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ABSTRACT
Given a simple noun such as apple, and a question such as is it ed-
ible?, what processes take place in the human brain? More specifi-
cally, given the stimulus, what are the interactions between (groups
of) neurons (also known as functional connectivity) and how can
we automatically infer those interactions, given measurements of
the brain activity? Furthermore, how does this connectivity differ
across different human subjects?

In this work we present a simple, novel good-enough brain model,
or GEBM in short, and a novel algorithm SPARSE-SYSID, which
are able to effectively model the dynamics of the neuron interac-
tions and infer the functional connectivity. Moreover, GEBM is
able to simulate basic psychological phenomena such as habitua-
tion and priming (whose definition we provide in the main text).

We evaluate GEBM by using both synthetic and real brain data.
Using the real data, GEBM produces brain activity patterns that are
strikingly similar to the real ones, and the inferred functional con-
nectivity is able to provide neuroscientific insights towards a better
understanding of the way that neurons interact with each other, as
well as detect regularities and outliers in multi-subject brain activ-
ity measurements.
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H.2.8 [Database Management]: Database Applications—Data min-
ing; G.3 [Mathematics of Computing]: Probability and Statis-
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tions]: Social and Behavioral Sciences—Psychology
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equation in its matrix form:

Y0 �
⇥
A B

⇤ Y
S

�

There are a few distinct ways of formulating the optimization
problem of finding A,B. In the next lines we show two of the
most insightful ones:

• Least Squares (LS):
The most straightforward approach is to express the problem
as a Least Squares optimization:

min
A,B

kY0 �
⇥
A B

⇤ Y
S

�
k2

F

and solve for
⇥
A B

⇤
by (pseudo)inverting


Y
S

�
.

• Canonical Correlation Analysis (CCA): In CCA, we are
solving for the same objective function as in LS, with the
additional constraint that the rank of

⇥
A B

⇤
has to be equal

to r (and typically r is much smaller than the dimensions of
the matrix we are solving for, i.e. we are forcing the solution
to be low rank). Similar to the LS case, here we minimize
the sum of squared errors, however, the solution here is low
rank, as opposed to the LS solution which is (with very high
probability) full rank.

However intuitive, the formulation of MODEL0 turns out to be
rather ineffective in capturing the temporal dynamics of the recorded
brain activity. As an example of its failure to model brain activity
successfully, Fig. 2 shows the real and predicted (using LS and
CCA) brain activity for a particular voxel (results by LS and CCA
are similar to the one in Fig. 2 for all voxels). By minimizing
the sum of squared errors, both algorithms that solve for MODEL0

resort to a simple line that increases very slowly over time, thus
having a minimal squared error, given linearity assumptions.
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Figure 2: Comparison of true brain activity and brain activity gen-
erated using the LS, and CCA solutions to MODEL0. Clearly,
MODEL0 is not able to capture the trends of the brain activity,
and to the end of minimizing the squared error, produces an almost
straight line that dissects the real brain activity waveform.

3.2 Proposed approach: GeBM
Formulating the problem as MODEL0 is not able to meet the re-

quirements for our desired solution. However, we have not ex-
hausted the space of possible formulations that live within our set
of simplifying assumptions. In this section, we describe GEBM,
our proposed approach which, under the assumptions that we have
already made in Section 2, is able to meet our requirements remark-
ably well.

In order to come up with a more accurate model, it is useful to
look more carefully at the actual system that we are attempting to

Symbol Definition
n number of hidden neuron-regions
m number of voxels we observe (306)
s number of input signals (40 questions)
T time-ticks of each experiment (340 ticks, of 5msec each)
x(t) vector of neuron activities at time t
y(t) vector of voxel activities at time t
s(t) vector of input-sensor activities at time t
A[n⇥n] connectivity matrix between neurons (or neuron regions)
C[m⇥n] summarization matrix (neurons to voxels)
B[n⇥s] perception matrix (sensors to neurons)
Av connectivity matrix between voxels
REAL real part of a complex number
IMAG imaginary part of a complex number
A† Moore-Penrose Pseudoinverse of A

Table 1: Table of symbols

model. In particular, the brain activity vector y that we observe is
simply the collection of values recorded by the m sensors, placed
on a person’s scalp.

In MODEL0, we attempt to model the dynamics of the sensor
measurements directly. However, by doing so, we are directing our
attention to an observable proxy of the process that we are trying
to estimate (i.e. the functional connectivity). Instead, it is more
beneficial to model the direct outcome of that process. Ideally, we
would like to capture the dynamics of the internal state of the per-
son’s brain, which, in turn, cause the effect that we are measuring
with our MEG sensors.

Let us assume that there are n hidden (hyper)regions of the brain,
which interact with each other, causing the activity that we observe
in y. We denote the vector of the hidden brain activity as x of
size n ⇥ 1. Then, by using the same idea as in MODEL0, we may
formulate the temporal evolution of the hidden brain activity as:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

Having introduced the above equation, we are one step closer to
modelling the underlying, hidden process whose outcome we ob-
serve. However, an issue that we have yet to address is the fact that
x is not observed and we have no means of measuring it. We pro-
pose to resolve this issue by modelling the measurement procedure
itself, i.e. model the transformation of a hidden brain activity vec-
tor to its observed counterpart. We assume that this transformation
is linear, thus we are able to write

y(t) = C[m⇥n]x(t)

Putting everything together, we end up with the following set of
equations, which constitute our proposed model GEBM:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

y(t) = C[m⇥n] ⇥ x(t)

Additionally, we require the hidden functional connectivity ma-
trix A to be sparse because, intuitively, not all (hidden) regions of
the brain interact directly with each other. Thus, given the above
formulation of GEBM, we seek to obtain a matrix A sparse enough,
while obeying the dynamics dictated by model. Sparsity is key in
providing more insightful and easy to interpret functional connec-
tivity matrices, since an exact zero on the connectivity matrix ex-
plicitly states that there is no direct interaction between neurons; on
the contrary, a very small value in the matrix (if the matrix is not
sparse) is ambiguous and could imply either that the interaction is
negligible and thus could be ignored, or that there indeed is a link
with very small weight between the two neurons.

The key ideas behind GEBM are:
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Figure 1: Big picture: our GEBM estimates the hidden functional
connectivity (top right, weighted arrows indicating number of in-
ferred connections), when given multiple human subjects (left) that
respond to yes/no questions (e.g., edible?) for typed words (e.g.,
apple). Bottom right: GEBM also produces brain activity (in solid-
red), that matches reality (in dashed-blue).

1. INTRODUCTION
Can we infer the brain activity for subject ’Alice’, when she is

shown the typed noun apple and has to answer a yes/no question,
like is it edible? Can we infer the connectivity of brain regions,
given numerous brain activity data of subjects in such experiments?
These are the first two goals of this work: single-subject, and multi-
subject analysis of brain activity.

