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ABSTRACT
With the rapid prevalence of smart mobile devices, the num-
ber of mobile Apps available has exploded over the past few
years. To facilitate the choice of mobile Apps, existing mo-
bile App recommender systems typically recommend popu-
lar mobile Apps to mobile users. However, mobile Apps are
highly varied and often poorly understood, particularly for
their activities and functions related to privacy and secu-
rity. Therefore, more and more mobile users are reluctant
to adopt mobile Apps due to the risk of privacy invasion and
other security concerns. To fill this crucial void, in this pa-
per, we propose to develop a mobile App recommender sys-
tem with privacy and security awareness. The design goal
is to equip the recommender system with the functionality
which allows to automatically detect and evaluate the secu-
rity risk of mobile Apps. Then, the recommender system
can provide App recommendations by considering both the
Apps’ popularity and the users’ security preferences. Specifi-
cally, a mobile App can lead to security risk because insecure
data access permissions have been implemented in this App.
Therefore, we first develop the techniques to automatically
detect the potential security risk for each mobile App by
exploiting the requested permissions. Then, we propose a
flexible approach based on modern portfolio theory for rec-
ommending Apps by striking a balance between the Apps’
popularity and the users’ security concerns, and build an
App hash tree to efficiently recommend Apps. Finally, we
evaluate our approach with extensive experiments on a large-
scale data set collected from Google Play. The experimental
results clearly validate the effectiveness of our approach.
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1. INTRODUCTION
Recent years have witnessed the rapid and increased preva-

lence of smart mobile devices, such as smart phones, a huge
number of mobile Apps have been developed for mobile
users. For example, as of the end of July 2013, the Google
Play has had over 1 million Apps and there have been over
50 billion cumulative downloads, and these numbers are still
growing dramatically. Due to the prospering mobile App
industry, the functionalities of smart devices have been in-
tensely extended to meet diversified user needs. However,
mobile Apps are highly varied and often poorly understood,
particularly for their activities and functions related to pri-
vacy and security. Indeed, to improve user experiences, more
and more advanced mobile Apps are committed to provide
intelligent and personalized services for users, such as loca-
tion based services and social sharing services. These ser-
vices usually involve access permissions of users’ personal
data, such as real-time locations and the contact lists.

However, such intelligent mobile Apps may result in the
potential security and privacy risks for users. For instance,
users may not expect their locations (e.g., home locations,
workplaces) and other privacy information (e.g., contact lists,
SMS records) to be spied by the third party Apps. In fact,
as reported by NBC News 1, consumers have grown so con-
cerned about privacy on their mobile phones. Many con-
sumers have avoided downloading some mobile Apps, and
many others have removed Apps which may have access to
their personal data. Also, a recent survey from IDG News 2

reveals that 54% of U.S. mobile App users surveyed have de-
cided not to install an App when they discovered how much
personal information it would collect, and 30% of App users
have uninstalled an App after learning about the personal
information it collected. Therefore, the development of a
mobile App recommender system with security and privacy
awareness becomes critical for the healthy development of
the mobile App industry.

In the literature, there are recent studies about security
and privacy issues of mobile Apps, and mobile App recom-
mendations. For example, some works are focused on mal-
ware code detection [6, 13], the security middleware develop-
ment [7, 20], and the App access permission model develop-
ment [5, 8]. However, these works either need to analyze the
source code of each mobile App, or detect the system API
calls during the App running. Indeed, these approaches are
very hard to be implemented in practice, since it is not a
trivial task to efficiently and accurately detect the malware

1http://www.nbcnews.com/
2http://www.idg.com/
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Figure 1: A demo system of mobile App recommen-
dations with security and privacy awareness.

codes for each mobile App and users often do not want some
security software to frequently scan their devices. Mean-
while, in the area of mobile App recommendation, some
works studied the personalized App recommendation meth-
ods [17], the intelligent mobile App recommendations by
exploiting enriched contextual information [10, 21], and the
problem of App ranking fraud detection [22]. However, all
these works only consider user preferences about the Apps’
popularity (e.g., ratings, downloads), but not the security
and privacy risks inherent in the mobile Apps.
To this end, in this paper, we propose to develop a mobile

App recommender system with security and privacy aware-
ness. The design goal is to equip the recommender system
with the ability to automatically detect and evaluate the
security and privacy risks of mobile Apps. Also, when ap-
plying this recommender system for App recommendations,
it should be able to strike a balance between the Apps’ pop-
ularity and the users’ security preferences. Figure 1 shows
the interface of our demo system for mobile App recom-
mendations with security and privacy awareness. In this
system, users can select different evaluation metrics, such
as Popularity, Security, and Hybrid, to obtain App recom-
mendations with respect to their preferred security levels.
While we do not aim at developing personalized App rec-
ommender systems because the individual download statis-
tics and App usage data are often not publicly available,
our non-personalized App recommendations by consider-
ing both popularity and security are very important for mo-
bile App services. For instance, both Apple and Google pro-
vide non-personalized top paid/free App recommendations
based on the popularity information (e.g., overall download
and rating) every day. However, they do not explore and
consider the security preferences in their recommended top
charts. Indeed, the developed system will be beneficial for
the healthy development of the mobile App industry.
However, there are two critical challenge for developing an

