
	  

	  

(?) Comparative Netomics - lessons from cross-disciplinary network comparison 
 
A signature of biology in the “omic” era is the shift of attention from few individual components to 
the comprehensive collections of constituents [1]. For instance, structural biologists studied the 
binding of a few proteins in the past but nowadays they are able to probe the interactions 
between thousands of proteins. Similarly, geneticists who used to knockout a single gene for 
functional characterization can now employ high-throughput techniques in functional genomics to 
study the genetic relationships between all genes. In many cases, genome-wide information 
describing how components interact could be captured by a network representation [2]. While we 
have been astonished by the complexity of such networks found in genomics or systems biology, 
many are not able to gain any intuition from the hairballs [3].  
 
Is there any clue for deciphering the hairballs? Throughout the history of science, many advances 
in biology were catalyzed by discoveries in other disciplines. For instance, the maturation of X-ray 
diffraction facilitated the discovery of the double helix, and later on the characterization of 
structures of thousands of different proteins. One may wonder if ideas in other areas of science 
could help us to decipher the hairballs. In this essay, we argue that, while the influx of ideas in the 
age of reductionism mostly originated from specific areas in physics or chemistry, to understand 
biology via a systems perspective, the concept of network serves as a mediator that brings a new 
wave of catalysts to biology, from disciplines as diverse as engineering, behavioral science and 
sociology. Toward this end, biologists should think about performing cross-disciplinary network 
comparison.  
 
Drawing analogy is by no mean new to biologists. For instance, decades ago Dawkins has come 
up with the idea of meme, which is a unit carrying cultural ideas analogous to gene in biology [4]. 
Nevertheless, comparing a bio-molecular network with a complex network from a disparate field, 
say a social network, sounds like comparing apples to oranges. So what kinds of comparison 
could truly deepen our understanding? We believe that it is useful to think of different descriptions 
of a cellular system as a spectrum (Figure 1). 
 
A spectrum of cellular descriptions 
Given the complexity of a cell, a certain level of simplification is necessary for useful discussion. 
We could picture the description of cellular systems as a spectrum (Figure 1). On one hand, 
there’s a simple parts list that just enumerates each component without specifying any 
relationships. On the other hand, there is a complete three or even four-dimensional picture of 
how cellular molecules interact in space and time. It is well regarded that the characteristics of a 
cellular system cannot be explained by the characteristics of individual components – the whole is 
greater than the sum of its parts. Therefore, the parts list description is not fully informative. 
However, the full picture is often too ambitious for the current state-of-the-art in data acquisition.  
 
Network description sits conveniently between these extremes by capturing the some of the 
relationships between components of the parts list in a flexible fashion. There are two ways to 
think about networks. The first one is essentially a process of abstraction; meaning entries are 
connected via abstract mathematical association. While any mechanistic interaction could be 
abstracted as a mathematical association, the idea of association could be generalized to 
statistical relationships between two components. An example is the disease networks [5] a gene 
(genotype) and a disease (phenotype) are connected via the statistical association between the 
existence of genomic variants and the occurrence of the disease. Networks derived from co-
expression relationships provide another example. The second one, on the contrary, is a process 
of concretization. Unlike abstraction that is moving away from the complete 4D-picture, 
concretization is pointing towards the 4D-picture. It aims to understand more of the physical 
processes happening inside a living system, for instance the processing of information, the 
chemistry of metabolites and the assembly of molecular machine, and therefore focuses on 
incorporating various details of interactions. Adding further mechanistic detail onto a simple 
nodes-and-edges skeleton can often be visualized by decorating edges with directionality, color, 
thickness etc. Nevertheless, the incorporation of too much detail makes the system intractable, 
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and network formalism generally breaks down if we try to load spatial or temporal details as well 
as higher-order interactions onto the diagram. At certain point, the actual four-dimensional picture 
is required. 
 
