
Fast DTT – A Near Linear Algorithm for Decomposing a
Tensor into Factor Tensors

Xiaomin Fang
Department of Computer Science

School of Information Science and Technology
Sun Yat-sen University

Guangzhou, China
fangxmin@mail2.sysu.edu.cn

Rong Pan
∗

Department of Computer Science
School of Information Science and Technology

Sun Yat-sen University
Guangzhou, China

panr@sysu.edu.cn

ABSTRACT
As tensors provide a natural representation for the higher-
order relations, tensor factorization techniques such as Tucker
decomposition and CANDECOMP/PARAFAC decomposi-
tion have been applied to many fields. Tucker decomposition
has strong capacity of expression, but the time complexity is
unpractical for the large-scale real problems. On the other
hand, CANDECOMP/PARAFAC decomposition is linear in
the feature dimensionality, but the assumption is so strong
that it abandons some important information. Besides, both
of TD and CP decompose a tensor into several factor ma-
trices. However, the factor matrices are not natural for the
representation of the higher-order relations. To overcome
these problems, we propose a near linear tensor factoriza-
tion approach, which decompose a tensor into factor tensors
in order to model the higher-order relations, without loss
of important information. In addition, to reduce the time
complexity and the number of the parameters, we decom-
pose each slice of the factor tensors into two smaller ma-
trices. We conduct experiments on both synthetic datasets
and real datasets. The experimental results on the synthetic
datasets validate that our model has strong capacity of ex-
pression. The results on the real datasets show that our
approach outperforms the state-of-the-art tensor factoriza-
tion methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering ; I.2.6 [Artificial
Intelligence]: Learning

Keywords
Tensor decomposition; DTT

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623713 .

1. INTRODUCTION
Matrix factorization is used for modeling the second-order

relations. For example, for the item recommendation prob-
lem, we can construct a user-item matrix. The user-item
matrix is factorized into two factor matrices, representing
the latent features of the users and the items, respectively.
From the users’ view, matrix factorization assumes the items
are divided into D item-groups, where D denote the number
of the elements in the vector. For user u, there is a corre-
sponding vector of the factor matrix of the users, describing
the relation between that user and the items. Each element
of that vector represents the relevance between that user and
a item-groups. From the items’view, the situation is similar.

Tensor is a higher-order extension of matrix and tensor
factorization is a higher-order extension of matrix factor-
ization. Since tensor decomposition can model the higher-
order relations, tensor decomposition techniques are applied
to many fields, such are psychology, chemometrics, computer
vision and data mining. Traditional tensor decomposition
techniques like Tucker decomposition (TD) [21] and CAN-
DECOMP/PARAFAC (CP) [2, 9] decomposition factorize
a tensor into several factor matrices. Take the problem of
personalized tag recommendation for example. Traditional
tensor decomposition techniques decompose a user-item-tag
tensor into three factor matrices. Just like matrix factor-
ization, from the users’ view, for user u, there is a cor-
responding vector of the factor matrix of the users, indi-
cating the relation between that user, the items and the
tag, but we can not explain the meaning of each element
in that vector by the same way we analyzing matrix fac-
torization, since vector is not natural for the representation
of the relations between that user, the item-groups and the
tag-groups. Moreover, both of Tucker decomposition and
CANDECOMP/PARAFAC have some drawbacks. Tucker
decomposition has strong capacity of expression but it re-
quires lots of computation power, which is unpractical for
large-scale real problems. The other tensor factorization
technique CANDECOMP/PARAFAC decomposition is lin-
ear in the feature dimensionality, but it makes a strong as-
sumption that limits its capacity of expression.

To tackle all these problems, we propose a novel tensor fac-
torization approach in this paper. We decompose a tensor
into several factor tensors instead of factor matrices. From
the users’ view, for user u, there is a corresponding matrix
of the factor tensor of the users, indicating the relation be-
tween that user, the items and the tag, and each element of
that matrix can be seen as the relevance between that user,

967

a item-group and a tag-group. Thus, the higher-order rela-
tions can be modeled by a more natural way. In addition, to
reduce the time complexity and the number of the parame-
ters, we decompose each slice of the factor tensors into two
smaller matrices. Our proposed model is near linear and has
strong capacity of expression.

The contributions of our work are summarized as follows.

• We propose a novel tensor decomposition approach,
decomposing a tensor into factor tensors rather than
factor matrices, which is more natural for the repre-
sentation of the higher-order relations

• Our proposed approach has strong capacity of expres-
sion and is near linear, which is practical for the large-
scale real problems.

• Our experimental results on the synthetic datasets ver-
ify that our proposed approach has strong capacity
of expression and our proposed approach significantly
outperforms other tensor factorization techniques on
the real datasets.

The rest of the paper is organized as follows. The related
work to tensor factorization techniques is depicted in the
next section. The notations and preliminaries of tensor and
tensor factorization are presented in section 3. Our proposed
tensor decomposition approach is described in section 4. The
experimental results on the synthetic datasets and the real
datasets are showed and analyzed in section 5. Finally, we
conclude our work in section 6.

2. RELATED WORK
Since tensors provide a natural representation for the higher-

order relations, they are applied to many fields [12], includ-
ing chemometrics [1], neuroscience [13], graph analysis [18,
6, 5, 24], personalized recommendation [19, 24, 11, 14, 17,
7, 20, 16, 23] and so on. Tucker decomposition (TD) [21]
and CANDECOMP/PARAFAC decomposition (CP) [2, 9]
are the most common techniques to decompose a tensor,
where Tucker decomposition has stronger capacity of expres-
sion and CANDECOMP/PARAFAC decomposition can be
trained in linear time.