App recommender system with security and privacy aware-
ness. Specifically, the first challenge is how to effectively
identify the security risks of mobile Apps from the large-
scale mobile App data. The second challenge is how to strike
a balance between the Apps’ popularity and the users’ con-
cerns about security and privacy. Indeed, our careful ob-
servation reveals that the potential security risks of mobile
Apps are essentially caused by the data access permissions
of each App, such as permissions requested for accessing
real-time locations. Therefore, in this paper, we first pro-

pose to exploit the requested permissions for detecting the
potential security risk of each mobile App. The proposed
approach is based on random walk regularization with an
App-permission bipartite graph, which can learn the security
risk of mobile Apps automatically without relying on any
predefined risk function. Furthermore, based on the modern
portfolio theory [16], we develop a flexible optimization ap-
proach for recommending Apps by considering both Apps’
popularity and users’ concerns about security and privacy.
Particularly, there are often many different security prefer-
ences of mobile users, and a huge number of Apps as can-
didates for recommendations. To enhance the performances
of online App recommendations, we build an App hash tree
to efficiently look up Apps. Finally, we evaluate our mobile
App recommendation approach with extensive experiments
on a large-scale real-world data set collected from Google
Play, which contains 170,753 mobile Apps. The experimen-
tal results clearly validate the effectiveness and efficiency of
our approach in terms of different evaluation metrics.

2. PROBLEM FORMULATION
In this section, we first introduce some preliminaries about

the security/privacy problems of mobile Apps, and then in-
troduce the framework of the proposed mobile App recom-
mender system with security and privacy awareness.

Table 1: Examples of data access permissions.
Type Permission ID Description

String ACCESS_FINE_LOCATION
Allows an application to acc-
ess fine (e.g., GPS) location.

String READ_CONTACTS
Allows an application to read
the user’s contacts data.

String READ_SMS
Allows an application to read
the user’s SMS messages.

String READ_CALENDAR
Allows an application to read
the user’s calendar data.

String READ_CALL_LOG
Allows an application to read
the user’s call log.

2.1 Preliminaries
The most advanced mobile operating systems, such as Ap-

ple IOS, Google Android, and Microsoft Windows Phone,
implement a sandbox which provides the security and pri-
vacy policy for the third-party mobile Apps. To be specific,
these operating systems isolate Apps from each other and
the resources, thus feature a permission system [7]. To ac-
cess the personal data in users’ mobile devices, the permis-
sion system will convey users to grant corresponding data
access permissions explicitly (e.g., IOS) or implicitly (e.g.,
Android) for each mobile App. Actually, these data access
permissions may enter some sensitive resources in mobile
users’ personal data, such as their locations or contact lists.
For instance, Table 1 illustrates some examples of data ac-
cess permissions in the Android system [1]. We can see that
all these listed permissions contain potential security risks.
For example, an App, which requests READ_CALENDAR and
READ_SMS permissions, may access users’ personal calendar
and short messages. This may not be comfortable for a busi-
ness man due to the risks of leaking confidential information.

Indeed, all these data access permissions can be catego-
rized into different levels with respect to their potential se-
curity risks. For example, as defined by Android Develop-
ers [1], there are three different threat levels for managing
data access permissions,
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Permissions: This application has access to the following:

è Your personal information

Read calendar events plus confidential information

(READ_CALENDAR )

Allows the App to read all calendar events stored on your tablet, 

including those of friends or coworkers. Malicious Apps may extract 

personal information from these calendars without the owners' 

knowledge. Allows the App to read all calendar events stored on your 

phone, including those of friends or coworkers. Malicious Apps may 

extract personal information from these calendars without the owners' 

knowledge.

è Phone calls

Read phone state and identity

(READ_PHONE_STATE)

Allows the App to access the phone features of the device. An App with 

this permission can determine the phone number and serial number of 

this phone, whether a call is active, the number that call is connected to 

and the like.

è Storage

Modify/delete USB storage contents modify/delete SD card contents

(WRITE_EXTERNAL_STORAGE)

Allows the App to write to the USB storage. Allows the App to write to 

the SD card.

SecurityPopularity

Figure 2: A motivating example.

• Normal permissions give an App access to isolated
App level features, with the minimal risk to other ap-
plications, the system, or the user access (e.g., the per-
mission to set screen wallpaper).

• Dangerous permissions give an App access to pri-
vate user data or control over the device, with a po-
tential risk that can negatively impact the user (e.g.,
the permission to have the user’s current location).

• Signature/System permissions give an App access
to the dangerous privileges, which need system signa-
ture certifications such as the ability to control the
system process (e.g., the permission to delete Apps).

To provide better services to users and gain more down-
loads of Apps, mobile App developers try to request more
and more data access permissions, which can help to im-
plement the intelligent applications, such as social sharing
services. However, these services may result in potential
security and privacy risks. For example, Figure 2 shows
an example of a mobile App in the Android market, which
contains both popularity and security information. In this
figure, we can observe that this App may request the per-
mission of reading the users’ calender (i.e., READ_CALENDAR),
reading phone states (i.e., READ_PHONE_STATE) and external
USB/SD card storage (i.e., WRITE_EXTERNAL_STORAGE). Al-
though this is a quite popular App according to user ratings
and the download information, it may still contain the po-
tential risk of leaking user information. For instance, if this
App is controlled by a Trojan, it could gather users’ calender
information and phone numbers, then upload the informa-
tion into external USB disk or SD card (when connected) via
the above permissions. However, to the best of our knowl-
edge, this kind of security risks is not taken into account
in most existing mobile App recommender systems. Indeed,
they only focus on the Apps’ popularity information (e.g.,
user ratings). Thus, we aim on developing a mobile App
recommender system with security and privacy awareness.

2.2 The Recommendation Framework
Here, we first formally define the problem of mobile App

recommendations with security and privacy awareness, and
then show the recommendation framework.