The advantage of focusing on rather abstract association is, mathematical formalisms are more 
readily transferrable. Toward this end, by comparing similar network-based mathematical 
formalisms across disciplines, biologists will benefit in terms of algorithms or method 
development. On the other hand, mechanistic networks can serve as the skeletons for describing 
different complex systems. Comparison of such networks allow biologists to gain intuitions by 
examining interactions in cross-disciplinary complex systems in the same ground as the 
interactions between molecular components in cells. Nevertheless, because of systems-specific 
details, not everything could be transferred from one discipline to another, and it is important to 
focus on the conceptual resemblance instead of merely topological resemblance.  
 
Comparison leverages mathematical machineries 
Lying at the heart of the power of network formalism is its simplicity. Such simple structure could 
be used to capture various complex systems. In this sense, approaches or methods developed in 
one discipline can readily be applied in biology. In the era of Big Data, network could be used to 
represent two-dimensional projection of high-dimensional data. There are a wide variety of 
applications in both biology and other data intensive disciplines like computational social science.  
 
Machineries focusing on network topology 
Even though the evolutionary process involves random changes at the molecular level, it is not 
surprising that natural selection organizes biological networks in an ordered fashion. Comparison 
of biological networks with different social and technological networks has provided valuable 
insights into their organizing principles. The earliest and probably the most important observation 
is that networks organize themselves into scale free architectures in which a majority of the nodes 
contain very few connections (edges) while a few nodes (also called hubs) in the network are 
highly connected [6]. The behavior of scale-free networks is dominated by a relatively small 
number of nodes and this ensures that these networks are resistant to random accidental failures 
but are vulnerable to coordinated attacks at hub nodes [7]. In other words, just like the Internet 
functions without any major disruptions even though hundreds of routers malfunction at any given 
moment, different individuals belonging to the same biological species remain healthy in spite of 
considerable random variation in their genomic information. Nevertheless, a cell is not likely to 
survive if a hub protein is knocked out. For example, highly connected proteins in the yeasts’ 
protein-protein interaction network are three-times more likely to be essential than proteins with 
only a small number of links to other proteins [8].  
 
Another important property of scale-free networks is that most of the nodes in these networks are 
connected to each other and the presence of hubs ensures that the distance between any two 
nodes in the network is small. An example is the combination of airport and highway networks 
that ensure that we can travel across any two points in USA in a finite amount of time. This has 
led to a second measure of a nodes’ centrality in the network that is based on the effect of its 
removal on the communication pathways between all the other nodes in the network. Similar in 
spirit to heavily used bridges, highways, or intersections in transportation networks, a few 
centrally connected nodes termed bottlenecks funnel most of the paths between different parts of 
the network and removal of these nodes could reduce the efficiency (increase of distance) of 
communication between nodes within these networks [9]. Indeed, it has been reported that 
changes to the sequences of bottlenecks in biological networks can be lethal or disease causing 
[10]. 
 
The study of hubs and bottlenecks is called node prioritization, meaning to look for important 
nodes in the networks. However, hubs and bottlenecks are local properties, sometimes it is 
important to rank nodes based on global network topology. The PageRank algorithm plays a 
prominent role. Faced with a search query, Google has to decide which set of results are ranked 
higher and appear on the first page of the results page. Originally developed in social network 
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analysis [11], the PageRank utilizes an algorithm developed to rank relevant documents based on 
the rank of the websites that link to this document in a self-consistent manner. The algorithm was 
then adopted in food webs to prioritize nodes that are in danger of extinction [12] and also to rank 
prognostic relevance for patients with cancers [13]. In applications like disease gene discovery, 
node prioritization is an essential process because of limited resources. As dangerous epidemics 
spread in a network, it is important not only to develop vaccines but it is also important to 
efficiently utilize these vaccines so that the spread of the epidemic can be reduced. It has been 
proposed that strategies based on human contact networks are most effective at reducing the 
spread of a disease in a population [14]. 
 
