
	
  

	
  

(?) Comparative Netomics - lessons from cross-disciplinary network comparison 
 
A signature of biology in the “omic” era is the shift of attention from few individual components to 
the comprehensive collections of constituents [1]. For instance, structural biologists studied the 
binding of a few proteins in the past but nowadays they are able to probe the interactions 
between thousands of proteins. Similarly, geneticists who used to knockout a single gene for 
functional characterization can now employ high-throughput techniques in functional genomics to 
study the genetic relationships between all genes. In many cases, genome-wide information 
describing how components interact could be captured by a network representation [2]. While we 
have been astonished by the complexity of such networks found in genomics or systems biology, 
many are not able to gain any intuition from the hairballs [3].  
 
Is there any clue for deciphering the hairballs? Throughout the history of science, many advances 
in biology were catalyzed by discoveries in other disciplines. For instance, the maturation of X-ray 
diffraction facilitated the discovery of the double helix, and later on the characterization of 
structures of thousands of different proteins. One may wonder if ideas in other areas of science 
could help us to decipher the hairballs. In this essay, we argue that, while the influx of ideas in the 
age of reductionism mostly originated from specific areas in physics or chemistry, to understand 
biology via a systems perspective, the concept of network serves as a mediator that brings a new 
wave of catalysts to biology, from disciplines as diverse as engineering, behavioral science and 
sociology. Toward this end, biologists should think about performing cross-disciplinary network 
comparison.  
 
Drawing analogy is by no mean new to biologists. For instance, decades ago Dawkins came up 
with the idea of meme, which is a unit carrying cultural ideas analogous to gene in biology [4], to 
illustrate principles of selection. The comparison has been further elaborated in the protofield of 
phylomemetics, which concerns itself with phylogenetic analysis of non genetic data [5]. 
Nevertheless, comparing a bio-molecular network with a complex network from a disparate field, 
say a social network, sounds like comparing apples to oranges. So what kinds of comparison 
could truly deepen our understanding? We believe that it is useful to think of different descriptions 
of a cellular system as a spectrum (Figure 1). 
 
A spectrum of cellular descriptions 
Given the complexity of a cell, a certain level of simplification is necessary for useful discussion. 
We could picture the description of cellular systems as a spectrum (Figure 1). On one hand, 
there’s a simple parts list that just enumerates each component without specifying any 
relationships. On the other hand, there is a complete three or even four-dimensional picture of 
how cellular molecules interact in space and time. It is well regarded that the characteristics of a 
cellular system cannot be explained by the characteristics of individual components – the whole is 
greater than the sum of its parts. Therefore, the parts list description is not fully informative. 
However, the full picture is often too ambitious for the current state-of-the-art in data acquisition.  
 
Network description sits conveniently between these extremes by capturing the some of the 
relationships between components of the parts list in a flexible fashion, particularly those where 
topology rather than exact location captures the relationship. There are two ways to think about 
networks. The first one, referred as association network, is essentially a process of abstraction; 
meaning entries are connected via abstract mathematical association. While any mechanistic 
interaction could be abstracted as a mathematical association, the idea of association could be 
generalized to statistical relationships between two components. An example is the disease 
networks [6] in which a gene (genotype) and a disease (phenotype) are connected via the 
statistical association between the existence of genomic variants and the occurrence of the 
disease. Networks derived from co-expression relationships provide another example. The 
second kind of network, referred as mechanistic network, on the contrary, is a process of 
concretization. Unlike abstraction that is moving away from the complete 4D-picture, 
concretization is pointing towards this picture. It aims to understand more of the physical 
processes happening inside a living system, for instance the processing of information, the 
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chemistry of metabolites and the assembly of molecular machine, and therefore focuses on 
incorporating various details of interactions. Adding further mechanistic detail onto a simple 
nodes-and-edges skeleton can often be visualized by decorating edges with directionality, color, 
thickness etc. Nevertheless, the incorporation of too much detail makes the system intractable, 
and network formalism generally breaks down if we try to load spatial or temporal details as well 
as higher-order interactions onto the diagram. At certain point, the actual four-dimensional picture 
is required. 
 
