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ABSTRACT
Given a directed graph of millions of nodes, how can we auto-
matically spot anomalous, suspicious nodes, judging only from
their connectivity patterns? Suspicious graph patterns show up
in many applications, from Twitter users who buy fake followers,
manipulating the social network, to botnet members performing
distributed denial of service attacks, disturbing the network traf-
fic graph. We propose a fast and effective method, CATCHSYNC,
which exploits two of the tell-tale signs left in graphs by fraudsters:
(a) synchronized behavior: suspicious nodes have extremely similar
behavior pattern, because they are often required to perform some
task together (such as follow the same user); and (b) rare behav-
ior: their connectivity patterns are very different from the major-
ity. We introduce novel measures to quantify both concepts (“syn-
chronicity” and “normality”) and we propose a parameter-free al-
gorithm that works on the resulting synchronicity-normality plots.
Thanks to careful design, CATCHSYNC has the following desirable
properties: (a) it is scalable to large datasets, being linear on the
graph size; (b) it is parameter free; and (c) it is side-information-
oblivious: it can operate using only the topology, without need-
ing labeled data, nor timing information, etc., while still capable
of using side information, if available. We applied CATCHSYNC
on two large, real datasets 1-billion-edge Twitter social graph and
3-billion-edge Tencent Weibo social graph, and several synthetic
ones; CATCHSYNC consistently outperforms existing competitors,
both in detection accuracy by 36% on Twitter and 20% on Tencent
Weibo, as well as in speed.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information Storage and Retrieval -
On-line Information Services; J.4 [Computer Applications]: So-
cial and Behavioral Sciences
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1. INTRODUCTION
Given a directed graph within millions of nodes, can we tell

which nodes are suspicious just based on the graph structure? For
many applications, fraudsters try to manipulate networks for per-
sonal gain. For example, in social networks, like Twitter’s “who-
follows-whom” graph, fraudsters are paid to make certain accounts
seem more legitimate or famous through giving them many addi-
tional followers. The spammers deliver these purchases through ei-
ther generating fake accounts or controlling real accounts through
malware and using them to follow their “customers” [1, 2].

In this case, the attack is strictly manipulating the Twitter graph
to give certain accounts undue credibility. Because the attack only
requires adding edges to the graph, previous approaches for finding
spam on Twitter that analyze users’ tweets and profiles [4, 32, 9]
will often miss this dubious behavior. Rather, we take a strictly
graph mining approach, using exclusively the graph structure to
find nodes that are suspicious because of their position in the graph.

By abstracting the attack to a graph mining problem, we find
that it covers a wide variety of suspicious behavior found in the
real world. For example, botnets often control hundreds of thou-
sands of machines and use them to perform distributed denial of
service (DDOS) attacks on websites, creating a similar pattern in
the “who-visits-whom” web traffic graph. Online, on sites like
Amazon or Yelp, spammers will create accounts to skew ratings for
certain products or places, manipulating edges in the “who-rates-
what” graph. On Facebook, Page owners will pay spammers to
“Like” their page, distorting the “who-Likes-what” graph.

In this paper, we focus on the Twitter attack, looking for groups
of accounts used to unfairly bolster the popularity of their cus-
tomers. Figure 1a illustrates the scenario: it shows a set of sus-
picious followers and their followees. The followers, all 3 mil-
lion of them, follow exactly 20 users from the same group of fol-
lowees, creating a strange, rare connectivity structure. The side
information, like the similarity of the login-names (@Buy_AB22,
@Buy_BT27, @Buy_BT68), is an extra reason to suspect that
they were created by a script.