The third and final goal is to develop a brain connectivity model,
that can also generate activity that agrees with psychological phe-
nomena, like priming1 and habituation2

Here we tackle all these challenges. We are given Magnetoen-
cephalography (MEG) brain scans for nine subjects, shown several
typed nouns (apple, hammer, etc), and being requested to answer
a yes/no question (is it edible?, is it dangerous?, and so on), by
pressing one of two buttons.
Our approach: Discovering the multi-billion connections among

1Priming illustrates the power of context: a person hearing the
word iPod, and then apple, will think of Apple-inc, as opposed to
the fruit apple
2 Habituation illustrates compensation: a person hearing the same
word all the time, will eventually stop paying attention.
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the tens of billions [23, 2] of neurons would be the holy grail, and
clearly outside the current technological capabilities. How close
can we approach this ideal? We propose to use a good-enough
approach, and try to explain as much as we can, by assuming a
small, manageable count of neuron-regions and their interconnec-
tions, and trying to guess the connectivity from the available MEG
data. In more detail, we propose to formulate the problem as ’sys-
tem identification’ from control theory, and we develop novel algo-
rithms to find sparse solutions.

We show that our good-enough approach is a very good first step,
leading to a tractable, yet effective model (GEBM), that can answer
the above questions. Figure 1 gives the high-level overview: at the
bottom-right, the blue, dashed-line time sequences correspond to
measured brain activity; the red lines correspond to the guess of
our GEBM model. Notice the qualitative goodness of fit. At the
top-right, the arrows indicate interaction between brain regions that
our analysis learned, with the weight being the strength of interac-
tion. Thus we see that the vision cortex (’occipital lobe’) is well
connected to the language-processing part (’temporal lobe’), which
agrees with neuroscience, since all our experiments involved typed
words.
Our contributions are as follows:
• Novel analytical model: We propose the GEBM model (see

Section 3, and Eq (2)-(3)).
• Algorithm: we introduce SPARSE-SYSID, a novel, sparse,

system-identification algorithm (see Section 3).
• Effectiveness: Our model can explain psychological phenom-

ena, such as habituation and priming (see Section 5.4); it also
gives results that agree with experts’ intuition (see Section
5.1)
• Validation: GEBM indeed matches the given activity pat-

terns, both on synthetic, as well as real data (see Section 4
and 5.3, resp.).
• Multi-subject analysis: Our SPARSE-SYSID, applied on 9

human subjects (Section 5.2), showed that (a) 8 of them had
very consistent brain-connectivity patterns while (b) the out-
lier was due to exogenous factors (excessive road-traffic noise
during his experiment).

Additionally, our GEBM highlights connections between multiple,
mostly disparate areas: 1) Neuroscience, 2) Control Theory & Sys-
tem Identification, and 3) Psychology.

Reproducibility: Our implementation is open sourced and pub-
licly available 3. Due to privacy reasons, we are not able to release
the MEG data, however, in the online version of the code we in-
clude the synthetic benchmarks, as well as the simulation of psy-
chological phenomena using GEBM.

2. PROBLEM DEFINITION
As mentioned earlier, our goal is to infer the brain connectivity,

given measurements of brain activity on multiple yes/no tasks, of
multiple subjects. We define as yes/no task the experiment where
the subject is given a yes/no question (like, ‘is it edible?’, ’is it
alive?’), and a typed English word (like, apple, chair), and has to
decide the answer.

Throughout the entire process, we attach m sensors that record
brain activity of a human subject. Here we are using Magnetoen-
cephalography (MEG) data, although our GEBM model could be
applied to any type of measurement (fMRI, etc). In Section 5.4 we
provide a more formal definition of the measurement technique.

Thus, in a given experiment, at every time-tick t we have m

3http://www.cs.cmu.edu/~epapalex/src/GeBM.
zip

measurements, which we arrange in an m × 1 vector y(t). Addi-
tionally, we represent the stimulus (e.g. apple) and the task (e.g. is
it edible?) in a time-dependent vector s(t), by using feature repre-
sentation of the stimuli; a detailed description of how the stimulus
vector is formed can be found in Section 5.4. For the rest of the
paper, we shall use interchangeably the terms sensor, voxel and
neuron-region.

We are interested in two problems: the first is to understand how
the brain works, given a single subject. The second problem is to
do cross-subject analysis, to find commonalities (and deviations) in
a group of several human subjects. Informally, we have:

INFORMAL PROBLEM 1 (SINGLE SUBJECT). Definition:
- Given: The input stimulus; and a sequence of m × T brain

activity measurements for the m voxels, for all timeticks t =
1 · · ·T

- Estimate: the functional connectivity of the brain, i.e. the
strength and direction of interaction, between pairs of the m
voxels, such that

1. we understand how the brain-regions collaborate, and
2. we can effectively simulate brain activity.

For the second problem, informally we have:

INFORMAL PROBLEM 2 (MULTI-SUBJECT ). Definition:
- Given: Multi-subject experimental data (brain activity for

‘yes/no tasks’)
- Detect: Regularities, commonalities, clusters of subjects (if

any), outlier subjects (if any).

For the particular experimental setting, prior work [15] has only
considered transformations from the space of noun features to the
voxel space and vice versa, as well as word-concept specific pre-
diction based on estimating the covariance between the voxels [7].

Next we formalize the problems, we show some straightforward
(but unsuccessful) solutions, and finally we give the proposed model
GEBM, and the estimation algorithm.

3. PROBLEM FORMULATION AND PRO-
POSED METHOD

There are two over-arching assumptions:
• linearity: linear models are good-enough
• stationarity: the connectivity of the brain does not change, at

least for the time-scales of our experiments.
Non-linear/sigmoid models is a natural direction for future work;
and so is the study of neuroplasticity, where the connectivity changes.
However, as we show later, linear, static, models are “good-enough”
to answer the problems we listed, and thus we stay with them.

However, we have to be careful. Next we list some natural, but
unsuccessful models, to illustrate that we did do ’due dilligence’,
and to highlight the need for our slightly more complicated, GEBM
model. The conclusion is that the hasty, Model0, below, leads to
poor behavior, as we show in Figure 2 (red, and black, lines), com-
pletely missing all the trends and oscillations of the real signal (in
dotted-blue line). In fact, the next subsection may be skipped, at a
first reading.

3.1 First (unsuccessful) approach: Model0
Given the linearity and static-connectivity assumptions above, a

natural additional assumption is to postulate that the m × 1 brain
activity vector y(t + 1) depends linearly, on the activities of the
previous time-tick y(t), and, of course, the input stimulus, that is,
the s× 1 vector s(t).
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Formally, in the absence of input stimulus, we expect that

y(t+ 1) = Ay(t).

where A is the m×m connectivity matrix of the m brain regions.
Including the (linear) influence of the input stimulus s(t), we reach
the MODEL0:

y(t+ 1) = A[m×m] × y(t) + B[m×s] × s(t) (1)

The B[m×s] matrix shows how the s input signals affect the m
brain-regions.

To solve for A,B, notice that: y(t + 1) =
[
A B

] [y(t)
s(t)

]

which eventually becomes Y′ =
[
A B

] [Y
S

]

In the above equation, we arranged all the measurement vectors
y(t) in matrices: Y =

[
y(1) · · · y(T − 1)

]
,

Y′ =
[
y(2) · · · y(T )

]
, and S =

[
s(1) · · · s(T − 1)

]

This is a well-known, least squares problem. We can solve it ’as
is’; we can ask for a low-rank solution; or for a sparse solution -
none yields a good result, but we briefly describe each, next.
• Least Squares (LS): The solution is unique, using the Moore-

Penrose pseudo-inverse, i.e.
[
A B

]
LS

= Y′ ×
[
Y
S

]†
.

