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ABSTRACT

Singular Value Decomposition (SVD) is computationally costly and
therefore a naive implementation does not scale to the needs of sce-
narios where data evolves continuously. While there are various
on-line analysis and incremental decomposition techniques, these
may not accurately represent the data or may be slow for the needs
of many applications. To address these challenges, in this paper,
we propose a Low-rank, Windowed, Incremental SVD (LWI-SVD)
algorithm, which (a) leverages efficient and accurate low-rank ap-

proximations to speed up incremental SVD updates and (b) uses
a window-based approach to aggregate multiple incoming updates
(insertions or deletions of rows and columns) and, thus, reduces on-
line processing costs. We also present an LWI-SVD with restarts

(LWI2-SVD) algorithm which leverages a novel highly efficient
partial reconstruction based change detection scheme to support
timely refreshing of the decomposition with significant changes in
the data and prevent accumulation of errors over time. Experiment
results, including comparisons to other state of the art techniques
on different data sets and under different parameter settings, con-
firm that LWI-SVD and LWI2-SVD are both efficient and accurate
in maintaining decompositions.

1. INTRODUCTION
Feature selection and dimensionality reduction techniques [20]

usually involve some (often linear) transformation of the vector
space containing the data to help focus on a few features (or combi-
nations of features) that best discriminate the data in a given corpus.
For example, the singular value decomposition (SVD [7]) of a data
feature matrix A is of the form A = USV T , where the r orthog-

onal column vectors of U form an r dimensional basis in which
the n data objects can be described. Also, the r orthogonal column
vectors of V (or the rows vector of V T ) form an r dimensional
basis in which the m features can be placed. These r dimensions
are referred to as the latent variables [16] or the latent semantics
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of the database [7]: Intuitively, the columns of U can be thought
of as the eigen-objects of the data, each corresponding to one inde-
pendent concept/cluster, and the columns of V can be thought of as
the eigen-features of the collection, each, once again, correspond-
ing to a concept/cluster in the database. In other words, SVD can
be used for co-clustering both data-objects and features simultane-
ously. The r× r diagonal matrix S, can be considered to represent
the strength of the corresponding latent concepts in the database:
the amount of error caused by the removal of a concept from the
database is proportional to the corresponding singular value.

1.1 Incremental SVD and Related Works
SVD is computationally costly and therefore a naive implemen-

tation does not match the real-time needs of scenarios where data
evolve continuously: decomposition of an n × m matrix requires
O(n×m×min(n,m)) time. While there are various on-line tech-
niques, these are often slow or inaccurate. For example, one of the
fastest techniques, SPIRIT [13] focuses on row insertions and can-
not directly handle row deletions or column insertions/deletions.
While a forgetting factor can be introduced to discount old objects,
it cannot immediately reflect the properties of the removed entries
on the decomposition. Moreover, since SPIRIT primarily considers
data insertions and deletions, it is not applicable in situations where
features of interest themselves evolve with the data (examples in-
clude weights of tags extracted from data and proximity to the hubs
within an evolving network). As we see in Section 5, it has a higher
inaccuracy compared to other incremental techniques, such as [5].

Other incremental SVD algorithms, such as [5, 6, 8, 9, 11, 12, 14,
15, 17], operate on an existing SV decomposition by folding-in new
data and features into an existing (often low-rank) SVD; algebraic
matrix manipulation techniques are used to rewrite the new SV de-
composition matrices in terms of the old SV decomposition and
update (including downdating) matrices. [5] showed that a number
of database updates (including removal of columns) can all be cast
as additive modifications to the original n×m database matrix, A.
These updates then can be reflected on the SVD in O(nmr) time as

long as the rank, r, of the matrix A is such that r ≤
√

min(p, q),
where p is the number of new rows and q is the number of new
columns. In other words, as long as the latent dimensionality of the
database is low, the singular value decomposition can be updated
in linear time. [5] further showed that the update to SVD can be
computed in a single pass over the data matrix making the process
highly efficient for large data. This and other existing algorithms
can nevertheless be slow for many real-time applications.

1.2 Contributions of this Paper
In Section 2 we formalize these challenges and in Section 3, we

propose a Low-rank, Windowed, Incremental SVD (LWI-SVD) al-
gorithm, which leverages efficient and accurate low-rank approxi-
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mations to speed up incremental SVD updates and uses a window-

based approach to aggregate multiple incoming updates (insertion
or deletions) and, thus reduces on-line costs. We also present, in
Section 4, an LWI2-SVD algorithm which leverages a novel partial
reconstruction based change detection technique to support timely
refreshing of the decompositions to prevent accumulation of errors.

Experiment results reported in Section 5 confirm that LWI-SVD
and LWI2-SVD are both efficient and accurate in maintaining de-
compositions. We conclude the paper in Section 6.

2. BACKGROUND

2.1 Problem Definition
At time stamp i, we are given a set of n data tuples Di =

{ti,1, ti,2, ..., ti,n}, each with a set, Fi, of m features. We are also
given the set, Li, containing the r latent semantics of Di (and their
weights). As time moves, new tuples arrive and some of the ex-
isting tuples expire: at the next time stamp, ti+1, the tuple set is
Di+1 = (Di\∆D−

i+1) ∪ ∆D+
i+1, where ∆D−

i+1 are the tuples

that expired and ∆D+
i+1 are the new tuples that arrived. More-

over, at time (i + 1), we have a new set, Fi+1, of features, where
Fi+1 = (Fi\∆F−

i+1)∪∆F+
i+1, where ∆F−

i+1 are features that are

not of interest anymore and ∆F+
i+1 are the new features of interest.

Our goal is to quickly obtain Li+1 containing the r latent seman-
tics corresponding to time instance, i+ 1, and efficiently maintain
these r latent semantics as time further moves.

