have been done on the original software applicable for discovering ‘bow-tie’ network architectures within the complex network of intracellular signaling where ab initio clustering has been implemented as well. Groups of potential transcription factors for each specific group of genes were found to be partly conserved across B-Cell and macrophage. A series of findings support the hypothesis.","DOI":"10.1371/journal.pone.0004189","journalAbbreviation":"PLoS ONE","author":[{"family":"Polouliakh","given":"Natalia"},{"family":"Nock","given":"Richard"},{"family":"Nielsen","given":"Frank"},{"family":"Kitano","given":"Hiroaki"}],"issued":{"date-parts":[["2009",1,14]]},"accessed":{"date-parts":[["2014",8,5]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [55][51]. Similarly, in the networking architecture of the Internet, various protocols in the input/link layer (ARP, RARP, NDP etc) and various application protocols in the application/output layer (HTTP, FTP,DHCP etc) are essentially connected by only IPv4, the primary protocols in the internet layer. The reason for the emergence of such a common pattern is still widely open, a recent paper suggested bow-tie is a result of information compression  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"1kghca7cau","properties":{"formattedCitation":"[52]","plainCitation":"[52]"},"citationItems":[{"id":1645,"uris":["http://zotero.org/users/632759/items/82UFN29W"],"uri":["http://zotero.org/users/632759/items/82UFN29W"],"itemData":{"id":1645,"type":"article-journal","title":"Evolution of bow-tie architectures in biology","container-title":"arXiv:1404.7715 [q-bio]","source":"arXiv.org","abstract":"Bow-tie or hourglass structure is a common architectural feature found in biological and technological networks. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when two conditions are met: (i) the evolutionary goal is rank deficient, where the rank corresponds to the minimal number of input features on which the outputs depend, and (ii) The effects of mutations on interaction intensities between components are described by product rule - namely the mutated element is multiplied by a random number. Product-rule mutations are more biologically realistic than the commonly used sum-rule mutations that add a random number to the mutated element. These conditions robustly lead to bow-tie structures. The minimal width of the intermediate network layers (the waist or knot of the bow-tie) equals the rank of the evolutionary goal. These findings can help explain the presence of bow-ties in diverse biological systems, and can also be relevant for machine learning applications that employ multi-layered networks.","URL":"http://arxiv.org/abs/1404.7715","note":"arXiv: 1404.7715","author":[{"family":"Friedlander","given":"Tamar"},{"family":"Mayo","given":"Avraham E."},{"family":"Tlusty","given":"Tsvi"},{"family":"Alon","given":"Uri"}],"issued":{"date-parts":[["2014",4,30]]},"accessed":{"date-parts":[["2014",8,5]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [56][52]. 

Box 2 Tinkerer versus engineer
Despite the apparent differences, the similarity between biological systems and technological systems draws a parallel between tinkerer and engineer, and the parallel points to a common framework to unite them. Wagner further proposed an analogy between the genotype space for a biological system and the design space for a technological system. These spaces contain all the possible networks in the corresponding systems. In biology, many attempts have been made to search for solutions of common functional problems such as adaptation, oscillation and cell polarization [39]. Similar studies were performed in the context of circuit design, where a set of logic gates was evolved via rewiring in order to perform a predefined computational task  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"1hr4jef2e9","properties":{"formattedCitation":"[53]","plainCitation":"[53]"},"citationItems":[{"id":1674,"uris":["http://zotero.org/users/632759/items/BM3JZZ84"],"uri":["http://zotero.org/users/632759/items/BM3JZZ84"],"itemData":{"id":1674,"type":"article-journal","title":"Spontaneous evolution of modularity and network motifs","container-title":"Proceedings of the National Academy of Sciences of the United States of America","page":"13773-13778","volume":"102","issue":"39","source":"www.pnas.org","abstract":"Biological networks have an inherent simplicity: they are modular with a design that can be separated into units that perform almost independently. Furthermore, they