Definition 1 (Problem Statement). Given a cat-
egory label c, and a set of Apps A = {a}, each of which
contains a set of data access permissions {pi}, profile infor-
mation (e.g., category, popularity), the goal of mobile App

recommendation with security and privacy awareness is to
build an optimal ranked list of Apps in category c based on
both the Apps’ popularity and users’ security preferences.

Indeed, the above problem statement raises two issues:

• How to mine the security risks of Apps and produce a
ranked list Λ(Risk) = {a|a ∈ c} according to their risk
scores Risk(a), where a is ranked higher than a∗ if
and only if Risk(a) > Risk(a∗).

• How to combine the risk based ranked list Λ(Risk) with
the popularity based ranked list Λ(Pop) to produce final
ranking so as to meet various expectations of users,
who have different security and privacy concerns.

While it is appealing to provide mobile App recommenda-
tions with security and privacy awareness, it is a non-trivial
task to effectively discover and evaluate the security risks of
Apps, and produce desirable ranking of Apps by considering
both Apps’ popularity and users’ security preferences. In ad-
dition, there are often many different security preferences of
mobile users, and a huge number of Apps as candidates for
recommendations. Thus, how to efficiently manage Apps for
recommendation is also an open question. To that end, in
this paper, we propose a novel recommendation framework
to solve these problems.

App-Permission 

Bipartite Graph

Random Walk 

Regularization

App Database

Estimating App Risk Scores

Building App Hash Tree

App Category

Security Preference

Online InputMobile User

App Recommendation

Offline Learning Stage Online Recommendation Stage

Searching App Hash Tree

Portfolio Optimization

Figure 3: The recommendation framework.

Figure 3 shows the proposed recommendation framework,
which consists of two stages. The offline learning stage au-
tomatically learns the risk scores for Apps by leveraging the
random walk regularization with an App-permission bipar-
tite graph, and forms an App hash tree from the App data set
for efficiently managing Apps. The online recommendation
stage matches the given mobile users’ security preferences
and App categories according to the App hash tree, ranks
the candidate Apps with respect to both Apps’ popular-
ity and users’ security preferences by leveraging the modern
portfolio theory for recommendations.

3. ESTIMATING RISK SCORES FOR MO-
BILE APPS

Generally speaking, the risk score reflects the security
level of an App. The smaller the score is, the more safe
the App is. According to the above discussion, we can know
the security risks are essentially caused by the data access
permissions of Apps. Thus, an intuitive approach for mea-
suring the risks of Apps is to directly check each of the dan-
gerous permissions they request. However, there are many
critical challenges along this line, which make the problem
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Figure 4: An example of the bipartite graph.

still under-addressed. First, it is hard to explicitly define a
risk function with respect to different permissions for eval-
uating the potential risks of mobile Apps, since the permis-
sions are often very ambiguous and poorly understood [5, 8].
For example, we observe that although some permissions are
dangerous (e.g., location related permissions), they are com-
monly used in the Apps of some categories (e.g., navigation
Apps). Second, the latent relationships between Apps and
permissions should be taken into consideration, since similar
Apps (permissions) should have similar risk scores. Finally,
we should develop a scalable approach to refine risk scores,
since rich external knowledge can be leveraged for evaluat-
ing potential risks of Apps. For example, some external risk
reports, the state-of-the-art security models in relevant do-
mains as well as the prior knowledge from domain experts
can be leveraged for improving the performance of ranking
App risks. To deal with the above challenges, in this pa-
per, we propose a regularization approach based on a bipar-
tite graph, which can learn the security risk of mobile Apps
automatically without relying on any predefined risk func-
tion. Particularly, we develop an App-permission bipartite
graph to build the connections between Apps and permis-
sions, which is defined as follows.

Definition 2 (App-permission Bipartite Graph).
The graph can be denoted as G = {V,E,W}. V = {V a, V p}
is the node set, where V a = {a1, · · · , aM} denotes the set of
Apps and V p = {p1, · · · , pN} denotes the set of permissions.
E is the edge set, where eij ∈ E exists if and only if ai re-
quests the permission pj. W is the edge weight set, where
each wij ∈ W represents the weight of eij and denotes the
probability that ai will request pj .

Figure 4 shows an example of App-permission bipartite
graph. Intuitively, the weight wij can be estimated by the
permission records of all Apps in ai’s category. Specifically,
we can compute the weight by

wij =
fij∑

eik∈E fik
, (1)

where fij is the number of Apps in category c (ai ∈ c)
requesting permission pj . Furthermore, we can denote each
App aj and permission pj as vectors −→ai = {wi1, · · · , wiN}
and −→pj = {w1j , · · · , wMj}, respectively. Accordingly, we
define the latent similarity between Apps ai and aj by the
Cosine distance,

saij = Cos(−→ai ,
−→aj) =

−→ai · −→aj

∥−→ai∥ · ∥−→aj∥
. (2)

Similarly, we define the latent similarity between permis-
sions pi and pj as spij = Cos(−→pi ,−→pj ).
To estimate App risk scores with the App-permission bi-

partite graph, we first define two scoresRisk(ai) andRisk(pj)

for node ai ∈ V a and pj ∈ V p, respectively. Intuitively,
Risk(ai) is the objective App risk score and Risk(p) is the
global permission risk score. Second, we develop a regu-
larization framework by regularizing the smoothness of the
above two scores over the bipartite graph. Specifically, if we
denote Risk(ai) as R

a
i and Risk(pj) as R

p
j , we define a cost

function as follows,

Q(a, p) =
λ

2
·
{∑

i

∥∥∥Ra
i − R̃a

i

∥∥∥2 +
∑
j

∥∥∥Rp
j − R̃p

j

∥∥∥2}+ (3)

µ

2
·
{∑

i,j

saij

∥∥∥Ra
i −Ra

j

∥∥∥2 +
∑
i,j

spij

∥∥∥Rp
i −Rp

j

∥∥∥2}+

1

2
·
∑
i,j

wij

∥∥∥Ra
i −Rp

j

∥∥∥2,
where λ and µ are the regularization parameters, R̃a

i and

R̃p
j are the prior risk scores derived from external knowledge.
Intuitively, this cost function is formed by three parts.