2.2 Basic Incremental SVD [5]
Let us be given an n × m data matrix X = UxSxV

T
x and

an n′ × m′ updated data matrix X ′ = X + ∆, where ∆ is a
max(n, n′) × max(m,m′) change matrix. Note that if X ′ has
larger dimension than X , X is padded with n′ − n rows of zero
and m′ − m columns of zero to match the dimension of ∆, the
removal of rows and columns are modeled by additions that result
in zeroing of the corresponding rows and columns (which are then
dropped from the matrix). Let us further assume that the change
matrix ∆ can be decomposed into ∆ = ABT . Note that we can
rewrite the matrix X ′ as

X′ = X + ABT =
[

Ux A
]

[

Sx 0
0 I

]

[

Vx B
]T

. (1)

Given these, [5] incrementally maintains SVD as follows:

2.2.1 QR Decompositions

Let us also define QA as the orthogonal basis of (I − UxU
T
x )A

and QB as the orthogonal basis of (I−VxV
T
x )B. Both QA and QB

can be obtained through QR decomposition [4] of (I − UxU
T
x )A

and (I − VxV
T
x )B:

QARA = (I − UxU
T
x )A; QBRB = (I − VxV

T
x )B (2)

Here QA and QB are orthogonal matrices and RA and RB are
upper-triangular. It is easy to see, through basic matrix algebra,
that the following holds:

[

Ux A
]

=
[

Ux QA

]

[

I UT
x A

0 RA

]

(3)

[

Vx B
]

=
[

Vx QB

]

[

I V T
x B

0 RB

]

(4)

Moreover, by substituting Equations 3 and 4 into Equation 1, we
can get

X′ = X +ABT =
[

Ux QA

]

K
[

Vx QB

]T
(5)

where K is equal to

K =

[

I UT
x A

0 RA

] [

Sx 0
0 I

] [

I V T
x B

0 RB

]T

(6)

=

[

Sx 0
0 0

]

+

[

UT
x A
RA

] [

V T
x B
RB

]T

(7)

2.2.2 Matrix K

Let us remember that X is an n×m matrix and X ′ is an n′×m′

matrix. Given this

• if n ≥ n′ and m ≥ m′, K is a matrix of size (n+1)× (m+
1). This is because, if n ≥ n′, then Ux is an orthogonal
matrix and UxU

T
x is equal to I . Consequently, QARA =

(I − UxU
T
x )A = 0 and this implies that RA is simply 0.

The same is true for RB .
• if n < n′ and m < m′, K is a matrix of size n′ × m′. In

Section 3.2.1, we discuss the shape K takes in this case and
the resulting properties in detail.

• if n ≥ n′ and m < m′, K is a matrix of size (n+ 1) ×m′.
• if n < n′ and m ≥ m′, K is a matrix of size n′ × (m+ 1).

2.2.3 Using the Decomposition of K to Obtain the
Decomposition of X ′

Let us consider the SV decomposition of K; i.e., K = UKSKV T
K .

Equation 1 can be rewritten [5] as

X′ = X+ABT =
(

[ Ux QA

]

UK)SK

(

[ Vx QB

]

VK)T (8)

giving us the SVD of the new tuple matrix, X ′.
The challenge, of course, is to obtain the matrices, QA and QB ,

and the SV decomposition of K efficiently. In order to keep the
complexity down, [5] suggests that A and B should be taken as
combination of simple column vectors so that ABT can be the sum
of multiple rank-1 matrices. This, however, may be a significant
constraint in real-applications where the change matrix ∆ itself can
have a large size, indicating great amount of rank-1 matrices it pro-
duces and updating a sequence of rank-1 matrix is not effective as
treating them as a whole. In the next section, we discuss how to
relax this assumption of [5] without impacting efficiency and accu-
racy.

3. LWI-SVD
We now present our key ideas for efficient incremental SVD op-

erations. As described above, this involves efficiently searching for
matrices, QA and QB , and the SVD of K.

3.1 Efficiently Obtaining QA and QB

As described above, QA is the orthogonal basis of (I−UxU
T
x )A

and QB is the orthogonal basis of (I−VxV
T
x )B. These can be ob-

tained using two expensive QR decomposition operations for both
QA and QB . One way to reduce the number of QR decompo-
sition operations would be to seek a decomposition of ∆ where
X ′ = X +∆ = AAT ; i.e., A = B. However, not all ∆ will have
such a convenient decomposition. When ∆ is negative definite, it
cannot be written as the format of A×B where A = B.

Instead, in this paper, we propose to reduce the cost of the overall
QR decomposition step by setting A to the identity matrix I and
setting BT to ∆. This does not lose any generality on the algorithn
since ∆ (BT ) can be any matrix. When we do this, since A = I ,

it would also be the case that QA =

[

0
I

]

. Therefore, we need only

one QR decomposition. What is more, if the ∆ only reflect a small
amount of data insertions and deletions, then it will be a sparse
matrix with last few rows and columns of nonzero values. This
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lead to efficient computation of (I − VxV
T
x )B and V T

x B by block
matrix multiplication. Let’s first find the zero block of B when it
is data insertion. Then ∆ (B) is a n′ × m′ matrix with a block of
zero values on the first n×m position. We can rewrite B as

B =

[

0 B1

B2 B3

]

Then, we can divide (I − VxV
T
x ) and V T

x into the same block
size as B. For example, we can rewrite V T

x as

V T
x =

[

Vx
T
0 Vx

T
1

Vx
T
2 Vx

T
3

]

Then, the multiplication of V T
x B becomes

V T
x ×B =

[

Vx
T
1 ×B2 Vx

T
0 ×B1 + Vx

T
1 ×B3

Vx
T
3 ×B2 Vx

T
2 ×B1 + Vx

T
3 ×B3

]

Note that, the multiplication of Vx
T
0 and the corresponding block

of B is avoided since the corresponding block of B is all zeros.
Also, the other part of V T

x and B are small size thin matrices. Thus,
the multiplication of V T

x ×B can be done very efficiently. The same
applies to (I − VxV

T
x )×B and when the data are deleted.