The advantage of focusing on rather abstract association is, mathematical formalisms are more 
readily transferrable. Toward this end, by comparing similar network-based mathematical 
formalisms across disciplines, biologists will benefit in terms of algorithms or method 
development. On the other hand, mechanistic networks can serve as the skeletons for describing 
different complex systems in detail. In this case, because of systems-specific details, it is less 
likely that everything could be transferred from one discipline to another. Here, it is important to 
focus on the conceptual resemblance instead of merely topological resemblance. And 
comparison of appropriately matched networks allow biologists to gain intuitions by examining 
analogous interactions in cross-disciplinary complex systems in the way as the interactions 
between molecular components in cells.  
 
Comparison leverages mathematical formalism 
Lying at the heart of the power of network formalism is its simplicity. In the era of Big Data, 
network is a very useful data structure with a wide variety of applications in both biology and other 
data intensive disciplines like computational social science.  
 
Formalism focusing on network topology 
One of the first applications of abstract network formalism is to compare the organization 
principles of various complex systems. The earliest and probably the most important observation 
is that networks organize themselves into scale free architectures in which a majority of the nodes 
contain very few connections (edges) while a few nodes (also called hubs) in the network are 
highly connected [7]. The behavior of scale-free networks is dominated by a relatively small 
number of nodes and this ensures that these networks are resistant to random accidental failures 
but are vulnerable to coordinated attacks at hub nodes [8]. In other words, just like the Internet 
functions without any major disruptions even though hundreds of routers malfunction at any given 
moment, different individuals belonging to the same biological species remain healthy in spite of 
considerable random variation in their genomic information. Nevertheless, a cell is not likely to 
survive if a hub protein is knocked out. For example, highly connected proteins in the yeasts’ 
protein-protein interaction network are three-times more likely to be essential than proteins with 
only a small number of links to other proteins [9]. Another important property of scale-free 
networks is its small world property [10][11]: the presence of hubs ensures that the distance 
between any two nodes in the network is small. An example is the combination of airport and 
highway networks that ensure that we can travel across any two points in USA in a finite amount 
of time. This has led to a second measure of a nodes’ centrality in the network that is based on 
the effect of its removal on the communication pathways between all the other nodes in the 
network. Similar in spirit to heavily used bridges, highways, or intersections in transportation 
networks, a few centrally connected nodes termed bottlenecks funnel most of the paths between 
different parts of the network and removal of these nodes could reduce the efficiency (increase of 
distance) of communication between nodes within these networks [12]. Indeed, it has been 
reported that changes to the sequences of bottlenecks in biological networks can be deleterious 
[13]. A more sophisticated way to define centrality is to take into account the importance of 
neighbors. Toward this end, the PageRank algorithm plays a prominent role. Faced with a search 
query, Google has to decide which set of results are ranked higher and appear on the first page 
of the results page. Originally developed in social network analysis [14], the PageRank utilizes an 
algorithm developed to rank relevant documents based on the rank of the websites that link to 
this document in a self-consistent manner  - ie being linked by higher ranking nodes counts for 
more. The algorithm was then adopted in food webs to prioritize nodes that are in danger of 
extinction [15] and also to rank prognostic relevance for patients with cancers [16]. 
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Besides scale-free nature, one can easily observe that social networks tend to have communities 
within them due to the relatively larger number of interactions between people in the same 
neighborhood, school, or work place. People within the same social group tend to form strong ties 
in the form of cliques and form a single cohesive group. Analogous to closely-knit social groups, a 
large number of biological components form a single functional macromolecular complex like the 
ribosome. More generally, a common feature of a large number of technological and biological 
networks are that they are organized in the form of modules such that nodes within the same 
module have a larger number of connections with each other as compared to nodes belonging to 
different modules [17]. The quantity dubbed modularity tries to quantify this, comparing the 
number of intra and inter module links in the network.  
 