• Canonical Correlation Analysis (CCA): The reader may be
wondering: what if we have over-fitting here - why not ask
for a low-rank solution. This is exactly what CCA does [14].
It solves for the same objective function as in LS, further
requesting low rank r for

[
A B

]

• Sparse solution: what if we solve the least squares problem,
further requesting a sparse solution? We tried that, too, with
`1 norm regularization.

None of the above worked. Fig. 2 shows the real brain activ-
ity (dotted-blue line) and predicted activity, using LS (pink) and
CCA (black), for a particular voxel. The solutions completely fail
to match the trends and oscillations. The results for the `1 regular-
ization, and for several other voxels, are similar to the one shown,
and omitted for brevity.

Real and predicted MEG brain activity
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Figure 2: MODEL0 fails: True brain activity (dotted blue) and the
model estimate (pink, and black, resp., for the least squares, and for
the CCA variation).

The conclusion of this subsection is that we need a more compli-
cated model, which leads us to GEBM, next.

3.2 Proposed approach: GeBM
Before we introduce our proposed model, we should introduce

our notation, which is succinctly shown in Table 1.
Formulating the problem as MODEL0 is not able to meet the re-

quirements for our desired solution. However, we have not ex-
hausted the space of possible formulations that live within our set

Symbol Definition
n number of hidden neuron-regions
m number of MEG sensors/voxels we observe (306)
s number of input signals (40 questions)
T time-ticks of each experiment (340 ticks, of 5msec each)
x(t) vector of neuron activities at time t
y(t) vector of voxel activities at time t
s(t) vector of input-sensor activities at time t
A[n×n] connectivity matrix between neurons (or neuron regions)
C[m×n] summarization matrix (neurons to voxels)
B[n×s] perception matrix (sensors to neurons)
Av connectivity matrix between voxels
REAL real part of a complex number
IMAG imaginary part of a complex number
A† Moore-Penrose Pseudoinverse of A

Table 1: Table of symbols

of simplifying assumptions. In this section, we describe GEBM,
our proposed approach which, under the assumptions that we have
already made in Section 2, is able to meet our requirements remark-
ably well.

In order to come up with a more accurate model, it is useful to
look more carefully at the actual system that we are attempting to
model. In particular, the brain activity vector y that we observe is
simply the collection of values recorded by the m sensors, placed
on a person’s scalp. In MODEL0, we attempt to model the dynamics
of the sensor measurements directly. However, by doing so, we are
directing our attention to an observable proxy of the process that
we are trying to estimate (i.e. the functional connectivity). Instead,
it is more beneficial to model the direct outcome of that process.
Ideally, we would like to capture the dynamics of the internal state
of the person’s brain, which, in turn, cause the effect that we are
measuring with our MEG sensors.

Let us assume that there are n hidden (hyper-)regions of the
brain, which interact with each other, causing the activity that we
observe in y. We denote the vector of the hidden brain activity as
x of size n × 1. Then, by using the same idea as in MODEL0, we
may formulate the temporal evolution of the hidden brain activity
as:

x(t+ 1) = A[n×n] × x(t) + B[n×s] × s(t)

A subtle issue that we have yet to address is the fact that x is not
observed and we have no means of measuring it. We propose to
resolve this issue by modelling the measurement procedure itself,
i.e. model the transformation of a hidden brain activity vector to its
observed counterpart. We assume that this transformation is linear,
thus we are able to write

y(t) = C[m×n]x(t)

Putting everything together, we end up with the following set of
equations, which constitute our proposed model GEBM:

x(t+ 1) = A[n×n] × x(t) + B[n×s] × s(t)

y(t) = C[m×n] × x(t)

(2)
(3)

The key concepts behind GEBM are:
• (Latent) Connectivity Matrix: We assume that there are
n regions, each containing 1 or more neurons, and they are
connected with an n×n adjacency matrix A[n×n]. We only
observe m voxels, each containing multiple regions, and we
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record the activity (eg., magnetic activity) in each of them;
this is the total activity in the constituent regions
• Measurement Matrix: Matrix C[m×n] is an m× n matrix,

with ci,j =1 if voxel i contains region j
• Perception Matrix: Matrix B[n×s] shows the influence of

each sensor to each neuron-region. The input is denoted as
s, with s input signals
• Sparsity: We require that our model’s matrices are sparse;

only few sensors are responsible for a specific brain region.
Additionally, the interactions between regions should not form
a complete graph, and finally, the perception matrix should
map only few activated sensors to neuron regions at every
given time.

3.3 Algorithm
Our solution is inspired by control theory, and more specifically

by a sub-field of control theory, called system identification. In
the appendix, we provide an overview of how this can be accom-
plished. However, the matrices we obtain through this process are
usually dense, counter to GEBM’s specifications. We, thus, need
to refine the solution until we obtain the desired level of sparsity. In
the next few lines, we show why this sparsification has to be done
carefully, and we present our approach.

Crucial to GEBM’s behavior is the spectrum of its matrices; in
other words, any operation that we apply on any of GEBM’s ma-
trices needs to preserve the eigevnalue profile (for matrix A) or
the singular values (for matrices B,C). Alterations thereof may
lead GEBM to instabilities. From a control theoretic and stability
perspective, we are mostly interested in the eigenvalues of A, since
they drive the behavior of the system. Thus, in our experiments, we
heavily rely on assessing how well we estimate these eigenvalues.

Sparsifying a matrix while preserving its spectrum can be seen
as a similarity transformation of the matrix to a sparse subspace.
The following lemma sheds more light towards this direction.

LEMMA 1. System identification is able to recover matrices A,
B, C of GEBM up to rotational/similarity transformations.

PROOF. See the appendix.

An important corollary of the above lemma (also proved in the ap-
pendix) is the fact that pursuing sparsity only on, say, matrix A is
not well defined. Therefore, since all three matrices share the same
similarity transformation freedom, we have to sparsify all three.

In SPARSE-SYSID, we propose a fast, greedy sparsification scheme
which can be seen as approximately applying the aforementioned
similarity transformation to A,B,C, without calculating or apply-
ing the transformation itself. Iteratively, for all three matrices, we
delete small values, while maintaining ther spectrum within ε from
the one obtained through system identification. Additionally, for
A, we also do not allow eigenvalues to switch from complex to
real and vice versa. This scheme works very well in practice, pro-
viding very sparse matrices, while respecting their spectrum. In
Algorithm 1, we provide an outline of the algorithm.

So far, GEBM as we have described it, is able to give us the hid-
den functional connectivity and the measurement matrix, but does
not directly offer the voxel-to-voxel connectivity, unlike MODEL0,
which models it explicitly. However, this is by no means a weak-
ness of GEBM, since there is a simple way to obtain the voxel-to-
voxel connectivity (henceforth referred to as Av) from GEBM’s
matrices.