As we experimentally show in Section 5.4.1, this optimization
provides significant gains in time, without any noticeable loss in
the final accuracy.

3.2 Efficiently Decomposing K

The next challenge is to obtain the singular value decomposition
of the matrix, K. Performing SVD on K directly would be costly
as the SVD operation is expensive. However, as we prove next,
in Section 3.2.1, in the presence of row and column insertions, K
takes a special structure:

K =

[

Sx 0
0 0

]

+

[

UT
x A
RA

] [

V T
x B
RB

]T

=

[

Sx Π
Φ Γ

]

.

More specifically, in the presence of insertions, (a) since Sx is
diagonal, K is mostly sparse, and (b) it is shaped like an arrow:
(aside from the diagonal) there are non-zeros only on its last rows
and columns. We verify these next.

3.2.1 Shape of K

Let X be an n × m matrix and X ′ be an n′ × m′ matrix. In
Section 2.2.2, we have seen that K is either of size n′ ×m′, (n+
1)× (m+1), (n+1)×m, or n′× (m+1), depending on whether
the numbers of rows and columns increase or decrease when the
data matrix transforms from X to X ′. Let us further assume that
n ≤ m and m′ > m and n′ > n, which is rows and columns
insertion. As we already discussed before, let us set A = In′ and

BT = ∆, where A ∈ R
n′

×n′

, B ∈ R
m′

×n′

and ∆ ∈ R
n′

×m′

so
that ABT is equal to the update matrix ∆. Finally, let SVD of X
be X = UxSxV

T
x , or simply X = USV T .

Given the fact that X ′ = X +∆, we can also deduce that X ′ =
U ′SV ′T +∆, where

U ′ =

[

U
0

]

∈ R
n′

×n and V ′ =

[

V
0

]

∈ R
m′

×m.

Intuitively, U and V are augmented by padding n′ − n rows of
zeros to U and m′ −m rows of zeros to V to make it compatible
with ∆. This padding gives us

X′ =

[

X 0
0 0

]

+∆ = U ′SV ′T +∆.

Secondly, using a similar zero-padding, we can get the following
equalities:

(In′ − U ′U ′T )A =

[

0 0
0 In′−n

]

(9)

(Im′ − V ′V ′T )B =

[

0
Bm′−m

]

(10)

The right hand side of Equation 9 has n′−n independent columns
and, thus, it has a simple QR decomposition:

QA =

[

0
In′−n

]

and RA =
[

0 In′−n

]

Since the right hand side of the Equation 10 consists of 0s except
for the last m′ − m rows, the QR decomposition of the left hand

side will be such that QB ∈ R
(m′

−m)×m and RB ∈ R
(m′

−m)×n′

.
Let us further partition RB into two,

RB =
[

RB1 RB2
]

,

where RB1 ∈ R
(m′

−m)×n and RB2 ∈ R
(m′

−m)×(n′
−n).

Given the above, we can rewrite the matrix, K, as

K =

[

S 0
0 0

]

+

[

U ′TA
RA

] [

V ′TB
RB

]T

where

[

U ′TA
RA

]

=

[

UT 0
0 In′−n

]

[

V ′TB
RB

]T

=

[

0 Y
RB1 RB2

]T

.

Here Y is a m× (n′−n) matrix. Note that we can further rewrite

[

U ′TA
RA

] [

V ′TB
RB

]T

=

[

U ′TA
RA

] [

(V ′TB)
RB1 RB2

]T

as
[

UT 0
0 In′−n

] [

0 Y
RB1 RB2

]T

=

[

0 UTRT
B1

Y T RT
B2

]

.

Thus, K simplifies to

K =

[

S UTRT
B1

Y T RT
B2

]

=

[

S Π
Φ Γ

]

.

This confirms that when m < m′ and n < n′, K is shaped like
an arrow: it is diagonal, except for the last n′ − n rows and last
m′ − m columns. This, however, is not true when m ≥ m′ or
n ≥ n′; in this case K can be a dense matrix, with its last row
and columns equal to 0. In the rest of this section, we argue that,
especially when m < m′ and n < n′, we can leverage K’s specific
structure (sparse, arrow-like) to quickly obtain a highly-accurate
approximate decomposition, K ∼ Û ŜV̂ T and use it instead of the
exact decomposition K = U ′S′V ′T . In particular we propose to
build on the SVD through QR decomposition with column pivoting

technique proposed in [4]. Experiment results reported in Section 5
show that this leads to efficient and accurate decompositions even
in cases where m ≥ m′ or n ≥ n′.

3.2.2 Decomposition of K through Pivoted QR

Pivoted QR Factorization. Let E be a matrix. A pivoted QR
factorization of E has the form EP = QeRe where P is a per-
mutation matrix, Qe is orthonormal and Re is upper triangular. [4]
has shown that a rank-k approximation can be obtained efficiently
through a pivoting process where columns of E are considered one
at a time and used to compute an additional column of Qe and
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row of Re. The kth round of the process leads to a rank-k ap-
proximation of the pivoted QR factorization of E. In particular,
let us assume that we are given a QR decomposition of the form
F = QfRf and need to compute QR decomposition of [F a] for
some column vector a:

[F a] = [Qf q]

[

Rf ǫ
0 ρ

]

The rank-k approximation can be obtained efficiently by the quasi-
Gram-Schmidt method, which further eliminates the need to store
dense Qf matrices [4]: the quasi-Gram-Schmidt process can be ap-
plied successively to columns of a given input matrix E to produce
a pivoted QR factorization for E.
Low-Rank Decomposition of K. Let us assume that we are tar-
geting a rank-k decomposition of K. We first sample k columns to
obtain column-sample matrix C; we then sample k columns from
KT to obtain a row-sample matrix RT . We then apply the QR
decomposition with column pivoting to C and RT to obtain upper
triangular matrices, Rc and Rr .