Our main viewpoint: In more detail, suspicious nodes includ-
ing suspicious followers and botnets exhibit behavior that is (a) syn-
chronized (cause to occur at the same rate): they often connect to
the very same 10, 100 or 500 targets and (b) abnormal/rare: their
behavior pattern is very different from the majority of nodes. In
this paper, we propose a fast and effective method, CATCHSYNC,
to measure the two properties (synchronicity and the normality) of a
group of nodes; we spot the suspicious nodes and efficiently catch
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(a) Synchronized behavior (b) TWITTERSG (c) WEIBOSG
Figure 1: Suspicious followers and their footprints: (a) We spot synchronized behavior that millions of Twitter accounts follow the
same group of followees. (b) Synchronized behavior causes spikes at out-degree distribution and the distribution becomes smoother
after the removal of our suspects. (c) We have the same result on Tencent Weibo.

Synchronized behaviors? Parameter free? No side information?
Proposed CATCHSYNC

√ √ √

Graph- AUTOPART [10] ×, edges across 2 of k node groups
√

, but search for the best k
√

based OUTRANK [28] ×, high scoring nodes
√

, but data dedicated threshold
√

Anomaly ODDBALL [6] ×, near-cliques or near-stars
√ √

Detection COPYCATCH [7]
√

, temporally synchronized ×, seeds for propagation ×, timestamp
NETPROBE [30] ×, fraudulent nodes ×, propagation matrix ×, committed frauds

Subgraph SPOKEN [33] ×, well-connected communities ×, eigenvector computation
√

Mining DSE [13] ×, dG-dense subgraphs ×, density dG
√

Spammer SPOT [32] ×, twitter spammers
√

×, text and URLs in tweets
Detection SYBILRANK [9] ×, social sybils

√
, seeds for propagation ×, early non-Sybils

Table 1: Compare CATCHSYNC with existing approaches. It does not require any parameter or side information.

them in the synchronicity-normality plot. We study two real so-
cial graphs from Twitter and Tencent Weibo (denoted by TWIT-
TERSG and WEIBOSG for abbreviation) and use them for evalua-
tions. Note that both have millions of nodes and billions of edges.

Figure 1 gives an elaborate illustration on the effectiveness of
CATCHSYNC. As we mentioned earlier, the distributions of the so-
cial network data have been seriously distorted by the volume of
suspicious followers. Here we plot the out-degree distribution of
TWITTERSG and WEIBOSG in log-log scale, which should have
smooth, power-law-like distributions. However, several spikes ap-
pear, which are presumably caused by suspicious followers [8]. For
example, as shown in Figure 1a, the 3 million followers on Twit-
ter who connect to exactly 20 users create a spike at out-degree
20 on the distribution in Figure 1b. After removing the nodes that
CATCHSYNC flags as suspicious (blue points), the distributions be-
come much smoother and closer to a power law (red points).

Main contributions: In short, the proposed method CATCH-
SYNC has the following desirable properties:
• Effectiveness: it indeed spots groups of source-target groups,

with suspicious behavior (see Section 5).
• Scalability: it is linear in the number of edges, and thus ap-

plicable to internet-scale graphs.
• Parameter free: the operator does not need to specify any

parameters such as the density, the number of groups and the
scale of each group.
• Side information oblivious: it needs no side information. It

is solely based on topology, and it requires neither a training
set, nor labeled nodes, nor node attributes, nor anything else,
though it can incorporate the above for better performance.

Organization: We have the usual organization: Survey, problem
definition, proposed method, experiments and conclusions.

2. RELATED WORK
There is a significant body on research related to our problem,

which we categorize into four groups: graph-based anomaly detec-
tion, subgraph mining algorithms, social spammer detection. The
majority of them are discussed in Table 1.

Graph-based Anomaly Detection: Many anomaly detection
techniques have been developed [5, 34, 11, 23, 22] including dis-
covering structural anomalies [29, 16],propagating beliefs for fake
or fraudulent nodes [35, 12, 28]. AUTOPART [10] finds outlier
edges across node groups; however, we need to detect suspicious
nodes. ODDBALL [6] assumes near-cliques and stars are suspi-
cious; however, these anomalies do not show up in directed graphs.
NETPROBE [30] uses a list of committed frauds to blame all the
fraudulent nodes on the graph; COPYCATCH [7] detects tempo-
rally bipartite cores that are ill-gotten “Likes” of Facebook; how-
ever, they require side information such as edge creation time. Note
that our work is orthogonal to the above. We look for synchronized
behavior, which forms strange subgraph structure.

