
(?) Comparative Netomics - lessons from cross-disciplinary network comparison 
 
Throughout the history of science, advancements of biology were catalyzed by discoveries in 
other disciplines. For instance, the maturation of X-ray diffraction facilitated the discovery of the 
double helix, and later on the characterization of structures of thousands of different proteins. In 
the era of systems biology, attention has shifted from individual molecular components to their 
interactions at a system level. New functional genomics assays, in particular ones based on high-
throughput sequencing (*Seq) [1], enables biologists to probe thousands of ‘omes [2] – the 
comprehensive collections of constituents. One may wonder which discipline will contribute the 
most to biology in this new scientific paradigm [3]. While the influx of ideas in the age of 
reductionism mostly originated from specific areas in physics or chemistry, to understand biology 
via a systems perspective, the new wave of catalysts come from areas of science that are far 
apart, as diverse as engineering, behavioral science, sociology, but are centered on the concept 
of network [4]. 
 
Networks are by no mean new to biologists [5]. Metabolic pathways have been studied for 
decades. But more recently, as a result of the advancements of high-throughput techniques, 
simple pathways have been expanded to intertwined wiring diagrams. While many of us have 
been astonished by the complexity of such networks found in genomics or systems biology, few 
are able to gain any intuition from the hairballs [6]. In this essay, we argue that, by cross-
disciplinary network comparison, intuitions as well as algorithms or mathematical techniques 
developed in commonplace networks can be able to catalyze our understanding of biology. One 
may wonder, however, comparing a bio-molecular network with a complex network from a 
disparate field, say a social network, sounds like comparing apples to oranges. So what kinds of 
comparison could truly deepen our understanding? We believe that it is useful to think of different 
descriptions of a cellular system as a spectrum (Figure 1). 
 
A spectrum of cellular descriptions 
Given the complexity of a cell, a certain level of simplification is necessary for useful discussion. It 
is well regarded that the characteristics of a cellular system cannot be explained by the 
characteristics of individual components – the whole is greater than the sum of its parts. We could 
thus picture the description of individual components (parts list: genes, proteins and elements 
from genome annotation), and the full three or even four-dimensional picture of how molecules 
interact in space and time form the two ends of a spectrum. In this sense, the network 
perspective provides a useful middle ground by capturing the relationships between components 
of the parts list. A natural way to define relationships is by using various kinds of mechanistic 
interactions. Such networks essentially capture different facets of the complex organization of an 
organism, for instance, a regulatory network describes part of the cellular information processing, 
a metabolic network traces the chemistry of metabolites, and the protein-protein interaction 
network captures cell signaling as well as providing a manual on how to assemble molecular 
machines. The integration of such mechanistic networks and various spatial and temporal 
quantities, visually as the decoration of arrows with directionality, color, thickness etc., provides a 
description reasonably close to the complete picture along the spectrum. While the incorporation 
of details offers physical intuition, it could be intractable. The scenario is analogous to classical 
physics; writing down the equations of all the particles is intractable, and thus physicists turn to a 
phenomenological and macroscopic formalism, i.e. thermodynamics. Similarly, certain networks 
defined in a phenomenological sense are useful. These networks do not capture the details of 
biological processes happening inside a living system, but provide a mathematical abstraction 
farther away from the complete picture in the spectrum. Perhaps the most important 
phenomenological networks are built on the mapping between genotypes and phenotypes. An 
example is the disease networks [7], a gene (genotype) and a disease (phenotype) are 
connected via the statistical association between the existence of genomic variants and the 
occurrence of the disease. 
 