LEMMA 2. Assuming that m > n, the voxel-to-voxel func-
tional connectivity matrix Av can be defined and is equal to Av =
CAC†

Algorithm 1: SPARSE-SYSID: Sparse System Identification of
GEBM
Input: Training data in the form {y(t), s(t)}Tt=1, number of

hidden states n.
Output: GEBM matrices A (hidden connectivity matrix), B

(perception matrix), C (measurement matrix), and Av

(voxel-to-voxel matrix).
1: {A(0),B(0),C(0)} = SYSID

(
{y(t), s(t)}Tt=1, n

)

2: A = EIGENSPARSIFY(A(0))

3: B = SINGULARSPARSIFY(B(0))

4: C = SINGULARSPARSIFY(C(0))
5: Av = CAC†

Algorithm 2: EIGENSPARSIFY: Eigenvalue Preserving Spar-
sification of System Matrix A.

Input: Square matrix A(0).
Output: Sparsified matrix A.
1: λ(0) =EIGENVALUES(A(0))

2: Initialize d
(0)
R = 0, d(0)

I = 0. Vector d(i)
R holds the

element-wise difference of the real part of the eigenvalues of
A(i). Similarly for d(i)

I and the imaginary part.
3: Set vector c as a boolean vector that indicates whether the j-th

eigenvalue in λ(0) is complex or not. One way to do it is to
evaluate element-wise the following boolean expression:
c =

(
IMAG(λ(0)) 6= 0

)
.

4: Initialize i = 0
5: while d

(i)
R ≤ ε and d

(i)
I ≤ ε and

(
IMAG(λ(i)) 6= 0

)
== c

do
6: Initialize A(i) = A(i−1)

7: {v∗i , v∗j } = arg minvi,vj |A(i−1)(vi, vj)|
s.t. A(i−1)(vi, vj) 6= 0.

8: Set A(i)(v∗i , v
∗
j ) = 0

9: λ(i) =EIGENVALUES(A(i))

10: d
(i)
R = |REAL(λ(i))− REAL(λ(i−1))|

11: d
(i)
I = |IMAG(λ(i))− IMAG(λ(i−1))|

12: end while
13: A = A(i−1)

Algorithm 3: SINGULARSPARSIFY: Singular Value Preserv-
ing Sparsification

Input: Matrix M(0).
Output: Sparsified matrix M
1: λ(0) =SINGULARVALUES(A(0))

2: Initialize d
(0)
R = 0 which holds the element-wise difference

of the singular values of A(i).
3: Initialize i = 0
4: while d

(i)
R ≤ ε do

5: Initialize M(i) = M(i−1)

6: {v∗i , v∗j } = arg minvi,vj |M(i−1)(vi, vj)|
s.t. M(i−1)(vi, vj) 6= 0.

7: Set M(i)(v∗i , v
∗
j ) = 0

8: λ(i) =SINGULARVALUES(M(i))

9: d
(i)
R = |λ(i) − λ(i−1)|

10: end while
11: M = M(i−1)
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PROOF. The observed voxel vector can be written as

y(t+ 1) = Cx(t+ 1) = CAx(t) + CBs(t)

Matrix C is tall (i.e. m > n), thus we can write: y(t) = Cx(t)⇔
x(t) = C†y(t) Consequently, y(t+ 1) = CAC†y(t) +CBs(t)
Therefore, it follows that CAC† is the voxel-to-voxel matrix Av .

Finally, an interesting aspect of our proposed model GEBM is
the fact that if we ignore the notion of the summarization, i.e.
matrix C = I, then our model is reduced to the simple model
MODEL0. In other words, GEBM contains MODEL0 as a spe-
cial case. This observation demonstrates the importance of hidden
states in GEBM.

4. EVALUATION

4.1 Implementation Details
The code for SPARSE-SYSID has been written in Matlab. For the

system identification part, initially we experimented with Matlab’s
System Identification Toolbox and the algorithms in [10]. These
algorithms worked well for smaller to medium scales, but were un-
able to perform on our full dataset. Thus, in our final implementa-
tion, we use the algorithms of [20]. Our code is publicly available at
http://www.cs.cmu.edu/~epapalex/src/GeBM.zip.

4.2 Evaluation on synthetic data
In lieu of ground truth in our real data, we generated synthetic

data to measure the performance of SPARSE-SYSID.
The way we generate the ground truth system is as follows: First,

given fixed n, we generate a matrix A that has 0.25 on the main di-
agonal, 0.1 on the first upper diagonal (i.e. the (i, i+ 1) elements),
-0.15 on the first lower diagonal (i.e., the (i − 1, i) elements), and
0 everywhere else. We then create randomly generated sparse ma-
trices B and C, varying s and m respectively.

After we generate a synthetic ground truth model, we generate
Gaussian random input data to the system, and we obtain the sys-
tem’s response to that data. Consequently, we use the input/output
pairs with SPARSE-SYSID, and we assess our algorithm’s ability
to recover the ground truth. Here, we show the noiseless case due
to space restrictions. In the noisy case, estimation performance is
slowly degrading when n increases, however this is expected from
estimation theory.

We evaluate SPARSE-SYSID’s accuracy with respect to the fol-
lowing aspects:
Q1: How well can SPARSE-SYSID recover the true hidden con-

nectivity matrix A?
Q2: How well can SPARSE-SYSID recover the voxel-to-voxel con-

nectivity matrix Av?
Q3: Given that we know the the true number of hidden states n,

how does SPARSE-SYSID behave as we vary the n used for
GEBM?

In order to answer Q1, we measure how well (in terms of RMSE)
SPARSE-SYSID recovers the eigenvalues of A. We are mostly in-
terested in recovering perfectly the real part of the eigenvalues,
since even small errors could lead to instabilities. Figure 4(a) shows
our results: We observe that the estimation of the real part of the
eigenvalues of A is excellent. We are omitting the estimation re-
sults for the imaginary parts, however they are within the ε we se-
lected in our sparsification scheme of SPARSE-SYSID. Overall,
SPARSE-SYSID is able to recover the true GEBM, for various val-
ues of m and n.

With respect to Q2, it suffices to measure the RMSE of the true
Av and the estimated one, since we have thoroughly tested the sys-

tem’s behavior in Q1. Figure 4(b) shows that the estimation of the
voxel-to-voxel connectivity matrix using SPARSE-SYSID is highly
accurate. Additionally, for ease of exposition, in Figure 3 we show
an example a true matrix Av , and its estimation through SPARSE-
SYSID; it is impossible to tell the difference between the two ma-
trices, a fact also corroborated by the RMSE results.

The third dimension of SPARSE-SYSID’s performance is its sen-
sitivity to the selection of the parameter n; In order to test this, we
generated a ground truth GEBM with a known n, and we varied our
selection of n for SPARSE-SYSID. The result of the experiment is
shown in Fig. 4(c). We observe that for values of n smaller than the
real one, SPARSE-SYSID’s performance is increasingly good, and
still, for small values of n the estimation quality is good. When n
exceeds the value of the real n, the performance starts to degrade,
due to overfitting. This provides an insight on how to choose n for
SPARSE-SYSID in order to fit GEBM: it is better to under-estimate
n rather than over-estimate it, thus, it is better to start with a small
n and possibly increase it as soon as performance (e.g. qualitative
assessment of how well the estimated model predicts brain activity)
starts to degrade.

Figure 3: Q2: Perfect estimation of Av:Comparison of true and
estimated Av , for n = 3 and m = 4. We can see, qualitatively,
that GEBM is able to recover the true voxel-to-voxel functional
connectivity.