Subgraph Mining Algorithms: A number of subgraph mining
algorithms have been investigated [15], such as mining frequent
subgraph patterns [39, 27, 40], mining dense subgraphs [25, 38, 13,
20] and finding quasi-cliques [31, 37]. In addition, some variants
of community detection algorithms have been proposed to discover
dense clusters [19] and well-connected communities [33]. These
require typical parameters like density and number of clusters as
input. Suspicious nodes can easily evade high density detection by
reducing the number of targets and increasing the volume.

Social spammer detection: There are several recent works on
detecting social spammers, for example, fake accounts on microblog-
ging and social networks, mainly using the content-based features
[4, 9, 21]. Perez et al. [32] proposed SPOT to catch suspicious
Twitter profiles, by learning text and malicious URLs in tweets and
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scoring their suspiciousness. Our work is orthogonal to theirs when
detecting the group attacks.

3. SYNCHRONIZED BEHAVIOR DETECTION
In this section, we first propose the problem of synchronized be-

havior detection and then present a fast and effective solution.

3.1 Problem Definition
Our goal is to find suspicious nodes on a directed graph and thus

the problem is defined as:
Given: a directed graph of N nodes in the node set U
Find: a set of suspicious source nodes (fake followers, botnets,
etc.) Usync, and a set of suspicious target nodes (followees, tar-
get hosts, etc.) Vsync that the source nodes have synchronized and
abnormal behaviors connecting to the target nodes. The word “syn-
chronized” means that the source nodes have very similar behavior
pattern, and “abnormal” means that their behavior pattern is very
different from the majority of nodes. Table 2 gives a list of the
symbols we use throughout the paper.

Symbol Definition and Description
U The set of nodes
N=|U| The number of node
I(u) The set of node u’s sources
O(u) The set of node u’s targets
di(u)=|I(u)| In-degree of node u (number of sources)
do(u)=|O(u)| Out-degree of node u (number of targets)
hub(u),aut(u) “Hubness” and “authoritativeness” of u
sync(u) “Synchronicity” of node u’s targets
norm(u) “Normality” of node u’s targets
p(u) k-dimensional feature vector of node u
c(u,v) Closeness of u and v in feature space

Table 2: Symbols and Definitions

3.2 Proposed Approach
In this section, we introduce our approach towards the above

problem. First, we give a feature space for target nodes. Sec-
ond, we show the definitions of synchronicity and normality that
measure the nodes’ behavior patterns. Then we provide a general
theorem of the normal shape of the synchronicity-normality plot.
Next, we detect the outliers on the plot, which are suspicious nodes
with synchronize behavior on the graph.

3.2.1 Feature space
It has been established by past works that many data mining ap-

proaches on graphs benefit from exploiting the features from the
nodes’ behavior patterns, including (a) out-degree and in-degree,
(b) HITS score (hubness and authoritativeness), (c) betweenness
centrality, (e) node in-weight and out-weight, if the graph is weighted,
(f) the score of the node in the i-th left or right singular vector, and
many more. We denote k-dimensional feature vector of node u by
p(u) ∈ Rk. We extract the feature vector from graph structure that
somewhat reflects the node’s behavior pattern. The features could
be any from the above and the vector could have any dimension-
ality. In this paper, we choose the degree values and HITS score.
We denote a set of u’s source nodes by I(u) and a set of u’s target
nodes by O(u). The in-degree di(u) of node u is the number of its
sources, i.e. the size of I(u). The out-degree do(u) of node u is
the number of its targets, i.e. the size of O(u). Also we denote by
hub(u) the hubness of node u and by aut(u) the authoritativeness
of u, according to Kleinberg’s famous work [24]. We choose these

features for two reasons: they are fast to compute, as well as easy
to plot. As our experiments show, they work well in pin-pointing
suspicious nodes. Note that if the side information is available, it
could be regarded as additional features that would be easily incor-
porated, and hopefully, the performance could be better.