The sampling is done by selecting the longest row and column
vectors. We note that when m < m′ and n < n′, K is not only
sparse, but also has an arrow-like shape:

K =

[

Sx Π
Φ Γ

]

,

where the n × m matrix Sx is diagonal, whereas n × (m′ − m)
matrix Π, (n′ − n) × m matrix Φ, and (n′ − n) × (m′ − m)
matrix Γ are potentially dense as we discussed in Section 3.2.1. As
a result, the sampling is arrow-sensitive in the sense that it focuses
on the last few rows and columns: The sampled columns usually
come from the first few columns (which contain the largest singular
values at the top-left corner of the matrix) and the last few columns,

which contain entries from the dense,

[

Π
Γ

]

. Similarly, the sampled

rows come from the first few rows (which contain large singular
values in Sx) and the last few rows from

[

Φ Γ
]

.
Given these, to obtain a decomposition of K, we need to find a

matrix H such that ‖K−CHRT ‖ is minimized. According to [15],
the value of H which minimizes this can be computed as

(R−1
c R−T

c )(CTKR)(R−1
r R−T

r ).

Thus, we can rewrite CHRT as

(CR−1
c )(R−T

c CTKRR−1
r )(R−T

r RT ).

If we further set W = R−T
c CTKRR−1

r and decompose W into
W = UwSwV

T
w , then we can obtain the SV decomposition of K

as K = UKSK , V T
K , where

UK = CR−1
c Uw, V T

K = V T
w R−1

r R−T
r , and SK = Sw,

where UK and VK are orthonormal and SK is diagonal. While
this process also involves an SV decomposition step involving W ,
since W is a much smaller, k × k, matrix, its decomposition is
much faster than the direct decomposition of K.

3.3 Pseudocode of LWI-SVD
Algorithm 1 provides the pseudo-code of the proposed Low-

rank, Windowed, Incremental Singular Value Decomposition (LWI-
SVD) algorithm for incrementally maintaining the SVD of an evolv-
ing matrix X . As we later see in Section 5, the LWI-SVD algorithm
has a smaller approximation error than other algorithms, such as
SPIRIT [13], yet is also much faster than optimal as well as the
basic incremental SVD [5] algorithms. Yet, as in any incremen-
tal approximate algorithm, in which each step takes the output of

Algorithm 1 LWI-SVD.

Input:

The Base Matrix, X , and its SV decomposition UxSxV
T
x ;

The update matrix, ∆ = ABT , corresponding to a window of
updates;
Target rank, r;

Output:
The new SVD results, U ′

x,S′

x, and V ′

x;
1: Calculate factors RA and RB in Equation 2 which, as dis-

cussed in Section 3.1, involves a QR Decomposition and sev-
eral matrix multiplications;

2: Calculate the matrix K in Equation 7;
3: Obtain the low-rank (rank-r) decomposition of K into K =

UKSKV T
K ;

4: Combine the factors as shown in Equation 8 to obtain rank-r
decomposition U ′

x, S′

x, and V ′

x;
5: return U ′

x, S′

x, and V ′

x;

the previous step as its input, there is a likelihood that errors will
accumulate over time and the reconstruction error relative to the
actual matrix will reach an unacceptable rate. To prevent errors
to accumulate, in the next section we propose a novel LWI-SVD

with Restart (LWI2-SVD) algorithm which restarts the SVD by
performing a fresh SVD on the current data matrix.

4. LWI2-SVD: LWI-SVD WITH RESTART
In this section, we build on LWI-SVD and propose a novel LWI-

SVD with Restart (LWI2-SVD) algorithm which punctuates the in-
cremental SVD sequence by occasionally performing a full SVD
on the current data matrix. Obviously, there is a direct, positive
correlation between the frequency of restarts and the overall accu-
racy of the LWI2-SVD algorithm. Unfortunately, however, there is
also a strong positive correlation between the cost of LWI2-SVD
and the frequency of restarts. Therefore, restart rate should be such
that the process is restarted only when the costly SVD is in fact
needed to help reduce the overall error.

4.1 Types of Errors
We see that there are two distinct types of errors:

• Accumulated approximation errors (and periodic restarts):

The first type of error that accumulates over time is due to the
various approximation terms, including the low-rank approx-
imation of K as discussed in Section 3.2. While the absolute
value of this error will be different from one iteration of the
algorithm to the next, its long term behavior will be roughly
constant. Therefore, this type of accumulated approximation
errors are best dealt with periodic restarts.

• Error bursts due to structural changes in the input data (and

on-demand restarts): The second type of error in the incre-
mental SVD occurs when there is a significant structural (or
spectral) change in the data, necessitating large changes in
the SVD. Since the incremental process described in Sec-
tion 3 assumes that the changes are relatively small, a sig-
nificant structural change in the factor matrices, Ux and Vx,
or the core matrix Sx may not be correctly captured, result-
ing in a large burst of reconstruction error. These bursts are
best dealt with on-demand restarts that are triggered through
a change detection process that tracks the updates to identify
when major structural changes in the data occur.

Figure 1 shows an example run with and without restarts. Note
that without the restarts errors continuously accumulate due to struc-
tural changes in the data. Restarts (both periodic and on-demand)
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Figure 1: Example runs with and without restarts
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Figure 2: Overview of the change detection process

can limit the accumulation of errors. Error accumulations due to
approximations generally show a regular behavior and the frequency
with which periodic restarts are scheduled can be set empirically.
The structural changes in the data, however, do not necessarily have
a regular behavior; therefore, the challenge is to quickly and effi-
ciently detect the structural changes in the data. We will discuss
this next.