One can easily observe that social networks tend to have communities within them due to the 
relatively larger number of interactions between people in the same neighborhood, school, or 
work place. People within the same social group tend to form strong ties in the form of cliques 
and form a single cohesive group. Analogous to closely-knit social groups, a large number of 
biological components form a single functional macromolecular complex like the ribosome. As 
high-throughput experimental datasets in biology tend to be noisy and miss a number of true 
relationships, defective cliques were used to find missing interactions and determine the parts 
required to form a functional macromolecular complex [15]. More generally, a common feature of 
a large number of technological and biological networks are that they are organized in the form of 
modules such that nodes within the same module have a larger number of connections with each 
other as compared to nodes belonging to different modules [16]. Modularity measures the level of 
integration and segregation of links in the network across modules. Evolutionarily this makes 
sense because connections within a module can be reused in a different functional context [17]. 
Naturally, genes within the same module have similar biological properties. For example, the 
cellular components within the same module are more closely associated with the same set of 
cellular phenotypes than components belonging to different modules [18]. Similarly, the modules 
within gene coexpression networks also tend to contain genes with similar functions and genes 
within the same module are often involved in the same biological pathway [19]. 
 
Machineries focusing on the properties of nodes and edges 
Lots of interesting questions as well as many machine-learning formalisms arise when we start to 
map properties of individual nodes to a network. In both biology and computational social 
science, very often the properties of nodes are incomplete, and we are interested to infer the 
missing data. The essence of these methods is the idea of “guilt by association” or the idea that 
nodes that have similar associations in the network tend to be more similar in nature. For 
example, if your friends in Facebook use Product Y, you are more likely to use product Y and the 
advertisements you view online are personalized based on these recommendation systems. In 
genomics, for example, one could infer the functions of a protein or a non-coding element based 
on the function of its neighbors in the underlying network. The same is true for predicting disease-
associated genes: if the neighbors of a gene are all associated with Disease X, it is very likely 
that the gene is associated with disease X. Of course, the influence of a node may not be 
restricted to its nearest neighbors; network flow algorithms are widely used to examine the long-
range influence [20] 
 
Very often whether two nodes are connected depend on their intrinsic properties. Therefore the 
inference or prioritization of nodes leads to prediction and denoising of links. Difficulties lie at the 
proper learning of network organization based on observable data. Recently, generative models 
of networks, say stochastic block models [21], are very popular in computational social science. 
Nevertheless, such models are not widely used in biological context yet, presumably because of 
the lack of gold standard for validation.  
 
Machineries focusing on causal relationships and dynamics 
The construction of various phenomenological and social networks an active area of research for 
both biology and computational social science. While correlational relationships could potentially 
be easily calculated with the appropriate data, a fundamental question is the distinction between 
direct and indirect interactions. For instance, a statistical analysis on many cancer samples can 



	  

	  

easily identify the correlation between various somatic mutations (indirect), but the key is in fact to 
identify the driver mutations (direct). Established mathematical machineries like Bayesian 
networks, Markov random fields and other information theoretical frameworks [22] have been 
used for this purpose. The inference of causal relationships could be greatly benefited by time-
series data. In social science, online retailers are interested to use purchase records to study how 
customers influence each other. On the other hand, the same question is extremely common in 
biology, under the term “reverse engineering”. For example, how can we infer the embryonic 
developmental gene regulatory network from temporal gene expression dynamics? Ideally, one 
could write differential equations to fit the temporal data; nevertheless, temporal data in most 
genomics experiments do not have enough time-points. To overcome the drawback, for instance, 
given the genome-wide expression profile of at different time-points, one could perform project 
the high-dimensional gene expression data to low dimensional space by data mining techniques 
such as SVD, and write differential equations to model the dynamics of the projections [23]. The 
inference of casual and direct relationships from statistical data points to the study of mechanistic 
networks. 
 
Machineries generalizing the concept of networks 
Due to rapid advancements in data acquisition, the structure of biological data goes beyond a 
single layer of network to multiplex structure common found in different technological and social 
networks. Multiplex networks contain multiple layers of interconnected networks - the multiple 
layers in these networks could either be formed by different categories of relationships (co-
expression, genetic interactions, etc.) or they could be formed by relationships observed at 
different timepoints. The idea originated in social network analysis because an individual may 
participate in multiple social circles: family, friends, colleagues, or in online setting: Facebook, 
LinkedIn and Twitter. Similarly, the different layers in a temporal network contain parts of the 
network that are connected at different timepoints [24]. As dynamic data in genomic information 
becomes available, we think that valuable insights can be gleaned by the analysis of these data 
using algorithms developed in the context of multiplex social networks. 
 