Some researches are based on Tucker decomposition (TD)
[3, 4, 19, 11, 14]. Higher-Order Singular Value Decompo-
sition (HOSVD) [3, 4], a generation of the matrix Singular
Value Decomposition (SVD), is introduced for computing
Tucker decomposition. Sun et al. [19] construct a user-
query-URL tensor from the clickthrough data in the search
engines and employ HOSVD to capture the latent factors of
users, queries and URLs for personalized web search. Karat-
zoglou et al. [11] integrate the context information into the
traditional collaborative filtering models to improve the rec-
ommendation quality by making use of HOSVD as well.
However, one of the drawbacks of HOSVD is that it can
not deal with the missing data in the sparse tensors. It
treats the values of all the missing elements in the tensors
as zeros. To fix this problem, Rendle et al. [14] propose
a method called RTF, which exploits Bayesian Personalized
Ranking (BPR) [15] and learns from pairwise constraints,
for personalized tag recommendation. Although TD has a
strong capacity of expression for the higher-order relations,
the time complexity of which is not feasible for large-scale
real problems.

On the other hand, some studies employ CP decomposi-
tion (CANDECOMP/PARAFAC decomposition) [5, 23, 17].
Dunlavy, Kolda, and Acar [5] incorporate the time informa-
tion for link predictions. The first two dimensions of the
tensor represent the entities and the third dimension rep-
resents the time slices. They decompose the tensor by CP.
Similarly, Xiong et al. [23] take the time into consideration
and add a special constraint on the time dimension. Work by
Rendle and Schmidt-Thieme [17] puts forward a new tensor
factorization technique, Pairwise Interaction Tensor Factor-
ization (PITF) for personalized tag recommendation. PITF
can be seen as a special case of CP, modeling the pairwise in-
teractions between the three dimensions of the user-item-tag
tensor. The CP-based models can be trained in linear time,
but it abandons some important information and restricts
the capacity of expression.

Furthermore, both TD and CP decompose a tensor into
several factor matrices, but the factor matrices are not natu-
ral for the representation of the higher-order relations, since
matrices can only represent the second-order relations. There-
fore, we propose a novel tensor factorization approach in this
paper, which decomposes a tensor into several factor tensors
instead.

3. NOTATIONS AND PRELIMINARIES
In this section, we first introduce tensor and the notations.

Then, we depict two most common tensor factorization tech-
niques, Tucker decomposition and CANDECOMP/PARAFAC,
and analyze the advantages and the disadvantages of them.

3.1 Tensor
A tensor is a multidimensional or multi-way array and

the order of a tensor is the number of the dimensions or
modes. Vectors are first-order tensors, matrices are second-
order tensors and tensors of order three or higher are called
higher-order tensors. Matrices have column and row, a col-
umn and a row of which are called mode-1 vector and mode-2
vector respectively. Similar to matrices, the third-order ten-
sors have column, row and tube and a tube is a mode-3 vec-
tor. Since the constructions of the higher-order tensors are
similar, we focus on the third-order tensors and the third-
order tensors are called tensors for short in the following
paper.

Matrices and tensors are denoted by boldface capital let-
ters, e.g., X. Element (i, j) of a matrix X is denoted by xij
and element (i, j, k) of a tensor A is denoted by aijk.

3.2 Tensor Decomposition
Just like matrix factorization, tensor decomposition tech-

niques factorize a tensor into several components. Tucker de-
composition (TD) [21] and CANDECOMP/PARAFAC de-
composition (CP) [2, 9] are the most common tensor decom-
position techniques and can be seen as higher-order genera-
tions of the matrix factorization, Singular Value Decompo-
sition (SVD) [8].

Tensor decomposition techniques have been applied to
personalized tag recommendation. For the sake of conve-
nience of analysis, let’s take the personalized tag recom-
mendation problem for example in the following paper. A
user-item-tag tensor A ∈ RI×J×K is constructed from the
social tagging data, where I, J , K denote the number of the
users, the items and the tags, respectively. Element aijk of
tensor A measures the probability of the i-th user annotat-

968

K

I

J

I

J

K
D3

D2

D2

D1

D1

D3

A X

Y

Z

Figure 1: DTT: A novel tensor factorization model

ing the j-th item with the k-th tag. We treat all of the users,
the items and the tags as three different types of entities.

Tucker decomposition (TD) [21] was first introduced by
Tucker in 1966. It decomposes a tensor into a core tensor
multiplied by a matrix along each mode. Element aijk of
tensor A ∈ RI×J×K can be written as

aijk =

D1∑
p=1

D2∑
q=1

D3∑
r=1

cpqr · xip · yjq · zkr, (1)

where X ∈ RI×D1 , Y ∈ RJ×D2 , Z ∈ RK×D3 are the factor
matrices and C ∈ RD1×D2×D3 is the core tensor. D1, D2

andD3 are the numbers of the latent features. Given a factor
matrix, a vector of that matrix represents the latent features
of the corresponding entity. For user i, item j and tag k,
cpqr of the core tensor C indicates the relevance between the
p-th feature of user i, the q-th feature of item j and the r-th
feature of tag k.