The first part controlled by λ defines the constraint that the
two risk scores should fit prior knowledge. The second part
controlled by µ defines the global consistency of the refined
risk scores over the graph. Specifically, it satisfies that, if
two Apps (permissions) have high latent similarity, their risk
scores should be similar. The third part is the smoothness
constraint between Apps and permissions, which guarantees
that, if an App has high probability to request a specific per-
mission, their risk scores should be similar. Therefore, the
problem of estimating risk scores is converted to the opti-
mization problem of finding optimal Ra

i and Rp
j to minimize

the cost function Q. In this paper, we exploit the classic
gradient descent method to solve this problem. Specifically,
we first assign values to Ra

i = 1/M and Rp
j = 1/N and iter-

atively update them by setting the following differentiated
results to zero.

∂Q
∂ai

= λ(Ra
i − R̃a

i ) + µ
∑
j

saij(R
a
i −Ra

j ) +
∑
j

wij(R
a
i −Rp

j ),

Ra
i =

λR̃a
i + µ

∑
j s

a
ijR

a
j +

∑
j wijR

p
j

λ+ µ
∑

j s
a
ij +

∑
j wij

. (4)

∂Q
∂pj

= λ(Rp
j − R̃p

j ) + µ
∑
i

spij(R
p
j −Rp

i ) +
∑
i

wij(R
p
j −Ra

i ),

Rp
j =

λR̃p
j + µ

∑
i s

p
ijR

p
i +

∑
i wijR

a
i

λ+ µ
∑

i s
p
ij +

∑
i wij

. (5)

After each iteration, all the values of Ra
i and Ra

j will be nor-
malized again, i.e., ∥Ra∥1 = 1 and ∥Rp∥1 = 1. Finally, we
can obtain the optimal risk scores after the results converge.

How to assign prior risk scores R̃a
i and R̃p

j from external
knowledge is an open question. In practice, some intuitive
solutions include inviting domain experts for assigning risk
scores, building a security classifier through external risk
reports, or exploiting state-of-the-art security models in rel-
evant domains. In this paper, as an attempt, we leverage
the probabilistic approach PNB (Naive Bayes with informa-
tion Priors) proposed in [14] for this task, which is based on
the scoring scheme, and thus can be directly adopted by our
regularization framework. Specifically, PNB aims to learn a
Naive Bayes model with parameter θ that can best explain
the generative process of permissions, i.e., P (pj |θ). In this
model, the parameter θ is assumed to follow the Beta prior
Beta(θ;α0, β0), and the probability can be estimated by

P (pj |θ) =
∑M

i xi,j + α0

M + α0 + βo
, (6)
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where M is the total number of Apps and xi,j is a binary
function which is equal to 1 (i.e., ai requests the permission
pj) or 0 (i.e., ai does not request the permission pj). Partic-
ularly, PNB also defines three categories of permissions with
respect to their threat levels (i.e., similar as the preliminaries
in Section 2), and each category has a specificBeta(θ;α0, β0)
as informative priors. Therfore, the risk scores of permission

pj and App ai can be estimated by R̃p
j = − lnP (pj |θ) and

R̃a
i = − lnP (p1, · · · , pk|θ), where each pk ∈ ai. Note that,

both R̃a
i and R̃p

j are normalized before learning our regu-
larization framework. Although PNB is a straightforward
approach that cannot solve all the challenges mentioned be-
fore, its effectiveness on ranking risks of Apps has been well
proved. Therefore, using PNB as prior knowledge in our
regularization framework is appropriate.

4. RANKING FOR MOBILE APP RECOM-
MENDATION

Algorithm 1 Automatic Detection of Security Levels

Input: The set of Apps A = {ai}; Parameter δ;
Output: The set of security levels Ψ;

1: Rank A in descending order according to Risk(a);
2: L = ∅;
3: for each i ∈ [1, |A|] do
4: A∗ = L ∪ {A[i]};
5: calculate CV (A∗) in terms of Risk(a) (a ∈ A∗);
6: if (CV (A∗) > δ) then
7: Ψ ∪ = L; L = ∅ is a new level;
8: else
9: L∪ = {A[i]};
10: end if
11: end for
12: return Ψ

After computing the risk score for each mobile App, we
can rank Apps in ascending order with respect to their risk
scores for recommendations. Moreover, if some Apps have
the same risk scores, they will be further ranked according
to popularity scores (e.g., overall rating). However, for real-
world App recommendation services, users may have difficul-
ties to get clear perception about the risks of ranked Apps.
A promising way to help users understand the different risks
of Apps is to categorize the risks into discrete levels (e.g.,
Low, Medium, High). In fact, people often describe their
perception about risk or security with such discrete levels.
Therefore, in this paper, we further group Apps into differ-
ent clusters, each of which has the same security level (e.g,
Low or High). However, it is not easy to get an accurate
and appropriate segmentation of Apps with respect to their
risk scores due to the lack of appropriate benchmarks.
To solve the above problem, we develop a Coefficient of

Variation (CV) based approach to automatically segment
mobile Apps. The main idea of this approach is that two
adjacent Apps in the globally ranked list are assigned with
different security levels, if their risk scores have dramatic
differences, which can be captured by the CV, i.e., variance

mean
,

of their risk scores. The detailed segmentation algorithm
is shown in Algorithm 1. The parameter δ is a threshold
used for determining the dramatic difference of CV. After
segmentation, the Apps at lower security levels have higher
security risk.
Now, we are able to recommend Apps for users. Specifi-

cally, given a specific security level L∗ and a category c, we

can treat all the Apps in category c with security L ≥ L∗

as candidates. Intuitively, there are two types of ranking
principles for recommending Apps.