Formalisms focusing on the interplay between topologies and the properties of nodes 
Network is extremely useful in data mining because it can be used as a reference for mapping 
additional properties or features of different nodes. Similar questions and solutions have been 
come up in dealing with biological data as well as data from disciplines like computational social 
science. An important example is the inference the missing data by the idea of “guilt by 
association”, or the idea that nodes that have similar associations in the network tend to be more 
similar in nature. For example, in a social context, if your friends in Facebook use Product Y, you 
are more likely to use product Y and the advertisements you view online are personalized based 
on these recommendation systems [18]. In biological context, the assumption is based on 
observations like the cellular components within the same module are more closely associated 
with the same set of cellular phenotypes than components belonging to different modules [19], 
and the modules within gene coexpression networks also tend to contain genes with similar 
functions and genes within the same module are often involved in the same biological pathway 
[20]. As a result, one could infer the functions of a protein or a non-coding element based on the 
function of its neighbors in the underlying network. Networks play an important role in gene 
prioritization, an essential process for applications like disease gene discovery because of limited 
validation and characterization resources [21]. For examples, network properties of individual 
genes have been used to distinguish functionally essential and loss-of-function tolerant genes 
[22]. More formally, one could prioritize the candidate genes based on how they are connected to 
the known genes. For example, if a gene is one-steps away from a group of disease genes, it is 
very likely that the gene is associated with disease X. Of course, the influence of a node may not 
be restricted to its nearest neighbors; network flow algorithms are widely used to examine the 
long-range influence [23][24]. In social science context, for example, ones use cascade structured 
models to capture the information propagation on web blog networks, and predict the blog’s 
popularity [25].  
 
We want to emphasize that networks are in general noisy. High-throughput experiments may 
result at spurious links, and missing data is very common social science. Methods for link 
prediction and denoising are therefore very useful. Link prediction can be done by using the 
network information alone, for instance, in a protein-protein interaction network, defective cliques 
were used to find missing interactions and determine the parts required to form a functional 
macromolecular complex [26]. More often, because whether two nodes are connected depends 
on their intrinsic properties, one could employ machine-learning techniques to explore the 
relationships between connections and various features [27]. Recently, generative models of 
networks, say stochastic block models [28], are very popular in computational social science. 
Nevertheless, such models are not widely used in biological context yet, presumably because of 
the lack of gold standards for validation.  
 
Formalisms focusing on causal relationships and dynamics 
The construction of various association networks is an active area of research for both biology 
and computational social science. While correlational relationships could potentially be easily 
calculated with the appropriate data, a fundamental question is the distinction between direct and 
indirect interactions. For example, a transcription factor X regulates gene Y and Z, one could 
expect pairs like X-Y, X-Z and Y-Z are all correlated, but the key is to identify the direct regulatory 
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interactions X-Y and X-Z. Established mathematical machineries like Bayesian networks, Markov 
random fields and other information theoretical frameworks [29] have been used for this purpose.  
 
The inference of causal relationships could be greatly benefited by time-series data. In social 
science, online retailers are interested to use purchase records to study how customers influence 
each other [30]. On the other hand, the same question is extremely common in biology, under the 
term “reverse engineering”. For example, how can we infer the developmental gene regulatory 
network from temporal gene expression dynamics? Ideally, one could write differential equations 
to fit the temporal data; nevertheless, temporal data in most genomics experiments do not have 
enough time-points. To overcome the drawback, data mining techniques such as matrix 
factorization are employed. For instance, given the genome-wide expression profile of at different 
time-points, one could project the high-dimensional gene expression data to low dimensional 
space and write differential equations to model the dynamics of the projections [31]. The 
inference of casual and direct relationships from statistical data points to the study of mechanistic 
networks. 
 
Apart from the actual dynamical processes happen in a network, one could explore the 
evolutionary dynamics of networks. In biological context, pairs of orthologous genes can be used 
to align networks from different species. Based on the notion, a mathematical formalism was 
developed to measure the evolutionary rewiring rate between networks across species in 
analogous to quantifying sequence evolution [32]. It was shown that metabolic networks rewire at 
a slower rate compared to various regulatory networks. The same notion has recently been used 
to integrate co-association across different species in order to detect conserved and specific 
functional modules [33].  
 
Comparison gains physical intuition 
Now we shift discussion to mechanistic" networks. Here, the network framework serves as a 
skeleton of different complex systems. From a biologist standpoint, network comparison thus 
brings intuition from other disciplines to bear on molecular biology.  
 