CANDECOMP/PARAFAC decomposition (CP) [2, 9] de-
composes a tensor into a sum of component rank-one ten-
sors. ai,j,k can be written as

aijk =

D∑
p=1

xip · yjp · zkp, (2)

where X ∈ RI×D, Y ∈ RJ×D, Z ∈ RK×D are the factor
matrices and D is the number of latent features. For user i,
item j and tag k, CP makes a strong assumption that the p-
th feature of user i, xip is only relevant to the p-th feature of
item j, yjp and the p-th feature of tag k, zkp. In other words,
it assumes xip is independent of yjq and zkr, where p 6= q
and p 6= r. As generally D << I, J,K on real problems, the
assumption limits CP’s capacity of expression.

TD is more flexible and can model the higher-order re-
lations better, but it requires lots of computation power.
Therefore, TD is not practical for large-scale real problems.
On the other hand, CP is linear in the feature dimension-
ality, but it gives up some important information. To over-
come the drawbacks, we propose a near linear tensor decom-
position technique, which is practical for large-scale prob-
lems, without lost of information.

4. DECOMPOSING A TENSOR INTO FAC-
TOR TENSORS

In this section, we explain our proposed tensor factoriza-
tion approach and how to compute our model. Besides, we

compare our proposed approach with other tensor factoriza-
tion techniques on the time complexity, the space complexity
and the capacity of expression.

4.1 Tensor Factorization Model DTT
Singular Value Decomposition (SVD) factorize a matrix

into two smaller factor matrices and the factor matrices
present the the second-order relations. Tensor factorization
is a higher-order generation of matrix factorization. Tra-
ditional tensor decomposition techniques like TD and CP,
decomposing a tensor A ∈ RI×J×K into factor matrices,
but the factor matrices are not proper for presenting the
higher-order relations. Different from TD and CP, we de-
compose the tensor A into factor tensors, since the represen-
tation of a factor tensor is more natural for the higher-order
relations, compared with the representation of a factor ma-
trix. We refer our proposed tensor factorization approach to
decomposing a tensor into tensors (DTT). The framework
of our proposed tensor factorization model is illustrated in
Figure 1. From the figure, we can see that tensor A is fac-
torized into three smaller factor tensors X ∈ RI×D2×D3 ,
Y ∈ RJ×D3×D1 and Z ∈ RK×D1×D2 , where D1, D2 and
D3 are parameters of the DTT model (e.g., taking person-
alized social tagging as an example, they can been seen as
the numbers of the user groups, the item groups and the tag
groups, respectively).

Since we decompose a tensor into factor tensors rather
than factor matrices, the latent features of an entity are
represented by a matrix rather than a vector. D2 × D3 is
the size of the factor matrix of a user, D3 × D1 is the size
of the factor matrix of an item and D1 × D2 is the size of
the factor matrix of a tag. From the users’ view, the factor
matrix of user i, the i-th slice in X, which is denoted by
Xi::, contains D2 rows and D3 columns. It can be assumed
that for user i, all the items are divided into D2 item-groups
and the q-th row of Xi:: represents the characters of the q-
th item-group. Similarly, for user i, all the tags are divided
into D3 tag-groups and the r-th column of Xi:: represents
the characters of the r-th tag-group. Thus, xiqr means the
relevance between user i, the items in the q-th item-group
and the tags in the r-th tag-group. That is to say, matrix
Xi:: indicates the preference of user i under different condi-
tions. The analysis from the views of the items and the tags
is similar.

Our proposed approach DTT models the higher-order re-
lations by modeling the relations between the user-groups,

969

u
g

1

u
g

2

u
g

3

ig
1

ig
2

ig
3

ig
4

tg1

tg2

tg3

tg4

ug1

ug2

ug3

u
g

1

u
g

2

u
g

3

ig1

ig2

ig3

ig4

ig1

ig2

ig3

ig4

t
g

1

t
g

2

t
g

3

t
g

4

user i,item j

tg5

t
g

5

ig
1

ig
2

ig
3

ig
4

ug1

ug2

ug3

step 1:

matrix product

step 2:

transpose

step 3:

dot product of

the matrices

 predic!on of

the element aijk

user i

item j

user i,item j

tag k

Yj::,a slice of Y

Xi::,a slice of X

Zk::,a slice of Z

input:

Figure 2: Reconstruction of the tensor elements from the three slices of the factor tensors

the item-groups and the tag-groups. For triplet (i, j, k), the
way how we predict the value of that triplet is illustrated in
Figure 2, where ug, ig and tg are short for the user-group,
the item-group and the tag-group.

• In step 1, we compute the matrix product of the factor
matrix of user i, Xi:: ∈ RD2×D3 and the factor matrix
of item j, Yj:: ∈ RD3×D1 . Thus, the factor matrices
of user i and item j are integrated into a new factor
matrix G(ij) ∈ RD2×D1 by their multiplication. That
is, G(ij) = Xi::Yj::.

• In step 2, we transpose the new factor matrix G(ij) ∈
RD2×D1 to make its dimension be the same as the di-
mension of the factor matrix of tag k, Zk:: ∈ RD1×D2 .

• Finally, in step 3, we define the prediction of the ten-
sor element aijk as the inner product of two matrices

(G(ij))T ∈ RD1×D2 and the factor matrix of tag k,
Zk:: ∈ RD1×D2 . That is,

aijk =
〈

(G(ij))T,Zk::

〉
=

〈
(Xi::Yj::)

T,Zk::

〉
, (3)

where the inner product of matrices X,Y ∈ Rm×n is
defined as

〈X,Y〉 =

m∑
i=1

n∑
j=1

xijyij .