• Security Principle: We first rank App candidates in
ascending order by their risk scores, and Apps have
the same scores will be further ranked by popularity
scores (e.g., overall rating).

• Popularity Principle: We first rank App candidates
in descending order by their popularity scores (e.g.,
overall rating), and Apps have the same popularity
scores will be further ranked by risk scores.

Furthermore, we need to strike a balance between users’
security preferences and Apps’ popularity for recommenda-
tions. To achieve such a balance, we also propose a hybrid
principle for App recommendations, which is based on the
modern portfolio theory [16]. The portfolio theory is origi-
nally proposed in the field of finance, which focuses on the
investment problem of financial market. For example, an
investor often wants to select a portfolio of n stocks with a
fixed investment budget, which will provide the maximum
future return and the minimum risk. In our problem, the
stocks can be regarded as Apps, the future return and risk
can be regarded as popularity and security risk of Apps.

Specifically, an App portfolio Υ can be represented by a
collection of n Apps with a corresponding weight wi assigned
to each App a, i.e.,

Υ =
{
(ai, wi)

}
, s.t.

∑
i

wi = 1. (7)

Indeed, the weight wi in finance is the percentage of the bud-
get invested in the i-th stock. According to the discussion
in [19], the weight wi in our problem indicates how much
attention the recommender system wants the target user to
pay on the App ai. Therefore, the weights can be used to
determine the ranks of Apps; that is, Apps should be ranked
by the descending order of their weights. Before obtaining
the weights, we first define the future return of the App
portfolio as E[Υ], which can be computed by

E[Υ] =

n∑
i

wi ·∆−1
i , (8)

where ∆i is the rank of App ai in the popularity based
ranked list Λ(Pop). Also, we define the future risk of the App
portfolio as R[Υ], which can be computed by the following
function [12],

R[Υ] =

n∑
i

(w2
i∇−1

i + 2

n∑
j=i+1

wiwj∇−1
i ∇−1

j Jij), (9)

where ∇i is the rank of App ai in the risk based ranked
list Λ(Risk), and Jij is the risk correlation between Apps ai

and aj . Here, we estimate Jij according to the similarity of
requested permissions. For any two Apps, the more common
permissions are requested, the higher risk similarity they
have. To this end, we compute Jij using Jaccard coefficient
between Apps ai and aj by,

Jij =
Nij

Ni +Nj −Nij
, (10)

where Ni is the number of permissions requested by App ai,
and Nij is the number of common permissions requested by
two Apps ai and aj .

In our problem, the objective is to learn a set of App
weights w for maximizing the future return and minimizing
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Figure 5: An example of the App hash tree.

the risk of the App portfolio Υ that consists of recommen-
dation candidates (App candidates), i.e.,

argmax
w

E[Υ]− b · R[Υ], (11)

where b is a specified risk preference parameter, which is de-
fined as the given security level L∗ in our experiments. The
above optimization problem can be solved by the efficient
frontier based approach introduced in [19]. Specifically, we
can obtain the optimal weight w∗ by

w∗ =

∣∣∣∣ 1 1TΣ−1E
E∗ ETΣ−1E

∣∣∣∣Σ−11+

∣∣∣∣1TΣ−11 1
ETΣ−11 E∗

∣∣∣∣Σ−1E∣∣∣∣1TΣ−11 1TΣ−1E
ETΣ−11 ETΣ−1E

∣∣∣∣ , (12)

where Σij = ∇−1
i ∇−1

j Jij , E = (∆−1
1 , · · · ,∆−1

n )T , and E∗

can be computed by

E∗ =
(xz − y2)2 − 2b(xE− y1)TΣ−1(z1− yE)

2b(xE− y1)TΣ−1(xE− y1)
, (13)

where x = 1TΣ−11, y = 1TΣ−1E, and z = ETΣ−1E.
After ranking Apps with respect to three different princi-

ples, the final challenge is how to organize and index such
a large number of Apps with respect to their security levels
and categories. Indeed, in an online App recommender sys-
tem, it is necessary to quickly response users’ requests and
efficiently manage Apps in its back-end servers. To this end,
we propose a data structure for App retrieval, namely App
hash tree. Figure 5 illustrates an example of an App hash
tree, which contains two hierarchies, namely a category level
and a security level. For each node in the tree, it holds a
hash table to store the index of corresponding Apps. For
example, the node “Root → c1 → l3”may store the index of
all Apps belong to category c1 and security level l3. Note
that the App hash tree can be easily built with some ba-
sic tree search algorithms (e.g., Breadth-First-Search in our
experiments). Actually, the ranking results of Apps in each
node can be computed offline and pre-stored in the corre-
sponding nodes of the App hash tree. Therefore, during
the online recommendation, the system can quickly look up
the ranked list for recommendations to users based on their
specific security levels and App categories.

5. EXPERIMENTAL RESULTS
In this section, we empirically evaluate the Security and

Privacy aware mobile App Recommendation (SPAR) ap-
proach with a large-scale real-world data set.

Figure 6: The percent of Apps and the average num-
ber of requested permissions by each App in differ-
ent categories.