5. GeBM AT WORK
This section is focused on showing different aspects of GEBM

at work. In particular, we present the following discoveries:
D1: We provide insights on the obtained functional connectivity

from a Neuroscientific point of view.
D2: Given multiple human subjects, we discover regularities and

outliers, with respect to functional connectivity.
D3: We demonstrate GEBM’s ability to simulate brain activity.
D4: We show how GEBM is able to capture two basic psycho-

logical phenomena.

Dataset Description & Formulation.
We are using real brain activity data, measured using MEG. MEG

(Magnetoencephalography) measures the magnetic field caused by
many thousands of neurons firing together, and has good time res-
olution (1000 Hz) but poor spatial resolution. fMRI (functional
Magnetic Resonance Imaging) measures the change in blood oxy-
genation that results from changes in neural activity, and has good
spatial resolution but poor time resolution (0.5-1 Hz). Since we
are interested in the temporal dynamics of the brain, we choose to
operate on MEG data.

All experiments were conducted at the University of Pittsburgh
Medical Center (UPMC) Brain Mapping Center. The MEG ma-
chine consists of m = 306 sensors, placed uniformly across the
subject’s scalp. The temporal granularity of the measurements is
5ms, resulting in T = 340 time points; after experimenting with
different aggregations in the temporal dimension, we decided to use
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Figure 4: Sub-figure (a) refers to Q1, and show sthat SPARSE-SYSID is able to estimate matrix A with high accuracy, in control-theoretic
terms. Sub-figure (b) illustrates SPARSE-SYSID’s ability to accurately estimate the voxel-to-voxel functional connectivity matrix Av . Finally,
sub-figure (c) shows the behavior of SPARSE-SYSID with respect to parameter n, when the true value of this parameter is known; the message
from this graph is that as long as n is under-estimated, SPARSE-SYSID’s performance is steadily good and is not greatly influenced by the
particular choice of n.

50ms of time resolution, because this yielded the most interpretable
results.

For the experiments, nine right handed human subjects were
shown a set of 60 concrete English nouns (apple, knife etc), and
for each noun 20 simple yes/no questions (Is it edible? Can you
buy it? etc). The subject were asked to press the right button if
their answer to each question was ’yes’, or the left button if the an-
swer was ’no’. After the subject pressed the button, the stimulus
(i.e. the noun) would disappear from the screen. We also record
the exact time that the subject pressed the button, relative to the ap-
pearance of the stimulus on the screen. A more detailed description
of the data can be found in [15].

In order to bring the above data to the format that our model ex-
pects, we make the following design choices: In lack of sensors
that measure the response of the eyes to the shown stimuli, we rep-
resent each stimulus by a set of semantic features for that specific
noun. This set of features is a superset of the 20 questions that we
have already mentioned; the value for each feature comes from the
answers given by Amazon Mechanical Turk workers. Thus, from
time-tick 1 (when the stimulus starts showing), until the button is
pressed, all the features that are active for the particular stimulus
are set to 1 on our stimulus vector s, and all the rest features are
equal to 0; when the button is pressed, all features are zeroed out.
On top of the stimulus features, we also have to incorporate the task
information in s, i.e. the particular question shown on the screen.
In order to do that, we add 20 more rows to the stimulus vector s,
each one corresponding to every question/task. At each given ex-
periment, only one of those rows is set to 1 for all time ticks, and
all other rows are set to 0. Thus, the number of input sensors in our
formulation is s = 40 (i.e. 20 neurons for the noun/stimulus and
20 neurons for the task).

As a last step, we have to incorporate the button pressing in-
formation to our model; to that end, we add two more voxels to
our observed vector y, corresponding to left and right button press-
ing; initially, those values are set to 0 and as soon as the button is
pressed, they are set to 1.

Finally, we choose n = 15 for all the results we show in the
following lines; particular choice of n did not incur qualitative
changes in the results, however, as we highlight in the previous
section, it is better to under-estimate n, and therefore we chose

n = 15 as an adequately small choice which, at the same time,
produces interpretable results.

5.1 D1: Functional Connectivity Graphs
The primary focus of this work is to estimate the functional con-

nectivity of the human brain, i.e. the interaction pattern of groups of
neurons. In the next few lines, we present our findings in a concise
way and provide Neuroscientific insights regarding the interaction
patterns that GEBM was able to infer.

In order to present our findings, we post-process the results ob-
tained through GEBM in the following way: The data we collect
come from 306 sensors, placed on the human scalp in a uniform
fashion. Each of those 306 sensors is measuring activity from one
of the four main regions of the brain, i.e.

- Frontal Lobe, associated with attention, short memory, and
planning.

- Parietal Lobe, associated with movement.
- Occipital Lobe, associated with vision.
- Temporal Lobe, associated with sensory input processing,

language comprehension, and visual memory retention.
Even though our sensors offer within-region resolution, for ex-

position purposes, we chose to aggregate our findings per region;
by doing so, we are still able to provide useful neuroscientific in-
sights.

Figure 5 shows the functional connectivity graph obtained using
GEBM. The weights indicate the strength of the interaction, mea-
sured by the number of distinct connections we identified. These
results are consistent with current research regarding the nature of
language processing in the brain. For example, Hickock and Poep-
pel [9] have proposed a model of language comprehension that
includes a “dorsal” and “ventral” pathway. The ventral pathway
takes the input stimuli (spoken language in the case of Hickock
and Poeppel, images and words in ours) and sends the informa-
tion to the temporal lobe for semantic processing. Because the
occipital cortex is responsible for the low level processing of vi-
sual stimuli (including words) it is reasonable to see a strong set
of connections between the occipital and temporal lobes. The dor-
sal pathway sends processed sensory input through the parietal and
frontal lobes where they are processed for planning and action pur-
poses. The task performed during the collection of our MEG data
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required that subjects consider the meaning of the word in the con-
text of a semantic question. This task would require the recruit-
ment of the dorsal pathway (occipital-parietal and parietal-frontal
connections). In addition, frontal involvement is indicated when
the task performed by the subject requires the selection of semantic
information [3], as in our question answering paradigm. It is in-
teresting that the number of connections from parietal to occipital
cortex is larger than from occipital to parietal, considering the flow
of information is likely occipital to parietal. This could, however,
be indicative of what is termed “top down” processing, wherein
higher level cognitive processes can work to focus upstream sen-
sory processes. Perhaps the semantic task causes the subjects to
focus in anticipation of the upcoming word while keeping the se-
mantic question in mind.

5.2 D2: Cross-subject Analysis
In our experiments, we have 9 participants, all of whom have un-

dergone the same procedure, being presented with the same stimuli,
and asked to carry out the same tasks. Availability of such a rich,
multi-subject dataset inevitably begs the following question: are
there any differences across people’s functional connectivity? Or
is everyone, more or less, wired equally, at least with respect to the
stimuli and tasks at hand?

By using GEBM, we are able (to the extent that our model is
able to explain) to answer the above question. We trained GEBM
for each of the 9 human subjects, using the entire data from all
stimuli and tasks, and obtained matrices A,B,C for each person.
For the purposes of answering the above question, it suffices to look
at matrix A (which is the hidden functional connectivity), since it
dictates the temporal dynamics of the brain activity. At this point,
we have to note that the exact location of each sensor can differ
between human subjects, however, we assume that this difference
is negligible, given the current voxel granularity dictated by the
number of sensors.