Note that Eq. (3) is equivalent to

aijk =

D1∑
p=1

D2∑
q=1

D3∑
r=1

xiqr · yjrp · zkpq, (4)

where X ∈ RI×D2×D3 , Y ∈ RJ×D3×D1 and Z ∈ RK×D1×D2

are the factor tensors. As the order of xiqr, yjrp and zkpq
has no influence on computing aijk in Eq. (4), the order of
the factor matrices of user i, item j and tag k in Figure 2
has no influence on computing the relevance score, which is
a good property as follows.

Property 1. The prediction of tensor element aijk is well
defined. That is,

aijk =
〈

(Xi::Yj::)
T,Zk::

〉
(5)

=
〈

(Yj::Zk::)
T,Xi::

〉
(6)

=
〈

(Zk::Xi::)
T,Yj::

〉
. (7)

4.2 Fast DTT
Although DTT can capture the higher-order relations, the

time complexity to calculate Eq. (4) is O(D1D2D3), which
is unacceptable for the large-scale real problems. Besides,
there are too many parameters in DTT that it may lead
to overfitting, the space complexity of which is O(ID2D3 +
JD3D1 + KD1D2), where I, J and K denote the numbers
of the users, the items and the tags, repectively. Note that,
for each entity, there is a factor matrix describe the features
of that entity. To reduce the number of parameters and the
time complexity, we decompose the factor matrix of each en-
tity into two smaller matrices. For user i, the factor matrix
Xi:: ∈ RD2×D3 are decomposed into two smaller matrices

X
(l)
i:: ∈ RD2×d1 and X

(r)
i:: ∈ RD3×d1 . For item j, the fac-

tor matrix Yj:: ∈ RD3×D1 are decomposed into two smaller

matrices Y
(l)
j:: ∈ RD3×d2 and Y

(r)
j:: ∈ RD1×d2 . For tag k,

the factor matrix Zk:: ∈ RD1×D2 are decomposed into two

970

Table 1: Comparison between DTT, Tucker decomposition (TD) and CANDECOMP/PARAFAC (CP)
Algorithm Time Complexity Space Complexity

Train Predict

DTT O(Dd2NT) O(Dd2) O(Dd2I)

TD O(D3NT) O(D3) O(D3I)
CP O(DNT) O(D) O(DI)

smaller matrices Z
(l)
k:: ∈ RD1×d3 and Z

(r)
j:: ∈ RD2×d3 . d1, d2

and d3 are the numbers of latent features of the factor ma-
trices Xi::, Yj:: and Zk::, respectively. Additionally, d1, d2

and d3 should satisfy d1 ≤ min(D2, D3), d2 ≤ min(D3, D1)
and d3 ≤ min(D1, D2). d1, d2 and d3 depend on the com-
plexity of the pairwise relations. For example, if the relation
between the items and the tags is complex for the users, d1

should be large so as to reconstruct the factor matrices of
the users and if the relation between the items and the tags
is simple, d1 is small. Concretely, from the users’ view, for

user i, matrix X
(l)
i:: indicates the relations between user i

and the item-groups and matrix X
(r)
i:: indicates the relations

between user i and the tag-groups. Thus, the multiplication

of X
(l)
i:: and X

(r)
i:: , Xi::, indicates the relations between user

i, the item-groups and the tag-groups.
After decomposing each factor matrix into two smaller

matrices, aijk can be rewritten as

aijk =

D1∑
p=1

D2∑
q=1

D3∑
r=1

d1∑
u=1

x
(l)
iqux

(r)
iru

d2∑
v=1

y
(l)
jrvy

(r)
jpv

d3∑
w=1

z
(l)
kpwz

(r)
kqw,

(8)
where

xiqr =

d1∑
u=1

x
(l)
iqux

(r)
iru,

yjrp =

d2∑
v=1

y
(l)
jrvy

(r)
jpv,

zkpq =

d3∑
w=1

z
(l)
kpwz

(r)
kqw.

Note that, Eq. (8) is equivalent to

aijk =

d1∑
u=1

d2∑
v=1

d3∑
w=1

ψ
(1)
jk (v, w) · ψ(2)

ki (w, u) · ψ(3)
ij (u, v), (9)

where we define

ψ
(1)
jk (v, w) =

D1∑
p=1

y
(r)
jpv · z

(l)
kpw,

ψ
(2)
ki (w, u) =

D2∑
q=1

z
(r)
kqw · x

(l)
iqu,

ψ
(3)
ij (u, v) =

D3∑
r=1

x
(r)
iru · y

(l)
jrv.

Eq. (9) can be calculated in O(D1d2d3 +D2d3d1 +D3d1d2)
and generally, d1, d2, d3 << D1, D2, D3. Therefore, DTT is
feasible for large-scale real problems. Besides, the number of
parameters is reduced from O(ID2D3 + JD3D1 +KD1D2)
to O(Id1(D2 +D3) + Jd2(D3 +D1) +Kd3(D1 +D2)).

Tensor decomposition techniques are employed to many
applications. As for different applications, the objective
function are different, let’s assume the objective function
is F . Gradient-base approaches are common to learn the
parameters of the models and we use gradient-based ap-
proaches to optimize the objective function F . The gra-
dients are

∂aijk

∂x
(l)
iqu

=

d3∑
w=1

φ
(2)
ijk(w, u) · z(r)

kqw,

∂aijk

∂x
(r)
iru

=

d2∑
v=1

φ
(3)
ijk(u, v) · y(l)

jrv,

∂aijk

∂y
(l)
jrv

=

d2∑
v=1

φ
(3)
ijk(u, v) · x(r)

iru,

∂aijk

∂y
(r)
jpv

=

d1∑
u=1

φ
(1)
ijk(v, w) · z(l)

kpw,

∂aijk

∂z
(l)
kpw

=

d1∑
u=1

φ
(1)
ijk(v, w) · y(r)

jpv,

∂aijk

∂z
(r)
kqw

=

d3∑
w=1

φ
(2)
ijk(w, u) · x(l)

iqu,

where we define

φ
(1)
ijk(v, w) =

d1∑
u=1

ψ
(2)
ki (w, u) · ψ(3)

ij (u, v),

φ
(2)
ijk(w, u) =

d2∑
v=1

ψ
(3)
ij (u, v) · ψ(1)

jk (v, w),

φ
(3)
ijk(u, v) =

d3∑
w=1

ψ
(1)
jk (v, w) · ψ(2)

ki (w, u).