Figure 7: The top 25 most used permissions in our
data set and the percent of Apps that request those
permissions.

5.1 Experimental Data
The experimental data were collected from Google Play

(Android Market) [4] in 2012. This real-world data set in-
cludes 170,753 Apps in 30 App categories, and the Apps
have 173 unique data access permissions. Particularly, the
data set includes more than 25% Apps available at the An-
droid Market, which totally includes 675,000 Apps as of the
end of September 2012 [3].

Figure 6 and Figure 7 illustrate some statistics of the data
set. Specifically, Figure 6 shows the percent of Apps and the
average number of requested permissions by each App in dif-
ferent categories. In this figure, we can observe that Apps
in categories “Communication”, “Business” and “Social” re-
quest more permissions. Figure 7 shows the top 25 most
requested permissions and the percent of Apps that request
those permissions. In this figure, we can find that most of
the Apps request the network and location related permis-
sions. To further study the relationship between permissions
and Apps, we show the distributions of the number of Apps
with respect to the number of requested permissions in Fig-
ure 8 (a). We can see that most of the Apps only request
few permissions, which may indicate that not many Apps
have security risks. Figure 8 (b) shows the distribution of
the number of Apps with respect to the number of their rat-
ings. We can find that the distribution roughly follows the
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(a) (b)

Figure 8: The distribution of the number of Apps
w.r.t (a) the number of requested access permis-
sions, and (b) the number of their ratings.
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Figure 9: The percent of (a) Apps and (b)-(d) App
categories at different security levels.

power law. This indicates that only using App popularity
for recommendation is not enough.

5.2 Evaluation of App Risk Scores
In this subsection, we evaluate the performances of esti-

mating App risk scores and segmenting security levels.

5.2.1 App Security Levels
Specifically, we set the regularization parameters in Equa-

tion 3 as λ = 0.5 and µ = 1, and the settings of PNB are
similar as [14]. To segment Apps with respect to their risk
scores, we empirically set δ = 0.01×CV (A) in Algorithm 1,
where CV (A) is the CV of all App risk scores.
Figure 9 (a) shows the percent of Apps with respect to 6

segmented security levels. We can see that level 6 (i.e., most
secure) contains most Apps and the App numbers from level
1 to level 4 are relatively even, which indicate most Apps are
secure while only a few Apps have security risks.
Figure 9 (b)-(d) show the percent of App categories at

security levels 1, 3, and 6, respectively. In these figures, we
can find that Apps with more permissions (e.g., Apps in cat-
egories “Tools”, “Travel&Local”, and “Communication”) are
more likely to have potential risks, and vice versa (e.g., Apps
in categories“Personalization”and“Books&Reference”). Note
that, since categories “Entertainment”and“Personalization”
contain the largest portion of Apps in our data set, they al-
ways have high percent at all security levels.

(a) NDCG@K (b) Precision@K

(c) Recall@K (d) F@K

Figure 10: The performance of each approach w.r.t
different metrics based on user judgment.

5.2.2 Evaluation of Ranking App Risk
Evaluation Baselines. We adopt two state-of-the-art

baselines to evaluate the performances of our SPAR ap-
proach in terms of ranking App risks. To the best of our
knowledge, there is only one relevant recent study [14], which
can be directly leveraged for ranking App risks. Therefore,
we leverage the recommended approach in this work as the
first baseline. Naive Bayes with information Priors
(PNB) [14] aims to learn a Naive Bayes model with param-
eter θ that can best explain the generative process of per-
missions, i.e., P (pi|θ). Therefore, the risk scores of App ai

can be estimated by R̃a
i = − lnP (p1, · · · , pk|θ), where each

pk ∈ ai. Particularly, this baseline is also used for estimating
the prior risk scores in our regularization framework. More-
over, we also use a popular learning-to-rank approach as the
second baseline for ranking App risks. RankSVM [9] aims
to rank App risk by the RankSVM model. Specifically, we
manually labeled 200 secure Apps and 200 insecure Apps
according to some previous studies [6, 14, 20] as training
data. For each App, we used its category, developer, and
permissions as features to learn the ranking model.

Evaluation Metrics. Specifically, we set up the evalua-
tion as follows. First, we implemented our SPAR approach
and other baselines on all the Apps in the data set. For
each approach, we selected 100 top ranked mobile Apps (i.e.,
most insecure), and 100 bottom ranked mobile Apps (i.e.,
most secure) in the result. Then, we merged all the selected
Apps into a pool which includes 496 unique mobile Apps in
our data set. For each App, we invited three users who are
familiar with Android Apps to manually label these Apps
with score 2 (i.e., Insecure), 1 (i.e., Not Sure), and 0 (i.e.,
Secure). Each user gave a proper label by comprehensively
considering their own experiences (i.e., they can download
and try all these Apps), the App profile and the comments
from other users. After user evaluation, each App a is as-
signed a judgement score f(a) ∈ [0, 6]. Moreover, we com-
puted the Cohen’s kappa coefficient [2] between each pair of
evaluators to estimate the inter-evaluator agreement. The
values of Cohen’s kappa coefficient are between 0.67 to 0.72
in the user evaluation, which indicate the substantial agree-
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ment [11]. Finally, we further ranked the 496 Apps by each
approach, and obtained three ranked lists of Apps. Thus,
we can exploit the popular metric Normalized Discounted
Cumulative Gain (NDCG) for determining the ranking per-
formance of each approach. Specifically, the discounted cu-
mulative gain given a cut-off rank K can be calculated by

DCG@K =

K∑
i=1

2Rel(ai) − 1

log2(1 + i)
,

whereRel(ai) = f(ai) is the relevance score. TheNDCG@K
is the DCG@K normalized by the IDCG@K, which is the
DCG@K value of the ideal ranking list of the returned re-
sults. In other words, we have

NDCG@K =
DCG@K

IDCG@K
.