Here we present some plots of the feature spaces. For a source
node u, we plot a heat map of the 2-D feature space of out-degree
do(u) vs hubness hub(u) in log-log scale, called “OutF-plot”. Sim-
ilarly, for a target node u, the heat map of the feature space of in-
degree di(u) vs authoritativeness aut(u) in log-log scale is called
“InF-plot”. Table 3 summarizes the description of all the plots.

Plot Description
OutF-plot A heat map of source nodes in feature space:

typically, out-degree vs hubness
InF-plot A heat map of target nodes in feature space:

typically, in-degree vs authoritativeness
SN-plot A heat map of source nodes in

synchronicity vs normality of their targets

Table 3: Plots and Descriptions

Specifically, Figure 2a and 2c are InF-plots of TWITTERSG and
WEIBOSG. On TWITTERSG, we denote by X one of the suspi-
cious followers we mentioned in Figure 1a and by Y an ordinary
user whose out-degree is the same as X’s. We tag their targets (fol-
lowees) in the Figure 2a and find out that X’s targets are coherent
in the InF-plot, while Y’s targets are not. In other words, X’s target
nodes have similar in-degree and authoritativeness, but Y’s targets
are diverse in the feature space, ranging from top popular to ordi-
nary users just like Y. Similar thing happens on WEIBOSG. Fig-
ure 2c shows that X’s targets are located at a micro-cluster which
is away from the majority of followee nodes. They have large in-
degree values from 1,000 to 100,000 but they are not as authorita-
tive as the ones who are followed by Y and of the same in-degree.

3.2.2 Synchronicity and normality
We propose two novel concepts to investigate the behavior pat-

terns of the source nodes: (a) “synchronicity” sync(u) to qualify
how synchronized the node u’s targets are in the feature space (in-
degree vs authoritativeness); and (b) “normality” norm(u) to qual-
ify how normal u’s targets are relative to the rest of the data. These
two measures consider the relative position of u’s target nodes in
the feature space. We denote by c(v,v′) the closeness (similarity)
between two target nodes v and v′ in the feature space (InF-plot).
For fast computing the closeness of each pair of nodes, we divide
the feature space into G grid cells and map each node to a specific
grid cell. If two nodes are in the same grid cell, they have similar
feature vectors, and they are close in the feature space. Thus, we
have

c(v, v
′
) =

{
1 if nodes v and v

′
are in the same grid cell

0 otherwise

Then we have the definition of synchronicity and normality.

Definition 1 Synchronicity and Normality
We define synchronicity of node u as the average closeness between
each pair of u’s targets (v,v

′
):

sync(u) =

∑
(v,v

′
)∈O(u)×O(u) c(v, v

′
)

do(u)× do(u)
(1)

We define normality of node u as the average closeness between
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(a) InF-plot on TWITTERSG (b) SN-plot on TWITTERSG (c) InF-plot on WEIBOSG (d) SN-plot on WEIBOSG
Figure 2: Synchronicity-normality plot: the source nodes X have synchronized and abnormal behaviors that their targets are coher-
ent in the InF-plots (a) and (c), while Y’s targets are not. X has big synchronicity and small normality in the SN-plots (b) and (d)
while Y is near the parabolic, theoretical lower limit.

each pair of u’s targets and other nodes (v,v
′
):

norm(u) =

∑
(v,v

′
)∈O(u)×U c(v, v

′
)

do(u)×N
(2)

Both values of synchronicity and normality range from 0 to 1.
We know that a suspicious source node u has uncommonly large
sync(u) and abnormally small norm(u). For a source node u,
we name u’s target nodes in the InF-plot as foreground points and
name all the nodes in the plot as background points. We provide a
theorem of the normal shape of SN-plot, which could be the basis
for catching suspicious nodes

Theorem 1 For any foreground/background distribution, there is
a parabolic lower limit in the synchronicity-normality plot.