Thus, given aijk in A, the gradients can be calculated in
O(D1d2d3 +D2d3d1 +D3d1d2). With the gradients, we can
optimize the objective function F .

4.3 Comparisons with TD and CP
For the simplicity of the analysis, we assume D1 = D2 =

D3 = D, d1 = d2 = d3 = d and I = J = K, where I, J
and K denote the number of the users, the items and the
tags. Let N denote the number of the triplets in the training
set and T denote the number of iterations for training. The
comparison of the time complexity and space complexity is
summarized in Table 1.

For TD, it makes the assumption that the users, the items
and the tags are divided into several groups and uses a core
tensor to model the higher-order relations between the user-
groups, the item-groups and the tag-groups. Given user i,
item j, tag k, the higher-order relation between them is or-

971

core tensor

user item tag

rela!on tensor

(a) Tucker decomposition

rela�on tensor

user item tag

(b) DTT

Figure 3: Comparison of Tucker decomposition and DTT

ganized into a relation tensor. The framework of Tucker
decomposition is illustrated in Figure 3(a). The three vec-
tors on the left of the arrow describe the factors of the user,
the item and the tag, respectively. The core tensor and the
three vectors are integrated into a relation tensor, which is
on the right of the tensor. Although Tucker decomposition
is flexible and expressive, it takes O(D3NT) to train the
data and O(D3) to predict a triplet. Besides, since the core
tensor is shared by all the triplets, it is not suitable to apply
parallel computing to training the data. Therefore, TD is
unpractical on large-scale datasets.

On the other hand, it takes O(DNT) to trained a CP-
based model and O(D) to predict a triplet. Thus, CP is
efficient. Moreover, CP divides the users, the items and the
tags into several groups as well. However, it assumes the
users in the p-th user-group are independent of the items
in the q-th item-group and the tags in the r-th tag-group,
where p 6= q and p 6= r. In fact, D << I when solving
real problems and it is possible that a user in the first user-
group might annotate an item in the first item-group with a
tag in the first tag-group and annotate another item in the
second item-group with another tag in the third tag-group.
Therefore, The assumption is too strong that it reduce the
capacity of expression.

For user i, item j, tag k, DTT exploits a special mul-
tiplication xiqryjrpzkpq to model the higher-order relation
between them. Just like TD, it organizes the relation into
a relation tensor as well, the framework of which is showed
in Figure 3(b). The three matrices on the left of the arrow
are the factor matrices of the user, the item and the tag
and the factor matrices are integrated into a relation ten-
sor, which is on the right of the arrow. Since DTT doesn’t
make the strong independent assumption like CP, it is more
expressive. Moreover, DTT requires O(Dd2NT) to train
and O(Dd2) to predict, where d << D. Thus, DTT is near
linear. According to the experimental results on the real
datasets, d = 1 is enough to capture the higher-order rela-
tions. Thus, DTT is efficient for large-scale problems. Fur-

thermore, compared with TD and CP, DTT exploits a more
natural way to represent the features of an entity, by using
a matrix to describe the features of the entity rather than a
vector.

5. EXPERIMENTAL RESULTS
In this section, we compare our proposed model with other

tensor factorization techniques on the synthetic datasets and
the real datasets. The experiments on the synthetic datasets
are used to compare the capacity of expression and the ex-
periments on the real datasets are used to compare the ac-
curacy for predicting a triplet of a tensor.

5.1 Experimental Setup
As tensor decomposition techniques are applied to per-

sonalized tag recommendation, we use real tag annotation
datasets to evaluate the performance of DTT. In addition,
we generate synthetic datasets to compare different factor-
ization models’ capacity of expression.

Let A denote the tensor constructed from the training set
and P denote the observed user-item posts in the training
set. Given post (u, i), T+

(u,i) and T−(u,i) denote the set of

the positive tags and the set of the negative tags for that
post, respectively. We construct a candidate set for each
post (u, i). If triplet (u, i′, t) is observed for some item i′ or
triplet (u′, i, t) is observed for some user u′, t is treated as
the candidate tag for post (u, i). For tag t in the candidate
set of post (u, i), if triplet (u, i, t) is observed, t is treated as
the positive tag for post (u, i), otherwise, the negative tag.
Following the work of [14], we optimize the pair-wise rank-
ing function Bayesian Personalized Ranking (BPR) [15] for
personalized tag recommendation. The objective function

972

F is defined as

F =
∑

(u,i)∈P

1

|T+
u,i||T

−
u,i|

∑
t+∈T+

u,i

∑
t−∈T−

u,i

σ(auit+ − auit−)

+ λ
∑
θ∈Θ

||θ − µ||2F , (10)

where λ is the weight of the regularization term, Θ are the
model parameters and µ denotes the mean of the parame-
ters. We use Stochastic Gradient Descent (SGD) to optimize
the objective function F .