show reuse of recurring patterns termed network motifs. Little is known about the evolutionary origin of these properties. Current models of biological evolution typically produce networks that are highly nonmodular and lack understandable motifs. Here, we suggest a possible explanation for the origin of modularity and network motifs in biology. We use standard evolutionary algorithms to evolve networks. A key feature in this study is evolution under an environment (evolutionary goal) that changes in a modular fashion. That is, we repeatedly switch between several goals, each made of a different combination of subgoals. We find that such “modularly varying goals” lead to the spontaneous evolution of modular network structure and network motifs. The resulting networks rapidly evolve to satisfy each of the different goals. Such switching between related goals may represent biological evolution in a changing environment that requires different combinations of a set of basic biological functions. The present study may shed light on the evolutionary forces that promote structural simplicity in biological networks and offers ways to improve the evolutionary design of engineered systems.","DOI":"10.1073/pnas.0503610102","ISSN":"0027-8424, 1091-6490","note":"PMID: 16174729","journalAbbreviation":"PNAS","language":"en","author":[{"family":"Kashtan","given":"Nadav"},{"family":"Alon","given":"Uri"}],"issued":{"date-parts":[["2005",9,27]]},"accessed":{"date-parts":[["2014",8,5]]},"PMID":"16174729"}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [57][53] ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"2cn4bj911a","properties":{"formattedCitation":"[54]","plainCitation":"[54]"},"citationItems":[{"id":110,"uris":["http://zotero.org/users/632759/items/936UG4J5"],"uri":["http://zotero.org/users/632759/items/936UG4J5"],"itemData":{"id":110,"type":"article-journal","title":"The evolvability of programmable hardware","container-title":"Journal of The Royal Society Interface","page":"269 -281","volume":"8","issue":"55","source":"Highwire 2.0","abstract":"In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected ‘neutral networks’ in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 1045 logic circuits (‘genotypes’) and 1019 logic functions (‘phenotypes’). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry.","DOI":"10.1098/rsif.2010.0212","author":[{"family":"Raman","given":"Karthik"},{"family":"Wagner","given":"Andreas"}],"issued":{"date-parts":[["2011",2,6]]},"accessed":{"date-parts":[["2011",12,15]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [58][54]. These studies suggested that in both kinds of systems, the solution networks are close together in the genotype/design space. As each solution in genotype/design has multiple neighbors, robustness of a solution to mutation facilitates the evolvability of these systems  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"247gt4r16i","properties":{"formattedCitation":"[55]","plainCitation":"[55]"},"citationItems":[{"id":1685,"uris":["http://zotero.org/users/632759/items/N7HVR3GR"],"uri":["http://zotero.org/users/632759/items/N7HVR3GR"],"itemData":{"id":1685,"type":"article-journal","title":"Neutralism and selectionism: a network-based reconciliation","container-title":"Nature Reviews Genetics","page":"965-974","volume":"9","issue":"12","source":"www.nature.com","abstract":"Neutralism and selectionism are extremes of an explanatory spectrum for understanding patterns of molecular evolution and the emergence of evolutionary innovation. Although recent genome-scale data from protein-coding genes argue against neutralism, molecular engineering and protein evolution data argue that neutral mutations and mutational robustness are important for evolutionary innovation. Here I propose a reconciliation in which neutral mutations prepare the ground for later evolutionary adaptation. Key to this perspective is an explicit understanding of molecular phenotypes that has only become accessible in recent years.","DOI":"10.1038/nrg2473","ISSN":"1471-0056","shortTitle":"Neutralism and selectionism","journalAbbreviation":"Nat Rev Genet","language":"en","author":[{"family":"Wagner","given":"Andreas"}],"issued":{"date-parts":[["2008",12]]},"accessed":{"date-parts":[["2014",8,6]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [59][55] ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"11aknqn3ja","properties":{"formattedCitation":"[56]","plainCitation":"[56]"},"citationItems":[{"id":1678,"uris":["http://zotero.org/users/632759/items/4NQNCUD5"],"uri":["http://zotero.org/users/632759/items/4NQNCUD5"],"itemData":{"id":1678,"type":"article-journal","title":"Robustness