4.2 Change Detection through Partial Recon-
struction

In order to detect major structural changes in the data we need
to measure or estimate the reconstruction errors. The naive way
to achieve this would be to reconstruct the entire matrix from the
incrementally maintained decomposition and compare the recon-
structed matrix to the ground truth (which is the actual, revised data
matrix). If the difference is high, it means that due to some struc-
tural changes, the incrementally maintained decomposition devi-
ated from the true decomposition of the matrix. Obviously, per-
forming a full reconstruction of the matrix at each time step would
be extremely costly. Instead, in this section, we propose a change
detection scheme which relies on a partial reconstruction as de-
picted in Figure 2: (a) a fair data matrix sampler, which identifies
a small subset of the matrix cells as ground truth and (b) a par-
tial reconstructor, which reconstructs a given subset of matrix cells,
without reconstructing the full data matrix.

4.2.1 Fair Sampling of an Evolving Matrix

We propose a fair sampler, where all matrix cells have a uni-
form probability of being selected independently of when they are
updated.
Basic Reservoir Sampling. Reservoir sampling [18] is a random
sampling method that works well in characterizing data streams. It
is especially efficient because (a) it needs to see the data only once
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Figure 3: Overview of the reservoir based matrix sampling

and (b) it uses a fixed (and small) buffer, referred to as the “reser-

voir”. Furthermore, while (c) it does not require a priori knowledge
of the data size, it (d) ensures that each data element has an equal
chance of being represented in the sample. Let S be a data stream
consisting of a sequence of elements si. The reservoir sample keeps
a fixed reservoir of, say w elements. Once the reservoir is full,
each new element, si, replaces a (randomly) selected element in
the reservoir with a decreasing probability, inversely proportional
to the index, i, of the new element si. More specifically, a random
element in the reservoir is replaced by si with probability w

i
. Intu-

itively, in a fair sampling, each element up to i should have a w/i
chance of being in the random sample of size w. Therefore, si is
selected to be included in the reservoir with probability w

i
. The

sample it replaces, on the other hand, is chosen randomly among
the existing w samples in the reservoir to ensure that the reservoir
forms a random sample of the first i elements in the stream.
Matrix-Reservoir Model. As we described earlier, we consider
the general case where the data matrix can grow or shrink with
insertions or deletions of rows and columns. More specifically, we
model the evolving data matrix as a stream, S , of si = ±〈rowi, coli〉,
where rowi and coli are the row and columns affected in the update
with index i: +〈rowi, coli〉 indicates that the update inserts a new
cell in the matrix at location 〈rowi, coli〉, whereas −〈rowi, coli〉
indicates that the cell at location 〈rowi, coli〉 is being removed.

The reservoir, Ri = {ri,1, . . . , ri,w}, at time i consists of w
matrix cell positions, which serve as the representatives for the cur-
rent matrix. In other words, each ri,j ∈ Ri is a triple of the form
ri,j = 〈indexi,j , rowi,j , coli,j〉, where indexi,j is the index of
the update that deposited the cell, located at rowi,j and coli,j , into
the reservoir.
Matrix-Reservoir Maintenance for si = +〈rowi, coli〉. As dis-
cussed earlier, reservoir sampling randomly selects some of the in-
coming stream elements for the updating the contents of the reser-
voir When the (probabilistically) selected incoming stream entry
si is of the form +〈rowi, coli〉, the basic reservoir sampling pro-
cess is applied: a random element, ri−1,j from the current reservoir
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Ri−1 is selected and this is replaced with 〈i, rowi, coli〉. This pro-
cess is visualized in Figure 3(a).
Matrix-Reservoir Maintenance for si = −〈rowi, coli〉. When
the (probabilistically) selected incoming entry si is of the form
−〈rowi, coli〉, on the other hand, the basic reservoir sampling pro-
cess cannot be applied as this denotes removal of a cell, not inser-
tion. We handle deletions as follows:

• if there exists no
ri−1,j = 〈indexi−1,j , rowi−1,j , coli−1,j〉 ∈ Ri−1,

such that rowi−1,j = rowi and coli−1,j = coli, then si is
simply ignored;

• if, on the other hand, there exists a
ri−1,j = 〈indexi−1,j , rowi−1,j , coli−1,j〉 ∈ Ri−1,

such that rowi−1,j = rowi and coli−1,j = coli, then

– we drop ri−1,j from the reservoir and

– we keep the jth position reserved for a future update of
the form sh = +〈rowh, colh〉.

Intuitively, the matrix reservoir (and its history) is revised as if
the future insertion sh had in fact arrived in the past, instead of
sindexi−1,j

, which had originally deposited the cell, 〈rowi−1,j , coli−1,j〉
(which is being deleted) into the reservoir. This process is visual-
ized in Figure 3(b).

4.2.2 Partial Matrix Reconstruction

At time t = i, let us have the reservoir Ri = {ri,1, . . . , ri,w},
where for all 1 ≤ h ≤ w, ri,h = 〈indexi,h, rowi,h, coli,h〉. Intu-
itively, the reservoir consists of a set of matrix cell positions (that
were fairly sampled from the overall matrix). During the partial
reconstruction step, we use the (incrementally maintained) SV de-
composition, Ui, Si, and Vi, of the data matrix Xi to reconstruct
only the row and column positions that appear in the reservoir, ri,h.

More formally, the partially reconstructed matrix value set V̂i =
{v̂i,1, . . . , v̂i,w}, is such that for all 1 ≤ h ≤ w,

v̂i,h = X̂i[rowi,h, coli,h], where

X̂i[rowi,h, coli,h] = (Ui[rowi,h, ∗]) Si

(

V T
i [∗, coli,h]

)

.

Note that the cost of the partial reconstruction of the matrix de-
pends on the size of the reservoir and when |Ri| ≪ |Xi|, partial
reconstruction is much faster than full reconstruction.