5.2 Evaluation Methodology
We compare our approach with three categories of base-

lines, CP-based, TD-based and popularity-based. PITF [17],
CP are CP-based, RTF [14] and HOSVD [3] are TD-based.
For popularity-based, given a post (u, i), method popularity
ranks the tags based on the frequency item i and the tags
co-occur in the training set.

For convenience, we set D1 = D2 = D3 = D and d1 =
d2 = d3 = d. We performed all the experiments multi-
ple times and tuned the hyper-parameters of all models to
achieve the best performance on the first training split for
each dataset. Most of the parameters of the tensor factoriza-
tion models are drawn from normal distribution N(µ, 0.012).
For all the parameters in DTT, µ = 1√

Dd
. For all the

parameters in PITF, µ = 0.0. For all the parameters in
CP, µ = 1

3√
D

. For the parameters of the factor matrices in

RTF, µ = 1
D

and the parameters of the core tensor in RTF
are drawn from normal distribution N(0, 0.1). Besides, the
weight of the regularization term λ = 0.0001 on the syn-
thetic datasets and λ = 0.002 on the real datasets for DTT
and CP, λ = 10−6 on all the datasets for RTF, and λ = 0.001
on synthetic datasets and λ = 0.01 on the real datasets for
PITF.

We exploit two widely used metrics in information re-
trieval, Normalized Discounted Cumulative Gain (NDCG)
and Mean Average Precision (MAP), to evaluate the perfor-
mance of different models.

Discounted Cumulative Gain (DCG) evaluates the gain of
a recommendation list based on the positions of the tags in
that list. The NDCG accumulated at a particular position
p is defined as

DCG@p =

p∑
i=1

2rel(i) − 1

log2(i+ 1)
, (11)

where rel(i) is 1 if the tag at position i i relevant and 0, oth-
erwise. Normalized Discounted Cumulated Gain (NDCG) is
defined as

NDCG@p =
DCG@p

IDCG@p
(12)

where IDCG (Ideal Discounted Cumulated Gain) is the DCG
of the ideal ranked list, which is introduced to normalize the
DCG.

Mean Average Precision (MAP) computes the mean of
average precision (AP) over all posts in the test set, where
AP is the average of precisions computed at all positions
with a preferred tag and defined as

AP =

∑N
i=1 prec(i)× rel(i)∑N

i=1 rel(i)
, (13)

where prec(i) is the precision of the cutoff rank list from the
first tag to the i-th tag and N is the size of the corresponding
candidate set.

5.3 Performance on Synthetic Datasets
To evaluate different tensor factorization models’ capacity

of expression, we generate 10 synthetic datasets. There are
100 users, 100 items and 100 tags in each synthetic dataset.
For each dataset, We first randomly divided the users into
10 user-groups, divide the items into 10 item-groups and di-
vide the tags into 10 tag-groups. We assume the users in the
i-th user-group always annotate the items in the j-th item-
groups with the tags in the g(i, j)-th tag-group, where g(i, j)
is randomly generated in the range 1 - 10. Thus, to sam-
ple a triplet, we first randomly sample a user and an item,
and then sample a tag in the g(i, j)-th tag group, where
i, j denote the IDs of the user-group that user belongs to
and the item-group that item belongs to, respectively. For
each dataset, we randomly sample 6000 triplets and split
the triplets into a training set with 5000 triplets and a test
set with 1000 triplets. By this way, we can compare differ-
ent tensor factorization techniques’ capacity of expression
and verify whether the independent assumption made by
CP limits its capacity.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10

N
D

C
G

Top p

Fast DTT PITF CP HOSVD RTF

Figure 4: Performance on synthetic datasets

The experiments are repeated 10 times. We compare DTT
to other tensor factorization models and for all tensor fac-
torization models, D = 2, and for DTT d = 1. The results
on the synthetic datasets are showed in Figure 4. HOSVD
works poorly, since it doesn’t handle the missing value in
the tensors. As the other TD-based model, RTF, exploits
the pair-wise ranking function Bayesian Personalized Rank-
ing (BPR) [15], the performance is much better. Moreover,
as we expected, DTT and RTF outperforms the CP-based
models, PITF and CP, because the independent assumption
constraints CP-based models’ capacity. CP-based models
assumes the users in the i-th user group will only annotate
the items in the i-th item groups and annotate the items
with the tags in the i-th tag group, which is not always the
truth. Thus, DTT and TD-based models has stronger ca-
pacity of expression than CP-based models. Besides, DTT
and TD-based models like RTF model the higher-order re-
lation by a relation tensor, but it seems the method DTT
exploiting to construct the relation tensor is better.

973

Table 2: Data statistics
Dataset Users Items Tags Posts Triplets Density Average Candidates

Delicious 1,681 29,540 7,251 58,114 283,030 7.89× 10−7 131.79

Last.fm 1,348 6,927 2,132 59,849 162,047 8.14× 10−6 58.90

Movielens 456 1,973 1,222 15,210 27,0l26 2.46× 10−5 85.96

Delicious-large 433,791 1,241,772 125,455 30,538,733 71,709,640 1.06× 10−9 257.10

Table 3: Performance on the smaller real datasets
category algorithm #feature Delicious Last.fm Movielens