Nevertheless, biology motivates an alternate definition of temporal network. While they exist 
together at the same time-point, networks from different species essentially capture the 
evolutionary changes to a common core. In this definition, pairs of orthologous genes can be 
used to connect networks from different species, forming a multi-layers structure. The notion has 
recently been used to integrate co-association across different species in order to detect 
conserved and specific functional modules [25]. Based on the same notion, a mathematical 
formalism was developed to measure the evolutionary rewiring rate between networks across 
species in analogous to quantifying sequence evolution [26]. It was shown that metabolic 
networks rewire at a slower rate compared to various regulatory networks. 
 
Comparison gains physical intuition (why) 
Going for mechanistic details, a network framework serves as the skeletons of different complex 
systems. From a biologist standpoint, network comparison thus brings intuition from other 
disciplines into biology. In spite of the disparate fields, we believe there is several aspects 
biologists could find inspiration. 
 
Looking for universal mechanisms 
Since the burgeoning of studying networks in various disciplines, efforts have been made on 
explaining some of the striking similarity in terms of organization of underlying networks in 
biological and other complex systems. Probably the most important example is to model the 
scale-free degree distribution described above. In a protein-protein interactions network, the 
pattern of organization could be explained by the duplication divergence model [27], a simple 
stochastic process describing how a protein network grows by gene duplication. As a hub protein 
has many interactions, its number of interactions is likely to increase further simply because one 
of its neighbors got duplicated. The mechanism is the same as the original “richer get richer” 
model used to explain the same pattern in many other networks [6]. More recently, it has been 
shown that components in both bacterial genomes as well as large-scale computer software 
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projects form multilayered dependency networks (enzyme A is used to decompose the output 
metabolites of enzyme B; the installation of package A depends on the installation of package B). 
The common underlying dependency networks leads to the same power-law components-usage 
frequency distribution (how often a enzyme is present in a bacterial genome; how often a certain 
package is installed in a computer) [28]. While it is elegant to explain the topology of disparate 
networks by simple stochastic models, such universal mechanisms are rather rare. To a certain 
extent, the existence of such models underlines the importance of randomness in biology. 
Remarkably, the same duplication-divergence mechanism has been applied to describe the 
patterns of “memes” in online media [29]. As biologists, we love to think about functions and 
selection; it is interesting to see that, by network comparison, network organization could be a 
manifestation of stochasticity. 
 
Looking for common design principles 
Of course, biological networks are not random, and so do networks from other disciplines. Most 
observed similarities in terms of network organization are not easy to explain by simple 
mechanisms or principles, for instance, the so-called network hierarchy (see Box 1). The reason 
is because, for most networks, it is in general very hard to define a “function”. In fact, lying at the 
heart of deciphering biological networks mediated by mechanistic interactions is the mapping 
between architecture and function. The mapping points to biological circuits that solve common 
functional problems – effectively a toolbox for synthetic biology [30]. Toward this direction, 
comparison with various technological or engineering networks with well-defined functions is 
particularly insightful. As an example, consider a biochemical oscillator. Two essential elements 
of an oscillator are a source of negative feedback and a source of time delay. Nevertheless, 
different oscillators (e.g. for circadian rhythms, for cell cycle, or from various organisms) have a 
certain level of variation because of additional design objectives or strategies. This is just like the 
case that not all electronic devices use the same oscillator design because of other design 
objectives. The striking similarity between biological systems and technological systems has long 
been identified. A decade ago, Uri Alon pointed out several common design principles in 
biological and engineering networks such as modular organization and robustness to perturbation 
[31]. Robustness is obviously a preferred design objective because it makes a system tolerate 
stochastic fluctuations, either intrinsically or from external sources. Modularity, on the other hand, 
makes a system more evolvable. For instance in software design, modular programming that 
separates functionality of a program into independent modules connected by interface is widely 
practiced [32]. The same is for biological networks because modules can be readily reused to 
adapt new functions. Because of the fundamental importance of such design objectives, an 
insightful network comparison should be rooted in the common design objectives rather than 
merely network topology. 
 