In this multi-subject study we have two very important findings:
- Regularities: For 8 out of 9 human subjects, we identified al-

most identical GEBM instances, both with respect to RMSE
and to spectrum. In other words, for 8 out of 9 subjects in
our study, the inferred functional connectivity behaves al-
most identically. This fact most likely implies that for the
particular set of stimuli and assorted tasks, the human brain
behaves similarly across people.

- Anomaly: One of our human subjects (#3) deviates from the
aforementioned regular behavior.

In Fig. 6(a) & (b) we show the real and imaginary parts of the
eigenvalues of A. We can see that for 8 human subjects, the eigen-
values are almost identical. This finding agrees with neuroscientific
results on different experimental settings [18], further demonstrat-
ing GEBM’s ability to provide useful insights on multi-subject ex-
periments. For subject #3 there is a deviation on the real part of the
first eigenvalue, as well as a slightly deviating pattern on the imagi-
nary parts of its eigenvalues. Figures 6(c) & (d) compare matrix A
for subjects 1 and 3. Subject 3 negative value on the diagonal (blue
square at the (8, 8) entry), a fact unique to this specific person’s
connectivity.

Moreover, according to the person responsible for the data col-
lection of Subject #3:

There was a big demonstration outside the UPMC build-
ing during the scan, and I remember the subject com-
plaining during one of the breaks that he could hear
the crowd shouting through the walls.

This is a plausible explanation for the deviation of GEBM for Sub-
ject #3.

5.3 D3: Brain Activity Simulation
An additional way to gain confidence on our model is to assess

its ability to simulate/predict brain activity, given the inferred func-
tional connectivity. In order to do so, we trained GEBM using data
from all but one of the words, and then we simulated brain activity
time-series for the left-out word. In lieu of competing methods, we
compare our proposed method GEBM against our initial approach
(whose unsuitability we have argued for in Section 3, but we use
here in order to further solidify our case). As an initial state for
GEBM, we use C†y(0), and for MODEL0, we simply use y(0).
The final time-series we show, both for the real data and the es-
timated ones are normalized to unit norm, and plotted in absolute
values. For exposition purposes, we sorted the voxels according to
the `2 norm of their time series vector, and we are displaying the
high ranking ones (however, the same pattern holds for all voxels)

In Fig. 7 we illustrate the simulated brain activity of GEBM
(solid red), compared against the ones of MODEL0 (using LS (dash-
dot magenta) and CCA (dashed black) ), as well as the original
brain activity time series (dashed blue) for the four highest ranking
voxels. Clearly, the activity generated using GEBM is far more
realistic than the results of MODEL0.

5.4 D4: Explanation of Psychological Phenom-
ena

As we briefly mentioned in the Introduction, we would like our
proposed method to be able to capture some of the psychological
phenomena that the human brain exhibits. We, by no means, claim
that GEBM is able to capture convoluted and still under heavy in-
vestigation psychological phenomena, however, in this section we
demonstrate GEBM’s ability to simulate two very basic phenom-
ena, habituation and priming. Unlike the previous discoveries, the
following experiments are on synthetic data and their purpose is to
showcase GEBM’s additional strengths.
Habituation In our simplified version of habituation, we observe
the demand behaviour: Given a repeated stimulus, the neurons ini-
tially get activated, but their activation levels decline (t = 60 in
Fig. 8) if the stimulus persists for a long time (t = 80 in Fig.
8). In Fig. 8, we show that GEBM is able to capture such behav-
ior. In particular, we show the desired input and output for a few
(observed) voxels, and we show, given the functional connectivity
obtained according to GEBM, the simulated output, which exhibits
the same, desired behavior.

Desired Output!

Desired Input!

Simulated Output!

equation in its matrix form:

Y0 �
⇥
A B

⇤ Y
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�

There are a few distinct ways of formulating the optimization
problem of finding A,B. In the next lines we show two of the
most insightful ones:

• Least Squares (LS):
The most straightforward approach is to express the problem
as a Least Squares optimization:

min
A,B

kY0 �
⇥
A B

⇤ Y
S

�
k2

F

and solve for
⇥
A B

⇤
by (pseudo)inverting


Y
S

�
.

• Canonical Correlation Analysis (CCA): In CCA, we are
solving for the same objective function as in LS, with the
additional constraint that the rank of

⇥
A B

⇤
has to be equal

to r (and typically r is much smaller than the dimensions of
the matrix we are solving for, i.e. we are forcing the solution
to be low rank). Similar to the LS case, here we minimize
the sum of squared errors, however, the solution here is low
rank, as opposed to the LS solution which is (with very high
probability) full rank.

However intuitive, the formulation of MODEL0 turns out to be
rather ineffective in capturing the temporal dynamics of the recorded
brain activity. As an example of its failure to model brain activity
successfully, Fig. 2 shows the real and predicted (using LS and
CCA) brain activity for a particular voxel (results by LS and CCA
are similar to the one in Fig. 2 for all voxels). By minimizing
the sum of squared errors, both algorithms that solve for MODEL0

resort to a simple line that increases very slowly over time, thus
having a minimal squared error, given linearity assumptions.

Real and predicted MEG brain activity
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Figure 2: Comparison of true brain activity and brain activity gen-
erated using the LS, and CCA solutions to MODEL0. Clearly,
MODEL0 is not able to capture the trends of the brain activity,
and to the end of minimizing the squared error, produces an almost
straight line that dissects the real brain activity waveform.

3.2 Proposed approach: GeBM
Formulating the problem as MODEL0 is not able to meet the re-

quirements for our desired solution. However, we have not ex-
hausted the space of possible formulations that live within our set
of simplifying assumptions. In this section, we describe GEBM,
our proposed approach which, under the assumptions that we have
already made in Section 2, is able to meet our requirements remark-
ably well.

In order to come up with a more accurate model, it is useful to
look more carefully at the actual system that we are attempting to

Symbol Definition
n number of hidden neuron-regions
m number of voxels we observe (306)
s number of input signals (40 questions)
T time-ticks of each experiment (340 ticks, of 5msec each)
x(t) vector of neuron activities at time t
y(t) vector of voxel activities at time t
s(t) vector of input-sensor activities at time t
A[n⇥n] connectivity matrix between neurons (or neuron regions)
C[m⇥n] summarization matrix (neurons to voxels)
B[n⇥s] perception matrix (sensors to neurons)
Av connectivity matrix between voxels
REAL real part of a complex number
IMAG imaginary part of a complex number
A† Moore-Penrose Pseudoinverse of A

Table 1: Table of symbols

model. In particular, the brain activity vector y that we observe is
simply the collection of values recorded by the m sensors, placed
on a person’s scalp.

In MODEL0, we attempt to model the dynamics of the sensor
measurements directly. However, by doing so, we are directing our
attention to an observable proxy of the process that we are trying
to estimate (i.e. the functional connectivity). Instead, it is more
beneficial to model the direct outcome of that process. Ideally, we
would like to capture the dynamics of the internal state of the per-
son’s brain, which, in turn, cause the effect that we are measuring
with our MEG sensors.