4.2.3 Change Detector

At time t = i, given the reservoir Ri = {ri,1, . . . , ri,w}, we
construct a ground truth value set Vi = {vi,1, . . . , vi,w}, where
for all 1 ≤ h ≤ w, vi,h = Xi[rowi,h, coli,h]. Similarly, we also

have the partially reconstructed value set V̂i = {v̂i,1, . . . , v̂i,w},

where for all 1 ≤ h ≤ w, v̂i,h = X̂i[rowi,h, coli,h], where

X̂i[rowi,h, coli,h] is the partially reconstructed value for the cell
location 〈rowi,h, coli,h〉. Given these, we detect a major structural
change in the data matrix if

w
∑

h=1

(vi,h − v̂i,h)
2 ≥ Θ,

where Θ is the inaccuracy threshold.

4.3 Pseudocode of the LWI2-SVD Algorithm
We provide the pseudocode of the LWI-SVD with Restart (LWI2-

SVD), which was detailed in this section, in Algorithm 2. In the
next section, we evaluate the efficiency and effectiveness gains of
LWI2-SVD algorithm on top of the gains provided by LWI-SVD.

Algorithm 2 LWI2-SVD

Input:

The Base Matrix, X , and its SV decomposition UxSxV
T
x ;

The update matrix, ∆ = ABT , corresponding to a window of
updates;
Target rank, r;
Reservoir, R;
Restart Threshold, Θ;
Periodic Restart Flag, f ;

Output:
The new SVD results, U ′

x,S′

x, and V ′

x;
The new Reservoir, R′;

1: X ′ = X +∆
2: if f = true then
3: 〈U ′

x, S
′

x, V
′

x〉 = topK_SVD(X ′, r);
4: R

′ = updateReservoir(R,∆);
5: else
6: 〈U ′

x, S
′

x, V
′

x〉 = LWI-SVD(X,Ux, Sx, Vx,∆, r);
7: R

′ = updateReservoir(R,∆);

8: V̂ = partialReconstruct(R′, U ′

x, S
′

xV
′

x);

9: E = measurePartialError(V̂,R′, X ′);
10: if E > Θ then
11: 〈U ′

x, S
′

x, V
′

x〉 = topK_SVD(X ′, r);
12: end if
13: end if
14: return U ′

x, S
′

x, V
′

x,R
′;

Table 1: Parameters
Symbol Desc. Default Alternative

dim(n× n) Initial(for inser-
tions)/Final(for dele-
tions) dimensions of
X

100× 100 300× 300

r Target rank 5 10

len Length of the data
stream

50 50

numupd Numbers of
columns:rows updated
at a given iteration

2:2 6:6

λupd Strength of the updates
(for synth. data)

5 10

w Reservoir size 50 150
Θ On-demand restart

threshold
20% 10%

per Restart period 15 5

5. EXPERIMENTS
In this section, we evaluate the efficiency and effectiveness of

LWI-SVD and LWI2-SVD on both synthetic and real datasets and
for different scenarios and parameter settings.

Each experiment, consisting of len consecutive update iterations,
was run 10 times and averages are reported. Note that to simplify
the interpretation of the results we have considered insertion se-

quences and deletion sequences; but not hybrid insertion/deletion

sequences. Also, to make sure that the results for experiments in-
volving sequences of insertions and deletions are comparable, we
have set the initial dimensions for an insertion sequence and the
final dimensions of a deletion sequence to the same value, dim.

The various parameters varied in the experiments, default values,
and value ranges are presented in Table 1. Below we describe the
experimental setting, including the data sets, in greater detail.

5.1 Real Data: Digg.com Traces
We use Digg.com data set [2] from Infochimps to evaluate the

effectiveness and efficiency for real data. The complete data set
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was recorded from August to November 2008 and has 3 main com-
ponents: stories, comments and replies. "Stories" contain 1490 ar-
ticles that users have posted within the time period. For our exper-
iments, we created data streams by considering the first n+ len×
numupd articles in the data set(the first n articles make up the ini-
tial data matrix; for each of the len iterations in the update stream,
we considered numupd new articles).

Given this data set, we removed the stop words and applied stem-
ming. We then selected the first n stories and identified the most
frequent n keywords 1. Xij denotes occurrence of keyword j in
story i. Intuitively, the low-rank decomposition of the data ma-
trix X simultaneously cluster stories and keywords, resulting a co-
clustering of the data matrix X . We moved the window at each iter-
ation by inserting or deleting numupd records of the story trace and
recomputing the n most frequent keywords (meaning that numupd

many rows and columns are inserted and deleted). These corre-
spond to row and column insertions/deletions on X .

5.2 Synthetic Data: Random Traces
We have also experimented with synthetic data sets where we

could freely vary the characteristics of the data and updates to ob-
serve the accuracy and efficiency of our algorithms under different
scenarios. For these experiments, we have created synthetic activity
traces which we then converted into data matrices as before. Since
the matrices for real data is sparse, we focus on dense matrices.

In particular, we have generated an initial n-length random se-
quence of 5 dimensional data, where each dimension has a value
from 0 to 10. Given these n consecutive records in the trace, we
have created a n × n initial matrix measuring pairwise Euclidean
distances of the records in the sequence. Insertions in the random
trace were generated by randomly picking numbers with exponen-
tial distribution, with the rate parameter, λupd (i.e., prob(x) =
exp_dist(x, λupd) = λupde

−λupdx). Intuitively, if the rate pa-
rameter λupd is large, there is a higher likelihood of having more
large amplitude changes. If the rate parameter λupd is low, there is
a lower frequency of large amplitude changes in the trace.

As before, we enlarged or shrank X at each iteration by adding
or deleting numupd units of the random activity trace (meaning
that numupd many rows and columns are inserted to or deleted
from into the matrix, X).