D d MAP NDCG@5 MAP NDCG@5 MAP NDCG@5

DTT DTT 32 1 0.1042 0.2317 0.4184 0.6446 0.4608 0.6028
64 1 0.1111 0.2395 0.4300 0.6561 0.4764 0.6188

TD RTF 32 - - - - - 0.3285 0.4846
64 - - - - - 0.3474 0.5004

HOSVD 32 - - - - - 0.0685 0.1442
64 - - - - - 0.0790 0.1679

CP PITF 32 - 0.1050 0.2381 0.4126 0.6463 0.4464 0.6015
64 - 0.1059 0.2398 0.4146 0.6482 0.4503 0.6058

CP 32 - 0.1054 0.2419 0.3808 0.6126 0.3920 0.5380
64 - 0.1040 0.2382 0.3782 0.6115 0.3944 0.5389

popularity popularity - - 0.1004 0.1581 0.3151 0.4995 0.2195 0.3405

5.4 Performance on Real Datasets
In addition to the synthetic datasets, we evaluate the

performance of DTT on real datasets Delicoius1, Last.fm2,
Movielens3 and Delicious-large4 [22]. The first three smaller
datasets come from the 2-nd International Workshop on In-
formation Heterogeneity and Fusion in Recommender Sys-
tems (HetRec 2011). The larger dataset Delicious-large [22]
contains the complete bookmarking activity for almost 2
million users from the launch of the social bookmarking web-
site in 2003 to the end of March 2011. For each real dataset,
we removed the infrequent users, items and tags by using a
core-based approach [10]. For the smaller datasets, we per-
form the removal until every user, item and tag occurred
in at least 5 triplets. For Delicious-large, as the original
dataset is too large, we first randomly sample 50% of the
users, the items and the tags, and then perform the core-
based approach until every user, item and tag occurred in
at least 10 triplets. The statistics of the datasets after re-
moval are described in Table 2. Average Candidates means
the average number of the candidate tags for each post in
each dataset.

We perform 10-fold cross-validation for the smaller datasets.
The comparison between DTT, PITF, CP, HOSVD, RTF
and popularity on the smaller real datasets are showed in
Table 3. As TD-based models require a lot of computation
power, we conducted experiments only on the smallest real
dataset Movielens for TD-based models, HOSVD and RTF.
Although TD-based models have stronger capacity of ex-
pression than CP-based models, they work poorer than the
CP-based models on the real datasets. Maybe the core ten-
sor of TD is too complex that it leads to overfitting. Both of
TD and DTT model the higher-order relations into relation
tensors, but it seems DTT works much better. It can be seen

1http://www.delicious.com
2http://www.lastfm.com
3http://www.grouplens.org
4http://www.zubiaga.org/resources/socialbm0311

from the table that the MAP of DTT is significantly higher
than that of the other approaches on all the real dataset
and the NDCG@5 of DTT is significantly higher than that
of the other approaches on the real datasets Last.fm and
Movielens.

In the next experiment, we split Delicious-large into train-
ing (90%) and test (10%). As PITF is the most competitive
approach on the smaller datasets, we only compare DTT
with PITF on Delicious-large. The results can be found in
Table 4, which show that DTT outperform PITF on the
larger dataset as well.

Table 4: Performance on Delicious-large
algorithm #feature Delicious-large

D d MAP NDCG@5

DTT 64 1 0.4674 0.6847
PITF 64 - 0.4612 0.6803

Finally, we investigate the influence of the number of fea-
tures to DTT. The results with different number of features
on the real datasets are showed in Figure 5. It can be seen
from the figure that with the same D, the prediction quality
of the models with d = 1 is comparable with the models
with d = 2 on all the real datasets. d has no significant
influence to the accuracy of the models on the real datasets.
Thus, d = 1 is sufficient to capture the higher-order relations
on the personalized tag recommendation datasets. As the
time complexity of DTT to predict a triplet is O(Dd2) and
at most of the time d = 1, the time complexity is reduced
to O(D). Thus, DTT is near linear and is efficient for the
large-scale real problems.

6. CONCLUSION AND FUTURE WORK
We propose a novel tensor factorization technique in this

paper. Different from the traditional tensor factorization
techniques which decompose a tensor into factor matrices,

974

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

1 2 3 4 5 6 7 8 9 10

N
D

C
G

Top p

D=16,d=1 D=32,d=1 D=64,d=1 D=128,d=1

D=16,d=2 D=32,d=2 D=64,d=2 D=128,d=2

(a) Delicious

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

1 2 3 4 5 6 7 8 9 10

N
D

C
G

Top p

D=16,d=1 D=32,d=1 D=64,d=1 D=128,d=1

D=16,d=2 D=32,d=2 D=64,d=2 D=128,d=2

(b) Last.fm

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

1 2 3 4 5 6 7 8 9 10

N
D

C
G

Top p

D=16,d=1 D=32,d=1 D=64,d=1 D=128,d=1

D=16,d=2 D=32,d=2 D=64,d=2 D=128,d=2

(c) Movielens

Figure 5: Performance with different number of features on the real datasets

we decompose a tensor into factor tensors, since factor ten-
sors can provide a more natural representation for the higher-
order relations. Besides, we compare our proposed approach
with two commonly used tensor factorization techniques,
Tucker decomposition and CANDECOMP/PARAFAC. Our
proposed approach overcome some of the drawbacks of Tucker
decomposition and CANDECOMP/PARAFAC. It not only
has strong capacity of expression, but also is near linear,
which is feasible for the large-scale real problems. The ex-
perimental results on the synthetic datasets validate that
our approach has strong capacity of expression. The results
on the real datasets show that our approach outperforms
other tensor factorization techniques.

In the future, we plan to further reduce the time complex-
ity and space complexity to compute our proposed approach,
by investigating its special case.

Acknowledgements
We would like to thank the many referees of the previous
version of this paper for their extremely useful suggestions
and comments. This work was supported by Huawei In-
novation Research Program (HIRP) and National Science
Foundation of China (61033010).