NDCG@K indicates how well the ranked order of the given
Apps returned by an approach with a cut-off rank K. A
larger NDCG@K value indicates the better ranking perfor-
mance. Particularly, if we treat the 83 commonly agreed in-
secure Apps (i.e., f(a) = 6) as the ground truth, we can eval-
uate each approach with the widely-used metrics, namely
Precision@K, Recall@K, and F@K.
Overall Performances. Figure 10 shows the results

of each approach with respect to four different evaluation
metrics. In this figure, we can see that SPAR consistently
outperforms other baselines and the improvement is more
significant for smaller K. These results clearly validate the
effectiveness of our regularization based approach. Partic-
ularly, the performances of PNB can be refined during the
regularization on the bipartite graph. Also, SPAR and PNB
outperform RankSVM, which indicates the straightforward
learning-to-rank approach is not enough for estimating App
risks. Indeed, the performances of learning-to-rank approaches
mainly rely on the effectiveness of feature extraction. Based
on the above observations, we can argue that SPAR is an
appropriate approach for estimating App risks.
Case Study. This evaluation benchmark is based on

some prior knowledge from other previous studies. As re-
ported by Zhou et al [20], there are 13 Apps which may
leak private information according to the TaintDroid sys-
tem [6]. Here, we select 6 of them (i.e., Horoscope, La-
yar, Trapster, Wertago, Astrid Task and DasTelefonbuch),
which are included in our data set, to evaluate SPAR and
other baselines. Indeed, we study whether each approach
can find these insecure Apps with high risk ranks, since a
good approach should have the capability of capturing these
suspicious Apps. Table 2 shows the top percentage position
of each App in the ranked list returned by each approach.
We can see that SPAR can rank those insecure Apps into
higher positions than other baselines. Specially, all of these
six Apps are categorized into low security levels (i.e., L1 and
L2) by the segmentation approach, which also validates the
effectiveness of our approach.

Table 2: The reported insecure mobile Apps.
SPAR PNB RankSVM

Horoscope 2.64% 5.41% 7.13%
Layar 5.34% 7.21% 11.81%
Trapster 6.21% 9.34% 12.33%
Wertago 2.72% 4.89% 8.37%
Astrid Task 8.09% 11.29% 13.32%
DasTelefonbuch 6.18% 11.71% 14.38%

(a) Level 1 (b) Level 3

(c) Level 5 (d) Level 6

Figure 11: The recommendation performances of
different ranking principles.

5.3 Evaluation of App Recommendation
Here, we evaluate the recommendation performances of

our approach SPAR. Particularly, we use the average rating
as the popularity score for each App and the parameter b in
Equation 11 equals to the given security level in experiments.

5.3.1 Recommendation Performances
Since our App recommender system is non-personalized,

there is no personal data could be used for evaluation. Also,
there is no ground truth for us to evaluate which recommen-
dation results really meet users’ information needs. Thus,
in this paper, we focus on evaluating our recommendation
approach SPAR by checking whether it can strike a balance
between App popularity and user’s security preferences.

Specifically, there are three different ranking principles
in our recommendation approach, i.e., popularity, security
and hybrid principles. Given an App category and security
level, each principle can generate a ranked App list as the
recommendation result. Here, we propose to use two metrics
NDCGPop and NDCGSec to evaluate the the performance
of each recommendation result. Compared with traditional
NDCG, the relevance scores of NDCGPop and NDCGSec

are set to the popularity score and the reciprocal of risk
score, respectively. Intuitively, if a recommendation result
has higher NDCGPop (NDCGSec), it has more emphasis
on App popularity (App Security). Figure 11 shows the
average recommendation performance across all App cate-
gories with respect to different ranking principles and secu-
rity levels. From the results, we can observe that the hybrid
principle can rank Apps with a trade-off between popular-
ity and security, which means the recommended Apps are
both popular and secure. Also, with the increase of security
levels, the recommendation results have more emphasis on
App security than popularity.

5.3.2 A Case Study
To further evaluate the recommendation performances of

different ranking methods, we study five Apps in category
“App/Lifestyle”, which are “Weterago”, “BeNaughty”, “Mo-
ment Diary”, “SimplyNoise” and “Bedside”. Particularly,
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Table 3: The case study of App recommendation.
Recommendation

SEC SimplyNoise,Moment Diary,Bedside,BeNaughty,Weterago
POP Weterago,Bedside,Moment Diary,BeNaughty,SimplyNoise
H-1 Bedside,Moment Diary,Weterago,BeNaughty,SimplyNoise
H-3 Moment Diary,Bedside,BeNaughty,SimplyNoise
H-5 Moment Diary,SimplyNoise,Beside
H-6 SimplyNoise,Moment Diary

“Weterago” is one of the reported insecure Apps, and “Sim-
plyNoise” is an App without requesting data access permis-
sions. Table 3 shows the recommendation results, where
SEC recommends most secure Apps based on risk scores
with security level 1; POP is based on popularity scores
(i.e., average ratings) with the security level 1; H-1, H-3, H-5
and H-6 denote the hybrid principle based recommendation
with security levels 1, 3, 5 and 6, respectively. From these
results, we can observe that the popularity-based method
recommends insecure App “Weterago” in the first position,
while it has the highest risk score. In contrast, if only using
risk scores to recommend Apps, some unpopular Apps (e.g.,
SimplyNoise) will be ranked higher. Furthermore, we can
observe that H-3, H-5, H-6 do not recommend all five Apps
for users. The reason is that these methods only take Apps
with security levels higher than the given levels as candi-
dates. Finally, we can see that the App “Moment Diary” is
ranked the highest by H-3, H-5, since the hybrid principle
can reach some balance between popularity and security for
App recommendation.