Let us assume that there are n hidden (hyper)regions of the brain,
which interact with each other, causing the activity that we observe
in y. We denote the vector of the hidden brain activity as x of
size n ⇥ 1. Then, by using the same idea as in MODEL0, we may
formulate the temporal evolution of the hidden brain activity as:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

Having introduced the above equation, we are one step closer to
modelling the underlying, hidden process whose outcome we ob-
serve. However, an issue that we have yet to address is the fact that
x is not observed and we have no means of measuring it. We pro-
pose to resolve this issue by modelling the measurement procedure
itself, i.e. model the transformation of a hidden brain activity vec-
tor to its observed counterpart. We assume that this transformation
is linear, thus we are able to write

y(t) = C[m⇥n]x(t)

Putting everything together, we end up with the following set of
equations, which constitute our proposed model GEBM:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

y(t) = C[m⇥n] ⇥ x(t)

Additionally, we require the hidden functional connectivity ma-
trix A to be sparse because, intuitively, not all (hidden) regions of
the brain interact directly with each other. Thus, given the above
formulation of GEBM, we seek to obtain a matrix A sparse enough,
while obeying the dynamics dictated by model. Sparsity is key in
providing more insightful and easy to interpret functional connec-
tivity matrices, since an exact zero on the connectivity matrix ex-
plicitly states that there is no direct interaction between neurons; on
the contrary, a very small value in the matrix (if the matrix is not
sparse) is ambiguous and could imply either that the interaction is
negligible and thus could be ignored, or that there indeed is a link
with very small weight between the two neurons.

The key ideas behind GEBM are:
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Figure 8: GEBM captures Habituation: Given repeated exposure
to a stimulus, the brain activity starts to fade.

Priming In our simplified model on priming, first we give the stim-
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Figure 5: The functional connectivity derived from GEBM. The weights on the edges indicate the number of inferred connections. Our
results are consistent with research that investigates natural language processing in the brain.
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Figure 6: Multi-subject analysis: Sub-figures (a) and (b), show the real and imaginary parts of the eigenvalues of matrix A for each subject.
For all subjects but one (subject #3) the eigenvalues are almost identical, implying that the GEBM that captures their brain activity behaves
more or less in the same way. Subject #3 on the other hand is an outlier; indeed, during the experiment, the subject complained that he was
able to hear a demonstration happening outside of the laboratory, rendering the experimental task assigned to the subject more difficult than it
was supposed to be. Sub-figures (c) and (d) show matrices A for subject #1 and #3. Subject #3’s matrix seems sparser and most importantly,
we can see that there is a negative entry on the diagonal, a fact unique to subject #3.
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Figure 7: Effective brain activity simulation: Comparison of he real brain activity and the simulated ones using GEBM and MODEL0, for
the first four high ranking voxels (in the `2 norm sense).

ulus apple, which sets off neurons that are associated with the fruit
’apple’, as well as neurons that are associated with Apple inc. Con-
sequently, we are showing a stimulus such as iPod; this predisposes
the regions of the brain that are associated with Apple inc. to dis-
play some small level of activation, whereas suppressing the re-
gions of the brain that are associate with apple (the fruit). Later on,
the stimulus apple is repeated, which, given the aforementioned
predisposition, activates the voxels associated with Apple (com-
pany) and suppresses the ones associated with the homonymous
fruit.

Figure 9 displays is a pictorial description of the above example
of priming; given desired input/output pairs, we derive a model that
obeys GEBM, such that we match the priming behavior.

6. RELATED WORK
Brain Functional Connectivity Estimating the brain’s functional
connectivity is an active field of study of computational neuro-
science. Examples of works can be found in [13, 8, 7]. There have
been a few works in the data mining community as well: In [16],
the authors derive the brain region connections for Alzheimer’s pa-
tients, and recently [5] that leverages tensor decomposition in order
to discover the underlying network of the human brain. Most re-
lated to the present work is the work of Valdes et al [19], wherein
the authors propose an autoregressive model (similar to MODEL0)
and solve it using regularized regression. However, to the best of
our knowledge, this work is the first to apply system identification
concepts to this problem.
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equation in its matrix form:

Y0 �
⇥
A B

⇤ Y
S

�

There are a few distinct ways of formulating the optimization
problem of finding A,B. In the next lines we show two of the
most insightful ones:

• Least Squares (LS):
The most straightforward approach is to express the problem
as a Least Squares optimization:

min
A,B

kY0 �
⇥
A B

⇤ Y
S

�
k2

F

and solve for
⇥
A B

⇤
by (pseudo)inverting


Y
S

�
.

• Canonical Correlation Analysis (CCA): In CCA, we are
solving for the same objective function as in LS, with the
additional constraint that the rank of

⇥
A B

⇤
has to be equal

to r (and typically r is much smaller than the dimensions of
the matrix we are solving for, i.e. we are forcing the solution
to be low rank). Similar to the LS case, here we minimize
the sum of squared errors, however, the solution here is low
rank, as opposed to the LS solution which is (with very high
probability) full rank.

However intuitive, the formulation of MODEL0 turns out to be
rather ineffective in capturing the temporal dynamics of the recorded
brain activity. As an example of its failure to model brain activity
successfully, Fig. 2 shows the real and predicted (using LS and
CCA) brain activity for a particular voxel (results by LS and CCA
are similar to the one in Fig. 2 for all voxels). By minimizing
the sum of squared errors, both algorithms that solve for MODEL0

resort to a simple line that increases very slowly over time, thus
having a minimal squared error, given linearity assumptions.

Real and predicted MEG brain activity
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Figure 2: Comparison of true brain activity and brain activity gen-
erated using the LS, and CCA solutions to MODEL0. Clearly,
MODEL0 is not able to capture the trends of the brain activity,
and to the end of minimizing the squared error, produces an almost
straight line that dissects the real brain activity waveform.

3.2 Proposed approach: GeBM
Formulating the problem as MODEL0 is not able to meet the re-

quirements for our desired solution. However, we have not ex-
hausted the space of possible formulations that live within our set
of simplifying assumptions. In this section, we describe GEBM,
our proposed approach which, under the assumptions that we have
already made in Section 2, is able to meet our requirements remark-
ably well.

In order to come up with a more accurate model, it is useful to
look more carefully at the actual system that we are attempting to

Symbol Definition
n number of hidden neuron-regions
m number of voxels we observe (306)
s number of input signals (40 questions)
T time-ticks of each experiment (340 ticks, of 5msec each)
x(t) vector of neuron activities at time t
y(t) vector of voxel activities at time t
s(t) vector of input-sensor activities at time t
A[n⇥n] connectivity matrix between neurons (or neuron regions)
C[m⇥n] summarization matrix (neurons to voxels)
B[n⇥s] perception matrix (sensors to neurons)
Av connectivity matrix between voxels
REAL real part of a complex number
IMAG imaginary part of a complex number
A† Moore-Penrose Pseudoinverse of A

Table 1: Table of symbols

model. In particular, the brain activity vector y that we observe is
simply the collection of values recorded by the m sensors, placed
on a person’s scalp.

In MODEL0, we attempt to model the dynamics of the sensor
measurements directly. However, by doing so, we are directing our
attention to an observable proxy of the process that we are trying
to estimate (i.e. the functional connectivity). Instead, it is more
beneficial to model the direct outcome of that process. Ideally, we
would like to capture the dynamics of the internal state of the per-
son’s brain, which, in turn, cause the effect that we are measuring
with our MEG sensors.