The underlying mechanistic network aims to serve as the skeleton of a complex system. 
Depending on the nature of interactions, mechanistic networks resemble, and could be compared 



with various commonplace networks. For instance, signaling networks resembles certain chains 
of command in human society (e.g. corporate hierarchy) in terms of information transmission [8]. 
Developmental transcriptional regulatory networks, on the other hand, resemble technological 
systems like circuits in terms of the emergence of functions (specific input-output responses) [9]. 
The comparison thus allows biologists to gain intuitions by examining interactions in cross-
disciplinary complex systems in the same ground as the interactions between molecular 
components in cells. Nevertheless, the systems-specific details make the framework not easy to 
transfer from one discipline to another. On the other hand, phenomenological networks are rather 
abstract connections between entities, and thus mathematical formalisms are easily transferrable. 
Toward this end, by comparing similar network-based mathematical formalisms across 
disciplines, biologists will benefit in terms of algorithmic or method development. 
 
Comparison of Mechanistic networks for gaining intuition 
From a biologist standpoint, comparing various mechanistic networks between biology and other 
disciplines can bring intuition from other disciplines into biology. In spite of the disparate fields, we 
believe there is several areas biologists could find inspiration. 
 
Looking for universal mechanisms 
Since the burgeoning of studying networks in various disciplines, efforts have been made on 
explaining some of the striking similarity in terms of organization of underlying networks in 
biological and other complex systems. An early example is the emergence of the scale-free 
degree distribution in a protein-protein interactions network. The pattern of organization could be 
explained by the duplication divergence model [10], a simple stochastic process describing how a 
protein network grows by gene duplication. As a hub protein has many interactions, its number of 
interactions is likely to increase further simply because one of its neighbors got duplicated. The 
same “richer get richer” model was proposed originally to explain the same pattern in many other 
networks [11]. More recently, it has been shown that components in both bacterial genomes as 
well as large-scale computer software projects form multilayered dependency networks (enzyme 
A is used to decompose the output metabolites of enzyme B; the installation of package A 
depends on the installation of package B). The common underlying dependency networks leads 
to the same power-law components-usage frequency distribution (how often a enzyme is present 
in a bacterial genome; how often a certain package is installed in a computer) [12]. 
 
While it is elegant to explain the topology of disparate networks by simple stochastic models, 
such universal mechanisms are rather rare. To a certain extent, the existence of such models 
underlines the importance of randomness in biology. Remarkably, the same duplication-
divergence mechanism has been applied to describe the patterns of “memes” in online media 
[13]. As biologists, we love to think about functions and selection; it is interesting to see that, by 
network comparison, network organization could be a manifestation of stochasticity. 
 
Looking for common design principles 
Of course, biological networks are not random, and so do networks from other disciplines. Most 
observed similarities in terms of network organization are not easy to explain by simple 
mechanisms or principles, for instance, the so-called network hierarchy (see Box 1). The reason 
is because, for most networks, it is in general very hard to define a “function”. In fact, lying at the 
heart of deciphering biological networks mediated by mechanistic interactions is the mapping 
between architecture and function. The mapping points to biological circuits that solve common 
functional problems – effectively a toolbox for synthetic biology [14]. Toward this direction, 
comparison with various technological or engineering networks with well-defined functions is 
particularly insightful. As an example, consider a biochemical oscillator. Two essential elements 
of an oscillator are a negative feedback loop and a source of time delay. Nevertheless, oscillators 
of various purposes (e.g. for circadian rhythms or for cell cycle) or from various organisms are not 
identical but have a certain level of variation because additional design objectives or strategies 
are involved. Just like not all electronic devices use the same oscillator design, the importance of 
design objectives is not new at all in engineering systems. The striking similarity between 
biological systems and technological systems has long been identified. A decade ago, Uri Alon 



pointed out several common design principles in biological and engineering networks such as 
modular organization and robustness to perturbation [15]. Robustness is obviously a preferred 
design objective because it makes a system tolerate intrinsic or extrinsic stochastic fluctuations. 
Modularity, on the other hand, makes a system more evolvable. For instance in software design, 
modular programming that separates functionality of a program into independent modules 
connected by interface is widely practiced [16]. The same is for biological networks because 
modules can be readily reused to adapt new functions. Because of the fundamental importance 
of such design objectives, an insightful network comparison should be rooted in the common 
design objectives rather than merely network topology. 
 