5.4 Efficiency and Scalability
Our approach consists of an offline stage and an online

stage. In the offline stage, the computational cost mainly
comes from two parts: the computation of regularization
for estimating risk scores, and the computation for security
level segmentation and building the App hash tree. To eval-
uate the efficiency and scalability of our approach, we test
the running time of each part on different segmentation of
the entire data set (i.e., 10%,..., 100%) to illustrate the scal-
ability of our approach. All the tests were conducted on
a 3.4GHZ×8-Core CPU, 8G main memory PC. Figure 12
shows the running time of each part with respect to differ-
ent input data size. We can see that the computation times
are almost linear with the size of input data. Thus, our
approach is scalable in the offline stage.
In the online stage, given a security level and App cate-

gory, the recommender system will return the ranked list of
Apps to user according to different recommendation princi-
ples. Indeed, since the popularity scores (e.g., overall rating)
and risk scores can be obtained in the offline stage, and the
portfolio optimization for hybrid principle has a close-form
solution (e.g., Equation 12), the computational cost in on-
line stage is relatively low. In particular, as discussed in
Section 4, the main ranking process can be conducted in ad-
vance and pre-stored in the App hash tree. In this case, the
online recommendation process will be very fast.

6. RELATED WORK
Generally speaking, the related works of this study can be

grouped into two categories.
The first category is about mobile App security. Indeed,

many previous studies about security and privacy issues of
mobile Apps have been reported. For example, Enck et
al. [6] proposed a malware detection system named Taint-
Droid, which can provide efficient real-time analysis of other
third party mobile Apps through the monitor of their data

(a) (b)

Figure 12: The running time of (a) each iteration of
regularization, and (b) security level segmentation
and building the App hash tree.

access behavior. Luo et al. [13] discussed the problem of at-
tacks on WebView in the Android system, analyzed the fun-
damental causes and proposed some potential solutions. To
tame the information-stealing mobile Apps, Zhou et al. [20]
proposed a new privacy model for Android system. Also,
they developed a system named TISSA as security middle-
ware to implement this model. Enck et al. [7] developed
a rule-based certification model and system named Kirin,
which can perform lightweight certification of mobile Apps
at install time. Indeed, more and more advanced mobile
Apps are committed to provide intelligent services for users
by requesting various access permissions of users’ personal
data. To understand these data access permissions, Au et
al. [5] surveyed the permission systems of several popular
smart phone operating systems, such as Apple IOS, and
Android. They also discussed the problem of permission
over-declaration and proposed some insightful directions of
relevant research. Similarly, Felt et al. [8] studied the per-
mission requests of over 900 mobile Apps in Android system,
and developed a tool named Stowaway to detect the over-
privilege in compiled Android Apps.

However, these approaches are very hard to be imple-
mented in practice, since it is not a trivial task to efficiently
and accurately detect the malware codes for each mobile
App and users often do not want some security software to
frequently scan their devices. Recently, Peng et al. [14] pro-
posed a novel approach with various probabilistic models
for ranking Apps with respect to their risk scores. Although
this approach is straightforward and not scalable for external
knowledge, it is effective for estimating App risk. Therefore,
we propose to leverage this approach for assigning prior risk
scores in our regularization framework.

Another category is about mobile App recommendation,
which aims to facilitate the choice of mobile users. For exam-
ple, Yan et al. [17] developed a collaborative filtering based
mobile App recommender system, namely Appjoy. Different
from other mobile App recommender systems, the Appjoy is
based on users’ App usage records to build preference matrix
but not explicit user ratings. However, sometimes the App
usage records are very sparse. To solve this problem, Shi
et al. [15] studied several recommendation models and pro-
posed a content based collaborative filtering model named
Eigenapp for recommending Apps in their Web site Getjar.
Also, some researchers studied the problem of exploiting en-
riched contextual information for mobile App recommenda-
tion. For example, Yu et al. [18] proposed a novel person-
alized context-aware recommender system by analyzing mo-
bile user’s context logs. The proposed approach is based on
Latent Dirichlet Allocation topic model and scalable for mul-
tiple contextual features. Furthermore, Zhu et al. [21] pro-
posed a uniform framework for personalized context-aware
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recommendation, which can integrate both context indepen-
dency and dependency assumptions. The framework can
mine user’s personal context-aware preferences for mobile
App recommendation from the context logs of many mobile
users. However, all the above recommendation approaches
do not take consideration of the potential security/privacy
risk of mobile Apps, which motivates our novel mobile App
recommender system with security and privacy awareness.

7. CONCLUDING REMARKS
In this paper, we developed a mobile App recommender

system with security and privacy awareness. Specifically,
without relying on any predefined risk functions, we de-
signed a scalable and automatic approach for estimating
the security risks of Mobile Apps. An unique perspective
of this approach is the creative use of external knowledge
as prior scores and the regularization techniques in an App-
permission bipartite graph. Moreover, to consider both Apps’
popularity and users’ security preferences for recommenda-
tions, we introduced a flexible App recommendation method
based on the modern portfolio theory. Particularly, we also
developed an App hash tree to efficiently look up Apps in
recommendation. Finally, the experiments on a large-scale
real-world data set clearly validated the effectiveness and
efficiency of the proposed recommendation framework.
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