7. REFERENCES
[1] Carl J Appellof and ER Davidson. Strategies for

analyzing data from video fluorometric monitoring of
liquid chromatographic effluents. Analytical
Chemistry, 53(13):2053–2056, 1981.

[2] J.D. Carroll and J.J. Chang. Analysis of individual
differences in multidimensional scaling via an n-way
generalization of “eckart-young” decomposition.
Psychometrika, 35(3):283–319, 1970.

[3] Lieven De Lathauwer, Bart De Moor, and Joos
Vandewalle. A multilinear singular value
decomposition. SIAM journal on Matrix Analysis and
Applications, 21(4):1253–1278, 2000.

[4] Lieven De Lathauwer, Bart De Moor, and Joos
Vandewalle. On the best rank-1 and rank-(r 1, r 2,...,
rn) approximation of higher-order tensors. SIAM

Journal on Matrix Analysis and Applications,
21(4):1324–1342, 2000.

[5] Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar.
Temporal link prediction using matrix and tensor
factorizations. ACM Transactions on Knowledge
Discovery from Data (TKDD), 5(2):10, 2011.

[6] Beyza Ermiş, Evrim Acar, and A Taylan Cemgil. Link
prediction via generalized coupled tensor factorisation.
arXiv preprint arXiv:1208.6231, 2012.

[7] Dehong Gao, Renxian Zhang, Wenjie Li, and Yuexian
Hou. Twitter hyperlink recommendation with
user-tweet-hyperlink three-way clustering. In
Proceedings of the 21st ACM international conference
on Information and knowledge management, pages
2535–2538. ACM, 2012.

[8] Gene H Golub and Christian Reinsch. Singular value
decomposition and least squares solutions. Numerische
Mathematik, 14(5):403–420, 1970.

[9] Richard A. Harshman. Foundations of the PARAFAC
procedure: Models and conditions for an
“explanatory” multi-modal factor analysis. UCLA
working papers in phonetics, 16:1, 1970.

[10] Robert Jäschke, Leandro Marinho, Andreas Hotho,
Lars Schmidt-Thieme, and Gerd Stumme. Tag
recommendations in social bookmarking systems. Ai
Communications, 21(4):231–247, 2008.

[11] Alexandros Karatzoglou, Xavier Amatriain, Linas
Baltrunas, and Nuria Oliver. Multiverse
recommendation: n-dimensional tensor factorization
for context-aware collaborative filtering. In
Proceedings of the fourth ACM conference on
Recommender systems, pages 79–86. ACM, 2010.

[12] Tamara G Kolda and Brett W Bader. Tensor
decompositions and applications. SIAM review,
51(3):455–500, 2009.

[13] Fumikazu Miwakeichi, Eduardo Martınez-Montes,
Pedro A Valdés-Sosa, Nobuaki Nishiyama, Hiroaki
Mizuhara, and Yoko Yamaguchi. Decomposing eeg
data into space–time–frequency components using

975

parallel factor analysis. NeuroImage, 22(3):1035–1045,
2004.

[14] Steffen Rendle, Leandro Balby Marinho, Alexandros
Nanopoulos, and Lars Schmidt-Thieme. Learning
optimal ranking with tensor factorization for tag
recommendation. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 727–736. ACM,
2009.

[15] Steffen Rendle, Christoph Freudenthaler, Zeno
Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. In
Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, pages 452–461.
AUAI Press, 2009.

[16] Steffen Rendle, Christoph Freudenthaler, and Lars
Schmidt-Thieme. Factorizing personalized markov
chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide
web, pages 811–820. ACM, 2010.

[17] Steffen Rendle and Lars Schmidt-Thieme. Pairwise
interaction tensor factorization for personalized tag
recommendation. In Proceedings of the third ACM
international conference on Web search and data
mining, pages 81–90. ACM, 2010.

[18] Stephan Spiegel, Jan Clausen, Sahin Albayrak, and
Jérôme Kunegis. Link prediction on evolving data
using tensor factorization. In New Frontiers in Applied
Data Mining, pages 100–110. Springer, 2012.

[19] Jian-Tao Sun, Hua-Jun Zeng, Huan Liu, Yuchang Lu,
and Zheng Chen. Cubesvd: a novel approach to
personalized web search. In Proceedings of the 14th
international conference on World Wide Web, pages
382–390. ACM, 2005.

[20] Panagiotis Symeonidis, Alexandros Nanopoulos, and
Yannis Manolopoulos. Tag recommendations based on
tensor dimensionality reduction. In Proceedings of the
2008 ACM conference on Recommender systems,
pages 43–50. ACM, 2008.

[21] Ledyard R. Tucker. Some mathematical notes on
three-mode factor analysis. Psychometrika,
31:279–311, 1966.

[22] Robert Wetzker, Carsten Zimmermann, and Christian
Bauckhage. Analyzing social bookmarking systems: A
del.icio.us cookbook. In Mining Social Data (MSoDa)
Workshop Proceedings, pages 26–30, 2008.

[23] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff G
Schneider, and Jaime G Carbonell. Temporal
collaborative filtering with bayesian probabilistic
tensor factorization. In SDM, volume 10, pages
211–222, 2010.

[24] Nan Zheng, Qiudan Li, Shengcai Liao, and Leiming
Zhang. Flickr group recommendation based on tensor
decomposition. In Proceedings of the 33rd
international ACM SIGIR conference on Research and
development in information retrieval, pages 737–738.
ACM, 2010.

976