5.3 Evaluation Criteria and Competitors
We evaluate the LWI-SVD and LWI-SVD with Restart (LWI2-

SVD) algorithms by comparing them to alternative approaches:

• Full SVD and SVDS – SVD is the full SV decomposition
of the matrix, we used Matlab’s [U, S, V] = svd(X)

command for this. We also considered with Matlab’s [U,
S, V] = svds(X,r) command which returns the com-
position results for the top-r components, where r is the de-
sired rank (SVDS tends to perform more efficiently than SVD
when r is small and X is large and sparse);

• Naive Incremental SVD – this is our implementation of the
Brand’s algorithm described in [5], it involves a full SVD and
pivoted QR based approximation is not leveraged (to imple-
ment LWI-SVD and LWI2-SVD, we use this implementation
as the basis); and

• SPIRIT – this is the algorithm described in [13] which pro-
vides fast decompositions, but does not have various desir-
able properties of incremental SVD; including explicit data

1In these experiments, without loss of generality, we kept the ma-
trix in square shape, i.e., n = m

deletions and column insertions and deletions (for our exper-
iments, we used the implementation obtained from [3]).

LWI-SVD family of the algorithms extend our implementation
of the Brand’s algorithm described in [5] along with the Algorithm
844 [4] obtained from [1].

As evaluation criteria, we use three metrics: reconstruction error
overhead, execution time, and execution time gain:

• average relative reconstruction error (errrel) – this accuracy
measure is defined as

1

len

len
∑

i=1

rec_error(X̂i,∗, Xi)− rec_error(X̂i,SVD, Xi)

rec_error(X̂i,SVD, Xi)
,

where

– len is the number of iterations (length of the stream),

– X̂i,∗ denotes the decomposition of the data matrix at
time i obtained using the algorithm “∗”, and

– rec_error(Y,X) denotes the reconstruction error of
the decomposition Y against the data matrix X , mea-
sured in terms of Frobenius norm.

Note that a low-rank decomposition of Xi would lead to a
reconstruction error, even if it is obtained using full SVD
followed by selection of the top r components. Therefore,
the denominator of the above term is not equal to 0.

• absolute execution time (texec) – this is the time, in seconds,
that is required to complete len consecutive decompositions
using the algorithm under consideration.

• time gain (gaintime) – the gain in time is the execution time
measured against the execution time of the full SVD; i.e.,
texec,svd−texec,∗

texec,svd
.

All experiments were conducted using a 4-core Intel Core i5-2400,
3.10GHz, machine with 8GB memory, running 64-bit Windows 7
Enterprise. The codes were executed using Matlab 7.11.0(2010b).

5.4 Evaluation with the Default Settings

5.4.1 Real Trace Data Set

Figure 4 presents the accuracy and efficiency results for the real
trace data for the default parameters reported in Table 1.
Accuracy. The first thing to note in Figure 4(a), which reports
average relative reconstruction errors for the various versions of
the LWI-SVD algorithm proposed in this paper, is that restarts dis-
cussed in Section 4 are highly effective in reducing the overall error.
While both partial reconstruction-based and periodic restarts used
in LWI2-SVD are effective in improving accuracy over the LWI-
SVD (which does not use restarts), the best results are obtained
when these are used together, bringing down the average relative
reconstruction error to 0.3-0.7% of the low-rank decomposition ob-
tained through full SVD.

The second thing to note in Figure 4(a) is that row/column in-
sertions, which bring in new data into the matrix, results in larger
relative reconstruction errors than row/column deletions. Note that,
when both reservoir-based and periodic restarts are employed, the
accuracy penalty relative to the low-rank decomposition of full SVD
is negligibly low for both insertions and deletions.
Efficiency. Figure 4(b) shows the efficiency results for this data set
under the default parameter configuration.

The first thing to note is that there is minimal time difference
between the LWI-SVD and LWI2-SVD algorithm. This indicates
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demand refreshes

Table 2: Impact of setting A = I in Section 3.1

A = I A is free Impact

Rec. error 5.786 5.765 +0.36%
Exec time 0.174 sec 0.197 sec −11.71%

that the time overhead of reservoir maintenance and occasional on-
demand full decompositions are negligible in the long run. Sec-
ondly, performing full SVD takes ∼ 75-100% more than the pro-
posed LWI-SVD family of algorithms. Under this configuration,
the naive incremental SVD takes a little more time than full SVD,
as the basic algorithm reported in [5] involves a full SVD with same
dimension as the original matrix and several matrix multiplications.
Further-more, under this configuration, SVDS takes even longer
than the full SVD.

Finally, a close look at the LWI-SVD family of algorithms in-
dicates that insertions require slightly longer time to maintain than
deletions. This is expected because, as discussed in Section 2.2.1,
there is no need for computing RA and RB since they are all zero.
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Figure 6: Accuracy and efficiency for synthetic trace data set -

default settings

Impact of the QR-Elimination Optimization. In Section 3.1, we
had discussed an optimization strategy whereby we eliminate one
of the two expensive QR operations by forcing A to be equal to
the identity matrix, I . As shown in Table 2, setting A = I causes
less than half percentage point impact on the accuracy; on the other
hand, this optimization helps save close to 12% in execution time.

5.4.2 Synthetic Trace Data Set

Figure 6 presents results for the synthetic trace data set under the
default parameter settings. The key observation from this figure is
that the accuracy and efficiency results for the synthetic trace data
set are very similar to the results for real trace data set, reported
in Figure 4. The similarity is especially pronounced in the execu-
tion time results in Figure 6(b). This indicates that the execution
time gains of the LWI-SVD family of algorithms (and to a certain
degree, the accuracies they provide – especially with the help of pe-
riodic and reservoir-based restarts) are inherent properties of these
algorithms rather than being highly data specific.
SPIRIT. Since the SPIRIT [13] algorithm approaches the problem
differently (e.g. cannot directly handle deletions, cannot handle
deletions/insertion of columns), we present it separately from the
rest in Figure 5. For these experiments, we use a synthetic data
trace that does not include any column insertions or deletions on
the data matrix X . As the figure shows, SPIRIT algorithm works
much faster than SVD or LWI2-SVD for the default configuration.
However, this speed comes with a significant increase in the re-
construction error, relative to the optimal low-rank decomposition
using SVD. In contrast, LWI2-SVD achieves an accuracy almost
identical to the optimal, yet costs only half as much.