and Evolvability","container-title":"Trends in Genetics","page":"406-414","volume":"26","issue":"9","source":"ScienceDirect","abstract":"Why isn’t random variation always deleterious? Are there factors that sometimes make adaptation easier? Biological systems are extraordinarily robust to perturbation by mutations, recombination and the environment. It has been proposed that this robustness might make them more evolvable. Robustness to mutation allows genetic variation to accumulate in a cryptic state. Switching mechanisms known as evolutionary capacitors mean that the amount of heritable phenotypic variation available can be correlated to the degree of stress and hence to the novelty of the environment and remaining potential for adaptation. There have been two somewhat separate literatures relating robustness to evolvability. One has focused on molecular phenotypes and new mutations, the other on morphology and cryptic genetic variation. Here, we review both literatures, and show that the true distinction is whether recombination rates are high or low. In both cases, the evidence supports the claim that robustness promotes evolvability.","DOI":"10.1016/j.tig.2010.06.002","ISSN":"0168-9525","journalAbbreviation":"Trends in Genetics","author":[{"family":"Masel","given":"Joanna"},{"family":"Trotter","given":"Meredith V."}],"issued":{"date-parts":[["2010",9]]},"accessed":{"date-parts":[["2014",8,6]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [60][56]. Indeed, it has been demonstrated that electronic circuits can be evolved to fulfill a fluctuating evolutionary goal  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"2i90hjduav","properties":{"formattedCitation":"[53]","plainCitation":"[53]"},"citationItems":[{"id":1674,"uris":["http://zotero.org/users/632759/items/BM3JZZ84"],"uri":["http://zotero.org/users/632759/items/BM3JZZ84"],"itemData":{"id":1674,"type":"article-journal","title":"Spontaneous evolution of modularity and network motifs","container-title":"Proceedings of the National Academy of Sciences of the United States of America","page":"13773-13778","volume":"102","issue":"39","source":"www.pnas.org","abstract":"Biological networks have an inherent simplicity: they are modular with a design that can be separated into units that perform almost independently. Furthermore, they show reuse of recurring patterns termed network motifs. Little is known about the evolutionary origin of these properties. Current models of biological evolution typically produce networks that are highly nonmodular and lack understandable motifs. Here, we suggest a possible explanation for the origin of modularity and network motifs in biology. We use standard evolutionary algorithms to evolve networks. A key feature in this study is evolution under an environment (evolutionary goal) that changes in a modular fashion. That is, we repeatedly switch between several goals, each made of a different combination of subgoals. We find that such “modularly varying goals” lead to the spontaneous evolution of modular network structure and network motifs. The resulting networks rapidly evolve to satisfy each of the different goals. Such switching between related goals may represent biological evolution in a changing environment that requires different combinations of a set of basic biological functions. The present study may shed light on the evolutionary forces that promote structural simplicity in biological networks and offers ways to improve the evolutionary design of engineered systems.","DOI":"10.1073/pnas.0503610102","ISSN":"0027-8424, 1091-6490","note":"PMID: 16174729","journalAbbreviation":"PNAS","language":"en","author":[{"family":"Kashtan","given":"Nadav"},{"family":"Alon","given":"Uri"}],"issued":{"date-parts":[["2005",9,27]]},"accessed":{"date-parts":[["2014",8,5]]},"PMID":"16174729"}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [57][53]. Similarly, metabolic networks of bacteria living in multiple habitats are evolved to decompose multiple food sources  ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"28u0m6o1fk","properties":{"formattedCitation":"[57]","plainCitation":"[57]"},"citationItems":[{"id":1687,"uris":["http://zotero.org/users/632759/items/I8VSRUH9"],"uri":["http://zotero.org/users/632759/items/I8VSRUH9"],"itemData":{"id":1687,"type":"article-journal","title":"The evolution of modularity in bacterial