Looking for the commonalities and differences between tinkerer and engineer 
The comparison of biological networks and technological networks should best be performed 
under the light of evolution. As Alon highlighted by the phase “the tinkerer as an engineer” [15], it 
is remarkable that “good-engineering solutions” are found in biological systems evolved by 
random tinkering. Indeed, comparison between biological and technological networks should 
manifest the nature of the two very different approaches: evolution as a tinkerer starting with bits 
and pieces and trying to connect random nodes, whereas technological networks are essentially 
blueprints drawn by engineers. Biologists often tend to distinguish the two approaches cautiously 
so as to avoid the notion of intelligent design – the existence of an intelligent cause that construct 
living organisms on purpose. Nevertheless, the distinction is not clear-cut. Both biological 
networks and man-made technological networks like roadways and circuits are complex adaptive 
systems, there are plenty of examples showing that many great innovations are results of trial 
and error, and all technological systems are subjected to selection like users requirements. In a 
recent review, Wagner summarized nine commonalities between biological and technological 
innovation, such as descent with modification, extinction and replacement, and horizontal transfer 
[17]. To a certain extent, an engineer is a tinkerer (see Box 2). 
 
Under such a united framework, we could picture that both engineer and tinkerer are working on 
an optimization problem with similar underlying design objectives. Like all optimization problems, 
there is no way to optimize all objectives and thus tradeoffs are unavoidable in both biological and 
technological systems. This is essentially the conventional wisdom – there’s no free lunch 
[18][19]. Despite the similarity, tinkerers and engineers take different views in balancing different 
constraints and tradeoffs. Their optimal choices are exhibited in the topology of their 
corresponding networks. Taking software engineering as an example, software engineers tend to 
reuse certain code. However, the robustness of software will be reduced if a piece of code is 
highly called by many different processes. Analysis of the evolution of a canonical software 
system, the Linux kernel, revealed that the rate of evolution of functions (routines) is distributed in 
a bimodal fashion and thus a significant fraction of functions are updated often [20]. Therefore, 
unlike biological systems in which the majority of components are rather conserved and thus 
prefer a more independent organization to maintain robustness, software engineers pay the price 
of reusability and robustness by constantly tweaking the system. Indeed, further analysis of the 
underlying network of Linux kernel, the so-called call graph, showed that more central 
components at the call graph require more fine-tuning. In other words, unlike biological networks 
whose hubs tend to evolve slowly because of the number of constraints, software system is very 
similar to a roadway system; bottlenecks under high usage like George Washington Bridge 
require more upgrade and more construction. While intentional tweaking on bottlenecks sounds 
obvious for technological systems, it is not always possible (see Box 2). 
 
Comparing phenomenological networks to leverages mathematical machineries 
Phenomenological networks are typical products dealing with big data; they are essentially two-
dimensional projection of high-dimensional data. As it is extremely common to have data with 
many features in the era of Big Data, especially in computational social science, networks across 
disciplines actually present very similar challenges. Here, we highlight a few areas where different 
questions arise in genomics and social science could be formulated by the very same approach. 
By the same token, network algorithms developed in one discipline can readily be applied in 
biology.  



 
Formalisms for association and prioritization of nodes 
In both biology and computational social science, networks are often used as a map for 
integrating various features. A general question of interest is to infer the properties of certain 
nodes. Though various kernel methods have been introduced, the essence of all solutions is the 
idea of “guilt by association”. In genomics, a widely used approach to infer the functions of a 
protein or a non-coding element is based on the function of its neighbors in the underlying 
network. The same is true for predicting disease-associated genes: if the neighbors of a gene are 
all associated with Disease X, it is very likely that the gene is associated with disease X. Online 
advertisers use the same trick. If your friends in Facebook use Product Y, you are more likely to 
use product Y and thus will be targeted. Interestingly, because of the availability of datasets, for 
instance the Framingham study, there is an increase of attention on the connection between 
genomics information and sociological information. Biologists and sociologists have started to 
examine the hypothesis on whether phenotypes or genotypes are correlated in friendship 
networks [21]. 
 