Looking for the commonalities and differences between tinkerer and engineer 
The comparison of biological networks and technological networks should best be performed 
under the light of evolution. As Alon highlighted by the phase “the tinkerer as an engineer” [31], it 
is remarkable that “good-engineering solutions” are found in biological systems evolved by 
random tinkering. Indeed, comparison between biological and technological networks should 
manifest the nature of the two very different approaches: evolution as a tinkerer neither designs 
things nor builds systems— it settles on systems that, historically, conveyed a survival benefit 
(and if a better way comes along, it will adopt that). On the other hand, technological networks 
are essentially blueprints drawn by engineers who have a grand plan that makes sure everything 
work harmoniously. Biologists often tend to distinguish the two approaches cautiously so as to 
avoid the notion of intelligent design – the existence of an intelligent cause that construct living 
organisms on purpose. Nevertheless, the distinction is not clear-cut. Both biological networks and 
man-made technological ones like roadways and electronic circuits are complex adaptive 
systems, there are plenty of examples showing that many great innovations are results of trial 
and error, and all technological systems are subjected to selection like users requirements. In a 
recent review, Wagner summarized nine commonalities between biological and technological 
innovation, such as descent with modification, extinction and replacement, and horizontal transfer 
[33]. To a certain extent, an engineer is a tinkerer (see Box 2). 



	  

	  

 
Under such a united framework, we could picture that both engineer and tinkerer are working on 
an optimization problem with similar underlying design objectives. Like all optimization problems, 
there is no way to optimize all objectives and thus tradeoffs are unavoidable in both biological and 
technological systems. This is essentially the conventional wisdom – there’s no free lunch 
[34][35]. Despite the similarity, tinkerers and engineers take different views in balancing different 
constraints and tradeoffs. Their optimal choices are exhibited in the topology of their 
corresponding networks. Taking software engineering as an example, software engineers tend to 
reuse certain code. However, the robustness of software will be reduced if a piece of code is 
highly called by many disparate processes. Analysis of the evolution of a canonical software 
system, the Linux kernel, revealed that the rate of evolution of functions (routines) is distributed in 
a bimodal fashion and thus a significant fraction of functions are updated often [36]. Therefore, 
unlike biological systems in which the majority of components are rather conserved and thus 
prefer a more independent organization to maintain robustness, software engineers pay the price 
of reusability and robustness by constantly tweaking the system. Indeed, further analysis of the 
underlying network of Linux kernel, the so-called call graph, showed that more central 
components at the call graph require more fine-tuning. The patterns seems to be hold for other 
software systems like the organization of packages in the statistical computing language R 
(Figure 2). In other words, unlike biological networks whose hubs tend to evolve slowly because 
of the number of constraints, hubs in the software system evolve rapidly. This seems to be 
counter to ones intuition that an engineer should not meddle too much with highly connected 
components. However, there is another intuition in play: rational designers may believe that they 
can modify a hub without disrupting it -- in contrast to the situation with random changes. 
Moreover, the central points in a system are often those that are in the greatest use and hence 
are in the most need of the designer's attention. The situation is analogous to road networks: one 
sees comparatively much construction on highly used bottlenecks (e.g. the George Washington 
Bridge) as opposed to out of the way thoroughfares  (see Box 2). 
 