metabolic networks","container-title":"Proceedings of the National Academy of Sciences","page":"6976-6981","volume":"105","issue":"19","source":"www.pnas.org","abstract":"Deciphering the modular organization of metabolic networks and understanding how modularity evolves have attracted tremendous interest in recent years. Here, we present a comprehensive large scale characterization of modularity across the bacterial tree of life, systematically quantifying the modularity of the metabolic networks of >300 bacterial species. Three main determinants of metabolic network modularity are identified. First, network size is an important topological determinant of network modularity. Second, several environmental factors influence network modularity, with endosymbionts and mammal-specific pathogens having lower modularity scores than bacterial species that occupy a wider range of niches. Moreover, even among the pathogens, those that alternate between two distinct niches, such as insect and mammal, tend to have relatively high metabolic network modularity. Third, horizontal gene transfer is an important force that contributes significantly to metabolic modularity. We additionally reconstruct the metabolic network of ancestral bacterial species and examine the evolution of modularity across the tree of life. This reveals a trend of modularity decrease from ancestors to descendants that is likely the outcome of niche specialization and the incorporation of peripheral metabolic reactions.","DOI":"10.1073/pnas.0712149105","ISSN":"0027-8424, 1091-6490","journalAbbreviation":"PNAS","language":"en","author":[{"family":"Kreimer","given":"Anat"},{"family":"Borenstein","given":"Elhanan"},{"family":"Gophna","given":"Uri"},{"family":"Ruppin","given":"Eytan"}],"issued":{"date-parts":[["2008",5,13]]},"accessed":{"date-parts":[["2014",8,6]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [61][57] ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"2p51iia1iu","properties":{"formattedCitation":"[58]","plainCitation":"[58]"},"citationItems":[{"id":1698,"uris":["http://zotero.org/users/632759/items/6AX47D9S"],"uri":["http://zotero.org/users/632759/items/6AX47D9S"],"itemData":{"id":1698,"type":"article-journal","title":"Toolbox model of evolution of prokaryotic metabolic networks and their regulation","container-title":"Proceedings of the National Academy of Sciences","page":"9743-9748","volume":"106","issue":"24","source":"www.pnas.org","abstract":"It has been reported that the number of transcription factors encoded in prokaryotic genomes scales approximately quadratically with their total number of genes. We propose a conceptual explanation of this finding and illustrate it using a simple model in which metabolic and regulatory networks of prokaryotes are shaped by horizontal gene transfer of coregulated metabolic pathways. Adapting to a new environmental condition monitored by a new transcription factor (e.g., learning to use another nutrient) involves both acquiring new enzymes and reusing some of the enzymes already encoded in the genome. As the repertoire of enzymes of an organism (its toolbox) grows larger, it can reuse its enzyme tools more often and thus needs to get fewer new ones to master each new task. From this observation, it logically follows that the number of functional tasks and their regulators increases faster than linearly with the total number of genes encoding enzymes. Genomes can also shrink, e.g., because of a loss of a nutrient from the environment, followed by deletion of its regulator and all enzymes that become redundant. We propose several simple models of network evolution elaborating on this toolbox argument and reproducing the empirically observed quadratic scaling. The distribution of lengths of pathway branches in our model agrees with that of the real-life metabolic network of Escherichia coli. Thus, our model provides a qualitative explanation for broad distributions of regulon sizes in prokaryotes.","DOI":"10.1073/pnas.0903206106","ISSN":"0027-8424, 1091-6490","note":"PMID: 19482938","journalAbbreviation":"PNAS","language":"en","author":[{"family":"Maslov","given":"Sergei"},{"family":"Krishna","given":"Sandeep"},{"family":"Pang","given":"Tin Yau"},{"family":"Sneppen","given":"Kim"}],"issued":{"date-parts":[["2009",6,16]]},"accessed":{"date-parts":[["2014",8,6]]},"PMID":"19482938"}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} [62][58]. Both of these networks show a level of modular organization.
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