Nodes association is closely related to nodes prioritization, in which the PageRank algorithm 
plays an important role. Originated from Katz centrality in social network analysis [22], PageRank 
algorithm was first used by Google to rank documents based on linkages in a self-consistent way. 
The algorithm was then adopted in food webs to determine extinction [23] and later in an 
algorithm called NetRank that rank prognostic relevance for patients with cancers [24]. Generally 
speaking, in addition to algorithms like PageRank that prioritize nodes by network topology, 
expression data, sequence information, functional annotation and biomedical literature are 
required for further filtering [25]. In applications like disease gene discovery, nodes prioritization is 
an essential process because of limited resources. In social science setting, the same is true for 
applications like online advertising. 
 
Formalisms for inference of edges 
The construction of various phenomenological networks an active area of research for both 
biology and computational social science. While correlational relationships could potentially be 
easily calculated with the appropriate data, a fundamental question is the distinction between 
direct and indirect interactions. This is of particular importance for biology in terms of identifying 
the master regulator of a disease. The same application is true for social networks for identifying 
the source of influence. Established mathematical machineries like Bayesian networks or Markov 
random fields have been used for this purpose. The inference of casual relationships could be 
greatly benefited by time-series data. The question is extremely common in biology, under the 
term “reverse engineering”. Ideally, one could write differential equations to fit the temporal data, 
nevertheless, temporal data in most genomics experiments do not have enough time-points. To 
overcome the drawback, for instance, given the genome-wide expression profile of at different 
time-points, one could perform project the high-dimensional gene expression data to low 
dimensional space by data mining techniques such as SVD, and write differential equations to 
model the dynamics of the projections [26].  
 
Many networks in biology and social science are noisy and incomplete, leading to common 
challenges like link prediction and denoising. Difficulties lie at the proper learning of network 
organization based on observable data. Recently, generative models of networks, say stochastic 
block models [27], are very popular in computational social science. Nevertheless, such models 
are not widely used in biological context yet, presumably because of the lack of gold standard for 
validation. 
 
Formalisms for multi-layers network structure 
A recent trend of network analysis is the notion of multiplex networks where multiple layers of 
networks form an interconnected structure. The idea is originated in social network analysis 
because an individual may participate in multiple social circles: family, friends, colleagues, or in 
online setting: Facebook, Linkedln and Twitter. The same is true in biological context because of 
the existence of multiple relational connections (co-expression, genetic interactions etc.) between 



components in networks. While different layers of networks are categorical in this formalism, a 
similar multi-layers generalization in network analysis is the so-called temporal networks. In short,  
a temporal network considers the slices of networks taking place at different time points together 
as a single mathematical structure [28]. Again, the current application focuses on online social 
networks because genome-wide data in biological systems are still not dynamics enough. 
However, as the number of time points increases, say in RNA-Seq experiments, algorithms 
developed in social contexts can be easily applied to integrate the slices of co-expression 
networks. 
 
Nevertheless, biology motivates an alternate definition of temporal network. While they exist 
together at the same time-point, networks from different species essentially capture the 
evolutionary changes to a common core. In this definition, pairs of orthologous genes can be 
used to connect networks from different species, forming a multi-layers structure. The notion has 
recently been used to integrate co-association across different species in order to detect 
conserved and specific functional modules [29]. Based on the same notion, a mathematical 
formalism was developed to measure the evolutionary rewiring rate between networks across 
species in analogous to quantifying sequence evolution [30]. It was shown that metabolic 
networks rewire at a slower rate compared to various regulatory networks.  
 
Conclusion 
Biology is a subject with a strong tradition of doing comparison. One hundred years ago, biologist 
compared the phenotypes of different species. Since the discovery of DNA, biologists have been 
comparing the sequences of different genes, and then all sorts of ‘omes across species. To 
nourish a system-level understanding and to leverage the tremendous amount of high-throughput 
data, may be it is a time to extend our tradition even further to compare with networks from other 
complex systems as well as other disciplines. Indeed, various scientific disciplines form a network 
in the intellectual universe where knowledge emerges when things connect. 
 