Looking for universal mechanisms 
The study of mechanistic networks enables one to further explore the origin of some of the 
striking similarity observed in the structure of biological and non-biological networks. Probably the 
most important example is to model the universally observed scale-free degree distribution 
described above. A number of different stochastic mechanisms lead to the formation of scale-free 
networks. For example, when a new airport is created, it is more efficient for people to travel to 
other parts of the world if the airport connects to pre-existent hubs in the networks. This model is 
called the preferential attachment model or the “rich get richer” model as newly created hubs 
prefer to connect to pre-existent hubs in the network [7]. Another mechanism that can lead to the 
formation of hubs in the network is the so-called duplication divergence model. In this model, a 
new copy of a pre-existing node and its associated edges (for example, a webpage with all its 
pre-existing links) are created randomly and the edges associated with these two nodes are 
allowed to change independent of one another.  This model leads to scale-free networks because 
the number of edges for a hub node will increase further as it is more likely that one of its many 
neighbors will get duplicated. One of the main mechanisms for the creation of new proteins is 
gene duplication. Hence, the formation of scale-free behavior in the protein-protein interaction 
network could be explained by the duplication-divergence model [31]. Remarkably, the same 
duplication-divergence mechanism has been applied to describe the patterns of “memes” in 
online media [32].  
 
More recently, it has been shown that components in both bacterial genomes as well as large-
scale computer software projects form multilayered dependency networks (enzyme A is used to 
decompose the output metabolites of enzyme B; the installation of package A depends on the 
installation of package B). The common underlying dependency networks leads to the same 
power-law components-usage frequency distribution (how often a enzyme is present in a 
bacterial genome; how often a certain package is installed in a computer) [36]. While it is elegant 
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to explain the topology of disparate networks by simple stochastic models, such universal 
mechanism cannot capture the full picture. For example, it has also been shown that when the 
protein interaction network is analyzed in terms of the structural interfaces involved (giving rise to 
the structural network) the duplication-divergence model only applies to hubs having a single 
interface as opposed to those with many  (with the duplicated protein reusing the same interface 
as its parent) [37]. Nevertheless, as biologists, we love to think about functions and selection; it is 
interesting to see that, by network comparison, network organization could be a manifestation of 
stochasticity. 
 
Looking for common design principles 
Apart from universal mechanisms, comparison of networks shed light on the design principles of 
networks. An example is the so-called network hierarchy (see Box 1). Many biological networks, 
for instance transcription regulatory networks, have an intrinsic direction of information flow, 
forming a hierarchical organization, similar to structures like corporate management hierarchy 
[38]. Nodes in the middle level therefore form the information bottlenecks. To avoid break down of 
flow, middle regulatory factors tend to co-regulate downstream targets; the same is true for 
management hierarchy in where middle managers tend to communicate often [39][40].  
 
Lying at the heart of deciphering biological networks mediated by mechanistic interactions is the 
mapping between architecture and function. The mapping points to biological circuits that solve 
common functional problems – effectively a toolbox for synthetic biology [41]. As it is in general 
very hard to define a “function”, toward this direction, comparison with various technological or 
engineered networks with well-defined functions is particularly insightful. As an example, consider 
a biochemical oscillator. Two essential elements of an oscillator are a source of negative 
feedback and a source of time delay. Nevertheless, different oscillators (e.g. for circadian 
rhythms, for cell cycle, or from various organisms) have a certain level of variation because of 
additional design objectives or strategies. This is just like the case that not all electronic devices 
use the same oscillator design because of other design objectives. The striking similarity between 
biological systems and technological systems has long been identified. A decade ago, Uri Alon 
pointed out several common design principles in biological and engineering networks such as 
modular organization and robustness to perturbation [42]. Robustness is obviously a preferred 
design objective because it makes a system tolerate stochastic fluctuations, either intrinsically or 
from external sources. Modularity, on the other hand, makes a system more evolvable. For 
instance in software design, modular programming that separates functionality of a program into 
independent modules connected by an interface is widely practiced [43]. The same is for 
biological networks because modules can be readily reused to adapt new functions.  
 