Conclusion 
Biology is a subject with a strong tradition of doing comparison. One hundred years ago, biologist 
compared the phenotypes of different species. Since the discovery of DNA, biologists have been 
comparing the sequences of different genes, and then all sorts of ‘omes across species. In the 
“omics” era, may be it is a time to extend our tradition even further to compare networks in 
biology as well as other disciplines. We have already seen examples in which comparison brings 
new connections. For examples, there are emerging theories that unite evolved and designed 
systems; there is an increase of attention among biologists and sociologists on the connection 
between genomics information and sociological information such as whether phenotypes or 
genotypes are correlated in friendship networks [37]. Indeed, various scientific disciplines form a 
network in the intellectual universe where knowledge emerges when things connect. 
 
Potential exhibits: 
 
Figure 1 Caption 
 
Figure 2 Caption 
 
?A table showing examples of the two types networks. 
(Give more examples of phenomenological networks, like genetic interaction networks.) 
 
A table highlighting problems studied in the framework of phenomenological networks, and the 
corresponding problems arise in computational social science. 
 
Box 1 Hierarchical organization of networks 
Many biological networks possess an intrinsic direction of information flow, forming a hierarchical 
network organization. The hierarchical organization in biological networks resemble the chain of 
command in human society, like in military context and corporate hierarchy [38]. For instance, in 
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a transcriptional regulatory network more influential transcription factors (regulators whose 
expression are more highly correlated with the expression of target genes) tend to be better 
connected (have more interacting partners) and higher in the hierarchy [39]. Moreover, the 
transcription factors in the middle layer tend to be more cooperative [40]. Such a situation has 
been well studied in management science, where in certain corporate settings middle managers 
interact the most with peers to manage subordinates below them [41]. These observations reflect 
a democratic hierarchy as opposite to a conventional autocratic organization [42]. 
 
Of particular interest for hierarchical organization is the so-called bow-tie structure, meaning the 
intermediate layers have fewer components than the input and output layers. For example, in a 
signaling network, a large number of receptors corresponding to diverse stimuli and many 
transcription factors form the input and output layers, whereas the intermediate layer refers to a 
few key molecules like calcium and cAMP that mediate the inputs and outputs [43]. Similarly, in 
the networking architecture of the Internet, various protocols in the input/link layer (ARP, RARP, 
NDP etc) and various application protocols in the application/output layer (HTTP, FTP,DHCP etc) 
are essentially connected by only IPv4, the primary protocols in the internet layer. The reason for 
the emergence of such a common pattern is still widely open, a recent paper suggested bow-tie is 
a result of information compression [44].  
 
Box 2 Tinkerer versus engineer 
Despite the apparent differences, the similarity between biological systems and technological 
systems draws a parallel between tinkerer and engineer, and the parallel points to a common 
framework to unite them. Wagner further proposed an analogy between the genotype space for a 
biological system and the design space for a technological system. These spaces contain all the 
possible networks in the corresponding systems. In biology, many attempts have been made to 
search for solutions of common functional problems such as adaptation, oscillation and cell 
polarization [30]. Similar studies were performed in the context of circuit design, where a set of 
logic gates was evolved via rewiring in order to perform a predefined computational task [17][45]. 
These studies suggested that in both kinds of systems, the solution networks are close together 
in the genotype/design space. As each solution in genotype/design has multiple neighbors, 
robustness of a solution to mutation facilitates the evolvability of these systems [46][47]. Indeed, it 
has been demonstrated that electronic circuits can be evolved to fulfill a fluctuating evolutionary 
goal [17]. Similarly, metabolic networks of bacteria living in multiple habitats are evolved to 
decompose multiple food sources [48][49]. Both of these networks show a level of modular 
organization. 
 
Very often we picture engineers design things from scratch. In reality, as a technological system 
evolves, engineers are subjected to various constraints like tinkerer. In the example of internet 
architecture, while there are frequent innovations at the input layer that interact with a variety of 
networking hardware and output layers that connect with many different software applications, the 
internet layer with very few protocols is the bottleneck under heavy constraints and such 
protocols can hardly be replaced [50]. The observed rapid innovation at the top and bottom layers 
but constraint at the middle is very common in biological system. Consider the metabolic 
networks of different bacteria, the anabolic and catabolic components are much more diverse 
whereas there are less variations between central pathways [51]. 
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