Let us assume that there are n hidden (hyper)regions of the brain,
which interact with each other, causing the activity that we observe
in y. We denote the vector of the hidden brain activity as x of
size n ⇥ 1. Then, by using the same idea as in MODEL0, we may
formulate the temporal evolution of the hidden brain activity as:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

Having introduced the above equation, we are one step closer to
modelling the underlying, hidden process whose outcome we ob-
serve. However, an issue that we have yet to address is the fact that
x is not observed and we have no means of measuring it. We pro-
pose to resolve this issue by modelling the measurement procedure
itself, i.e. model the transformation of a hidden brain activity vec-
tor to its observed counterpart. We assume that this transformation
is linear, thus we are able to write

y(t) = C[m⇥n]x(t)

Putting everything together, we end up with the following set of
equations, which constitute our proposed model GEBM:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

y(t) = C[m⇥n] ⇥ x(t)

Additionally, we require the hidden functional connectivity ma-
trix A to be sparse because, intuitively, not all (hidden) regions of
the brain interact directly with each other. Thus, given the above
formulation of GEBM, we seek to obtain a matrix A sparse enough,
while obeying the dynamics dictated by model. Sparsity is key in
providing more insightful and easy to interpret functional connec-
tivity matrices, since an exact zero on the connectivity matrix ex-
plicitly states that there is no direct interaction between neurons; on
the contrary, a very small value in the matrix (if the matrix is not
sparse) is ambiguous and could imply either that the interaction is
negligible and thus could be ignored, or that there indeed is a link
with very small weight between the two neurons.

The key ideas behind GEBM are:
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Figure 9: GEBM captures Priming: When first shown the stimu-
lus apple, both neurons associated with the fruit ’apple’ and Apple
inc. get activated. When showing the stimulus iPod and then ap-
ple, iPod predisposes the neurons associated with Apple inc. to get
activated more quickly, while suppressing the ones associated with
the fruit.

Psychological Phenomena A concise overview of literature per-
taining to habitutation can be found in [17]. A more recent study
on habitutation can be found in [12]. The definition of priming, as
we describe it in the lines above concurs with the definition found
in [6]. Additionally, in [11], the authors conduct a study on the ef-
fects of priming when the human subjects were asked to write sen-
tences. The above concepts of priming and habituation have been
also studied in the context of spreading activation [1, 4] which is a
model of the cognitive process of memory.
Control Theory & System Identification System Identification is
a field of control theory. In the appendix we provide more theo-
retical details on subspace system identification, however, [10] and
[21] are the most prominent sources for system identification algo-
rithms.
Network Discovery from Time Series Our work touches upon
discovering underlying network structures from time series data;
an exemplary work related to the present paper is [22] where the
authors derive a who-calls-whom network from VoIP packet trans-
mission time series.

7. CONCLUSIONS
The list of our contributions is:
• Analytical model : We propose GEBM, a novel model of

the human brain functional connectivity.
• Algorithm: We introduce SPARSE-SYSID, a novel sparse

system identification algorithm that estimates GEBM
• Effectiveness: GEBM simulates psychological phenomena

(such as habituation and priming), as well as provides valu-
able neuroscientific insights.
• Validation: We validate our approach on synthetic data (where

the ground truth is known), and on real data, where our model
produces brain activity patterns, remarkably similar to the
true ones.
• Multi-subject analysis: We analyze measurements from 9

human subjects, identifying a consistent connectivity among
8 of them; we successfully identify an outlier, whose experi-
mental procedure was compromised.
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APPENDIX
A. SYSTEM IDENTIFICATION FOR GeBM

Consider again the linear state-space model of GEBM

x(t+ 1) = Ax(t) + Bu(t), y(t) = Cx(t).

Assuming x(0) = 0, for simplicity, it is easy to see that

x(t) =

t−1∑

i=0

At−1−iBu(i),

and therefore y(t) =
∑t−1

i=0 CAt−1−iBu(i), from which we can
read out the impulse response matrix H(t) = CAt−1B.

As we mentioned in Section 3, matrices A,B,C can be identi-
fied up to a similarity transformation. In order to show this, sup-
pose that we have access to the system’s inputs {u(t)}T−1

t=0 and
outputs {y(t)}Tt=1, and we wish to identify the system matrices
(A,B,C). A first important observation is the following. From
x(t+ 1) = Ax(t) + Bu(t) we obtain

Mx(t+ 1) = MAx(t) + MBu(t) =

MAM−1Mx(t) + MBu(t).

Defining z(t) := Mx(t), Ã := MAM−1, and B̃ := MB, we
obtain

z(t+ 1) = Ãz(t) + B̃u(t),

and with C̃ := CM−1, we also have

y(t) = Cx(t) = CM−1Mx(t) = C̃z(t).

It follows that (A,B,C) and (Ã, B̃, C̃) = (MAM−1,MB,CM−1)
are indistinguishable from input-output data alone. Thus, the sought
parameters can only be (possibly) identified up to a basis (similar-
ity) transformation, in the absence of any other prior or side infor-
mation.

Under what conditions can (A,B,C) be identified up to such
similarity transformation? It has been shown by Kalman that if the
so-called controlability matrix

C :=
[
B,AB,A2B, · · · ,An−1B

]

is full row rank n, and the observability matrix

O :=
[
C CA CA2 · · · CAn−1

]T

is full column rank n, then it is possible to identify (A,B,C) up to
such similarity transformation from (sufficiently ‘diverse’) input-
output data, and the impulse response in particular. This can be
accomplished by forming a block Hankel matrix out of the impulse
response, as follows,




H(1) H(2) H(3) · · · H(n)
H(2) H(3) · · ·
...
H(n) H(2n+ 1)


 =




CB CAB CA2B · · · CAn−1B
CAB CA2B · · ·
...
CAn−1B CA2n−1B


 .

This matrix can be factored into OMM−1C, i.e., the ‘true’ O and
C up to similarity transformation, using the singular value decom-
position of the above Hankel matrix. It is then easy to recover
Ã, B̃, C̃ from OM and M−1C. This is the core of the Kalman-
Ho algorithm for Hankel subspace-based identification [10].

This procedure enables us to identify Ã, B̃, C̃, but, in our con-
text, we are ultimately also interested in the true latent (A,B,C).

PROPOSITION 1. We can always, without loss of generality, trans-
form Ã to maximal sparsity while keeping B̃ and C̃ dense - that is,
sparsity of A alone does not help in terms of identification.

PROOF. Suppose that we are interested in estimating a sparse A,
while preserving the eigenvalues of of Ã. We therefore seek a simi-
larity transformation (a matrix M) that will render A = MÃM−1

as sparse as possible. Towards this end, assume that Ã has a full
set of linearly independent eigenvectors, collected in matrix E, and
let Λ be the corresponding diagonal matrix of eigenvalues. Then,
clearly, ÃE = EΛ, and therefore E−1ÃE = Λ - a diagonal ma-
trix. Hence choosing M = E−1 we make A = MÃM−1 max-
imally sparse. Note that A must have the same rank as Ã, and if
it has less nonzero elements it will also have lower rank. Finally,
it is easy to see that if we apply this similarity transformation, the
eigenvalues of Ã do not change.
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