Looking for the commonalities and differences between tinkerer and engineer 
The comparison of biological networks and technological networks should best be performed 
under the light of evolution. As Alon highlighted by the phase “the tinkerer as an engineer” [42], it 
is remarkable that “good-engineering solutions” are found in biological systems evolved by 
random tinkering. Indeed, comparison between biological and technological networks should 
manifest the nature of the two very different approaches: evolution as a tinkerer neither designs 
things nor builds systems— it settles on systems that, historically, conveyed a survival benefit 
(and if a better way comes along, it will adopt that). On the other hand, technological networks 
are essentially blueprints drawn by engineers who have a grand plan that makes sure everything 
works harmoniously. Biologists often tend to distinguish the two approaches cautiously so as to 
avoid the notion of intelligent design – the existence of an intelligent cause that constructs living 
organisms on purpose. Nevertheless, the distinction is not clear-cut. Both biological networks and 
man-made technological ones like roadways and electronic circuits are complex adaptive 
systems, there are plenty of examples showing that many great innovations are results of trial 
and error, and all technological systems are subjected to selection like users requirements. In a 
recent review, Wagner summarized nine commonalities between biological and technological 
innovation, such as descent with modification, extinction and replacement, and horizontal transfer 
[44]. To a certain extent, an engineer is a tinkerer (see Box 2). 
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Under such a united framework, we could picture that both engineer and tinkerer are working on 
an optimization problem with similar underlying design objectives. Like all optimization problems, 
there is no way to optimize all objectives and thus tradeoffs are unavoidable in both biological and 
technological systems. This is essentially the conventional wisdom – there’s no free lunch 
[45][46]. Despite the similarity, tinkerers and engineers take different views in balancing different 
constraints and tradeoffs. Their optimal choices are exhibited in the topology of their 
corresponding networks. Taking software engineering as an example, software engineers tend to 
reuse certain code. However, the robustness of software will be reduced if a piece of code is 
highly called by many disparate processes. Analysis of the evolution of a canonical software 
system, the Linux kernel, revealed that the rate of evolution of functions (routines) is distributed in 
a bimodal fashion and thus a significant fraction of functions are updated often [47]. Therefore, 
unlike biological systems in which the majority of components are rather conserved and thus 
prefer a more independent organization to maintain robustness, software engineers pay the price 
of reusability and robustness by constantly tweaking the system. Indeed, further analysis of the 
underlying network of Linux kernel, the so-called call graph, showed that more central 
components at the call graph require more fine-tuning. The patterns seems to be hold for other 
software systems like the organization of packages in the statistical computing language R 
(Figure 2). In other words, unlike biological networks whose hubs tend to evolve slowly because 
of the number of constraints, hubs in the software system evolve rapidly. This seems to be 
counter to ones intuition that an engineer should not meddle too much with highly connected 
components. However, there is another intuition in play: rational designers may believe that they 
can modify a hub without disrupting it -- in contrast to the situation with random changes. 
Moreover, the central points in a system are often those that are in the greatest use and hence 
are in the most need of the designer's attention. The situation is analogous to road networks: one 
sees comparatively much construction on highly used bottlenecks (e.g. the George Washington 
Bridge) as opposed to out of the way thoroughfares  (see Box 2). 
 
Conclusion 
Biology is a subject with a strong tradition of doing comparison. One hundred years ago, biologist 
compared the phenotypes of different species. Since the discovery of DNA, biologists have been 
comparing the sequences of different genes, and then all sorts of ‘omes’ across species. In the 
“omics” era, may be it is a time to extend our tradition even further to compare networks in 
biology as well as other disciplines. Over the past few years, efforts have been spent on 
concatenating networks together forming a multiplex structure [48][49]. This direction is of 
particular interest to biology. First, from an abstract formalism standpoint, due to rapid 
advancements in data acquisition, the structure of biological data goes beyond a single layer of 
network to multiplex structure: the multiple layers could either be formed by different categories of 
relationships (co-expression, genetic interactions, etc.), analogous to social science in which an 
individual may participate in multiple social circles: family, friends, colleagues, or in online setting: 
Facebook, LinkedIn and Twitter. Second, mechanistically, biological regulation happens in 
multiple levels: transcriptional regulation, post-transcriptional regulation, and even post-
translational in analogous to a city with electrical networks, water pipes, and cell phone lines. We 
are looking forward to some of the methods developed in other contexts to be applied in biology.  
 