 
[[KKY2MG: the texts here are just snippets extracted from pervious writing, not coherent]] 
 
Box 1 Hierarchical organization of networks 
Many biological networks possess an intrinsic direction of information flow, such as signaling 
networks where information propagates from G-Protein coupled receptors to transcription factors 
[31], forming a hierarchical network organization. The hierarchical organization in biological 
networks resemble certain the chain of command in human society, like in military context and 
corporate hierarchy [8]. For instance, more influential transcription factors (regulators whose 
expression are more highly correlated with the expression of target genes) tend to be better 
connected and higher in the hierarchy [32]. Moreover, the cooperative regulatory factors in a 
transcriptional regulatory network tend to be in the middle layer [33]. This situation is well studied 
in management science, where in certain corporate settings middle managers interact the most 
with peers to manage subordinates below them [34]. Such observations reflect a democratic 
hierarchy as opposite to a conventional autocratic organization [35]. 
 
Box 2 Tinkerer versus engineer 
The parallel between tinkerer and engineer points to a common framework to unite them. Wagner 
further proposed an analogy between the genotype space for a biological system and the design 
space for a technological system. These spaces contain all the possible networks in the 
corresponding systems. In biology, many attempts have been made to search for solutions of 
common functional problems such as adaptation, oscillation and cell polarization [14]. Similar 
studies were performed in the context of circuit design, where a set of logic gates was evolved via 
rewiring in order to perform a predefined computational task [36][37]. These studies suggested 
that in both kinds of systems, the solution networks are close together in the genotype/design 
space. As each solution in genotype/design has multiple neighbors, robustness of a solution to 
mutation facilitate the evolvability of these systems [38][39]. Indeed, it has been demonstrated 
that electronic circuits can be evolved to fulfill a fluctuating evolutionary goal [36]. Similarly, 



metabolic networks of bacteria living in multiple habitats are evolved to decompose multiple food 
sources [40][41]. Both of these networks show a level of modular organization. 
In the above example of internet architecture, while there are frequent innovations at the input 
layer that interact with a variety of networking hardware and output layers that connect with many 
different software applications, the internet layer with very few protocols is the bottleneck under 
heavy constraints and such protocols can hardly be replaced [42]. The observed rapid innovation 
at the top and bottom layers but constraint at the middle may shed light on a remarkably pattern 
in developmental genetic regulatory network. Different species exhibit different patterns at the 
early and late stages of embryo development, but highly similar during the phylotypic stage – the 
so-called hourglass phenomenon [43]. 
Of particular interest for hierarchical organization is the so-called bow-tie structure, meaning the 
intermediate layers have fewer components than the input and output layers. For example, in a 
developmental genetic regulatory network, information propagates from genes controlling the 
initial stage of development (the input) to genes controlling detailed cell differentiation and 
morphogenesis (output) [44][45]. The intermediate layer refers to a small set of input-output 
genes integrating complex spatiotemporal information and trigger development of an entire 
program of cell differentiation [46]. In the networking architecture of the Internet, on the other 
hand, various protocols in the input/link layer (ARP, RARP, NDP etc) and various application 
protocols in the application/output layer (HTTP, FTP,DHCP etc) are essentially connected by 
IPv4, the primary protocols in the internet layer. A recent paper provided a first mechanism to 
understand its evolution by explicitly modeling information flow in feed-forward networks as a 
cascade of matrix multiplications (similar to neural networks in machine learning context) [47]. It 
showed that a bow-tie structure emerged if the goal matrix is rank deficient, i.e. the information 
can be compressed.  
 
Box 3 
A table highlighting problems studied in the framework of phenomenological networks, and the 
corresponding problems arise in computational social science. 
May be giving a few more examples of phenomenological networks, like genetic interaction 
networks.  
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