5.5 Impacts of Data and System Parameters
In this subsection, we evaluate the impacts of the various data

and systems parameters on the efficiency and effectiveness of the
LWI-SVD family of algorithms. As representative, we select the
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Figure 8: Accuracy and efficiency results for the real trace data

set varying the size, dim, of the initial (for insertions) / final (for

deletions) matrix

LWI2-SVD with the default parameters. We then vary, one-by-one,
the various data and system parameters, and compare the results
against the optimal SVD based rank-r decomposition. Since, as we
have seen, the results are similar for real and synthetic data, for the
most part we report the results with the real trace data. We use the
synthetic trace only for experiments where we vary the strengths of
the updates.

5.5.1 Varying the Target Rank, r

Figure 7 presents efficiency and accuracy results for the real trace
data set where the target rank, r is varied. The results show that,
as expected (due to the low-rank nature of the LWI-SVD family of
algorithms), as the target rank increases, the time gain drops and
the relative error rate slightly increases. The drop in time gains is
because the incremental process involves a lot of matrix multipli-
cations where the sizes of matrices are directly related to the target
rank. This confirms the observation that LWI-SVD and LWI2-SVD
are most effective when the target rank is low.

5.5.2 Varying the Dimensions, dim, of the Matrix

Figure 8 presents accuracy and efficiency results when we change
the dimensions, dim, of the initial data matrix (for insertions) and
the final data matrix (for deletions). Here, we see that increasing
the size of matrix does not have a big impact on accuracy and effi-
ciency.

5.5.3 Varying the Rate of Updates, numupd

Figure 9 presents efficiency and accuracy results for the real trace
data set where the number, numupd, of row and column updates
per each iteration is varied. The results indicate that, as expected,
an increase in the number of updates per iteration impacts accuracy
as well as efficiency. The slight impact on the accuracy is due to
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Figure 9: Accuracy and efficiency results for the real trace data
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Figure 11: Accuracy and efficiency results for the real trace data

set varying the change threshold, Θ, for on-demand restarts

the approximation nature of the algorithm. The impact on the time
gain is due to more on-demand restarts.

5.5.4 Varying the Reservoir Size, w

Figure 10 presents efficiency and accuracy results for the real
trace data set where the reservoir size, w, is varied. The results
confirm that a larger reservoir (even only ∼ 1.5% of the matrix) can
help to trigger on-demand restarts more fairly, since larger reservoir
has more accurate amortized error measuring.

5.5.5 Varying the Change Threshold, Θ

Figure 11 confirms that a slightly tighter threshold, Θ = 0.1
instead of the default Θ = 0.2 will trigger more on-demand restarts
and thus can further reduce the error rates (which are already very
low), with little impact on execution time gains.

5.5.6 Varying the Restart Period, per

Figure 12 confirms that increasing the number of restarts by re-
ducing the restart period, per, may improve the final accuracy.
However, unlike the on-demand restarts based on change detec-
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Figure 12: Accuracy and efficiency results for the real trace data

set varying the restart period, per, for periodic restarts
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Figure 13: Accuracy and efficiency results for the synthetic

trace data set varying the update strength, λupd

tion (shown in Figure 11), blindly increasing the frequency of the
periodic restarts may negatively impact the time gain.

5.5.7 Varying the Update Strength, λupd

Finally, in Figure 13, we see the impact of the strength (in am-
plitude) of the incoming insertions. The figure shows that, when
λupd increases, the LWI2-SVD algorithm adjusts its operation by
scheduling more on-demand restarts at a cost of decreasing the time
gain.

5.6 Scalability of LWI Algorithms
The results shown above are conducted with small window size,

however, in some cases, we need large windows to monitor and
analyze a large portion of the data. In this subsection, we analyze
the scalability of LWI Algorithm by choosing large base number.
Since we have shown that under the small base number condition,
SVD out performs SVDS in execution time, however, when the
base number is large, seeking a low rank deposition using SVDS
is more efficient. Also, as we know that SVDS is very efficient
when the data is sparse, but performs less efficient on dense data.
We showed that LWI algorithm can concur this short coming when
the data is dense. Recall in section 3.2.1, we showed that K is an
arrow-like matrix which is very sparse, this leads to the efficiency
by using pivoted QR compared to a direct SVDS on the dense data.
Therefore, in the incremental maintenance of SVD on a dense ma-
trix, we are actually seeking a second layer reduced rank approx-
imation of a sparse matrix K. It is the main advantage of LWI
algorithm compared to SVDS when the data is dense and the base
dimension is large. Table 3 shows the execution time and error
overhead results under a synthetic dense data, the results confirm
that with big base number especially when the base is a thin and
tall matrix, LWI algorithm can have advantages in execution time
with negligible error overhead .

Table 3: Results for Large Dim

dim LWI2

Exec.

Time(s)

LWI2

Rel.

Error

SVDS

Exec.

Time(s)

1000 ∗ 100 8.2604 0.143% 15.91
1000 ∗ 1000 6.8087 0.06% 10.839
1500 ∗ 1500 17.483 0.03% 23.469
2000 ∗ 2000 34.35 0.002% 41.491
3000 ∗ 3000 96.577 0.00097% 93.622

6. CONCLUSIONS
In this paper, we presented a Low-rank, Windowed, Incremen-

tal SVD (LWI-SVD) algorithm, which relies on low-rank approx-
imations to speed up incremental SVD updates. LWI-SVD algo-
rithm also aggregates multiple row/column insertions and deletions
to further reduce on-line processing cost. We also presented a LWI-

SVD with restarts (LWI2-SVD) algorithm which performs periodic
and change detection based on-demand refreshing of the decom-
position to prevent accumulation of errors. Experiment results on
real and synthetic data sets have shown that the LWI-SVD family
of incremental SVD algorithms are highly efficient and accurate
compared to alternative schemes under different settings.
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