So far, we have already seen examples in which comparison brings new connections. For 
examples, there are emerging theories that unite evolved and designed systems; there is an 
increase of attention among biologists and sociologists on the connection between genomics 
information and sociological information such as whether phenotypes or genotypes are correlated 
in friendship networks [50]. Indeed, various scientific disciplines form a network in the intellectual 
universe where knowledge emerges when things connect. 
 
Potential exhibits: 
 
Figure 1 Caption 
 
Figure 2 Caption 
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?A table showing examples of the two types networks. 
(Give more examples of association networks, like genetic interaction networks.) 
 
?A table highlighting problems studied in the framework of association networks, and the 
corresponding problems arise in computational social science. 
 
Table/Figure summarizing all comparisons/references. 
 
Box 1 Network science 101 
Betweenness centrality:   
As dangerous epidemics spread in a network, it is important not only to develop vaccines but it is 
also important to efficiently utilize these vaccines so that the spread of the epidemic can be 
reduced. It has been proposed that strategies based on human contact networks are most 
effective at reducing the spread of a disease in a population [51]. 
 
 
Box 1 Hierarchical organization of networks 
Many biological networks possess an intrinsic direction of information flow, forming a hierarchical 
network organization. The hierarchical organization in biological networks resemble the chain of 
command in human society, like in military context and corporate hierarchy [38]. For instance, in 
a transcriptional regulatory network more influential transcription factors (regulators whose 
expression are more highly correlated with the expression of target genes) tend to be better 
connected (have more interacting partners) and higher in the hierarchy [52]. Moreover, the 
transcription factors in the middle layer tend to be more cooperative [39]. Such a situation has 
been well studied in management science, where in certain corporate settings middle managers 
interact the most with peers to manage subordinates below them [40]. These observations reflect 
a democratic hierarchy as opposite to a conventional autocratic organization [53]. 
 
Of particular interest for hierarchical organization is the so-called bow-tie structure, meaning the 
intermediate layers have fewer components than the input and output layers. For example, in a 
signaling network, a large number of receptors corresponding to diverse stimuli and many 
transcription factors form the input and output layers, whereas the intermediate layer refers to a 
few key molecules like calcium and cAMP that mediate the inputs and outputs [54]. Similarly, in 
the networking architecture of the Internet, various protocols in the input/link layer (ARP, RARP, 
NDP etc) and various application protocols in the application/output layer (HTTP, FTP,DHCP etc) 
are essentially connected by only IPv4, the primary protocols in the internet layer. The reason for 
the emergence of such a common pattern is still widely open, a recent paper suggested bow-tie is 
a result of information compression [55].  
 
Box 2 Tinkerer versus engineer 
Despite the apparent differences, the similarity between biological systems and technological 
systems draws a parallel between tinkerer and engineer, and the parallel points to a common 
framework to unite them. Wagner further proposed an analogy between the genotype space for a 
biological system and the design space for a technological system. These spaces contain all the 
possible networks in the corresponding systems. In biology, many attempts have been made to 
search for solutions of common functional problems such as adaptation, oscillation and cell 
polarization [41]. Similar studies were performed in the context of circuit design, where a set of 
logic gates was evolved via rewiring in order to perform a predefined computational task [56][57]. 
These studies suggested that in both kinds of systems, the solution networks are close together 
in the genotype/design space. As each solution in genotype/design has multiple neighbors, 
robustness of a solution to mutation facilitates the evolvability of these systems [58][59]. Indeed, it 
has been demonstrated that electronic circuits can be evolved to fulfill a fluctuating evolutionary 
goal [56]. Similarly, metabolic networks of bacteria living in multiple habitats are evolved to 
decompose multiple food sources [60][61]. Both of these networks show a level of modular 
organization. 
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Very often we picture engineers design things from scratch. In reality, as a technological system 
evolves, engineers are subjected to various constraints like tinkerer. In the example of internet 
architecture, while there are frequent innovations at the input layer that interact with a variety of 
networking hardware and output layers that connect with many different software applications, the 
internet layer with very few protocols is the bottleneck under heavy constraints and such 
protocols can hardly be replaced [62]. The observed rapid innovation at the top and bottom layers 
but constraint at the middle is very common in biological system. Consider the metabolic 
networks of different bacteria, the anabolic and catabolic components are much more diverse 
whereas there are less variations between central pathways [63]. 
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