PROOF. See appendix. It is based on Lagrange multipliers. The
parabolic low limit is

smin = (−Mn2 + 2n− sb)/(1−Msb)

where M is the total number of grid cells, smin is the minimum
value of synchronicitiy of foreground points, sb is the synchronicity
of background points, and n is a given normality value.

Figure 2b and 2d show the SN-plots of source nodes in TWIT-
TERSG and WEIBOSG. Note that the source node X has synchro-
nized and abnormal behavior and Y does not, as shown in Fig-
ure 2a and 2c. X has much bigger synchronicity and smaller nor-
mality than Y. The red parabola is the theoretical lower limit of
synchronicity with a given normality, which has been given in the
proof. Y is close to the parabola, while X is far away from the lower
bound. The next step to find the suspicious nodes like X is to detect
the outliers in the SN-plots.

3.2.3 Outliers in SN-plot
Here we introduce how to catch the outliers in the SN-plot based

on Theorem 1. Informally, we want the nodes that are too far away
from the lower limit. Formally, we denote by rsource(u) the resid-
ual score of a source node u’s synchronicity which indicates how
suspicious it is. The set of suspicious source nodes Usync includes
the nodes whose suspiciousness is α = 3.0 standard deviations
away from the mean:

Usync ← {u : rsource(u) > µ[rsource] + α× σ[rsource]} (3)

Similarly, we denote by rtarget(v) the suspiciousness of a target
node v, which is the proportion of v’s sources that are reported in
Usync. Then we could have the set of suspicious targets Vsync:

Vsync ← {v : rtarget(v) > µ[rtarget] + α× σ[rtarget]} (4)

The default value of α is chosen according to Tax’s classical outlier
detection work in [36]. In the experimental section, we will validate
that the performance of our method does not depend much on α.

4. CATCHSYNC ALGORITHM
In this section, we present the implementation of CATCHSYNC

and analyze the complexity.
Implementation. The approach is outlined below in Algo-

rithm 1. We first derive a feature space for target nodes. We then
compute synchronicity and normality of the source nodes’ behav-
iors, according to the relative positions of their target nodes in the
feature space. Finally, we use a distance-based outlier detection
method to detect the outliers in the synchronicity-normality plot.

Algorithm 1: CATCHSYNC: Catch suspicious nodes with syn-
chronized behaviors in a large, directed graph.
Input: A directed graph of N nodes in the set U .
Output: A set of source nodes Usync who have synchronized

and abnormal behaviors and a set of targets in Vsync .
Step 1: plot a (2-D) feature space of target nodes.
foreach node v as a target do

Compute in-degree di(v) and authoritativeness aut(v).
Give InF-plot di(v) vs aut(v) (see Figure 2a and 2c).
Step 2: plot synchronicity-normality of source nodes.
Divide the InF-plot into grids.
foreach node u as a source do

Compute synchronicity sync(u) and normality norm(u)
with Eq. (1) and (2).

Give SN-plot sync(u) vs norm(u) (see Figure 2b and 2d).
Step 3:
Adapt a distance-based method to report suspicious sources
Usync and targets Vsync.

In detail, we choose 2-dimensional feature spaces and specifi-
cally out-degree vs hubness, for each source node, and in-degree vs
authoritativeness, for each target node. The out-degree (in-degree)
is the size of set of a source’s targets (a target’s sources). The hub-
ness (authoritativeness) is the first left- (right-) singular vector of
the graph’s adjacency matrix. The algorithm to compute these val-
ues is omitted for saving space. When we divide the InF-plot into
grids in Step 2, the length of each side of a grid is log2, that is, the
grid lines at degree and HITS score are on powers of 2.

Complexity analysis. We now examine CATCHSYNC’s
complexity. We first compute degree and HITS score of each node.
This process is linear in the number of edges E. Second, the
process of computing synchronicity and normality is linear in the
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Nodes Edges Description Suspicious/Labeled source nodes
TWITTERSG 41,652,230 1,468,365,182 Twitter social graph in July 2009 [26] 173 / 1,000
WEIBOSG 117,288,075 3,134,074,580 Tencent Weibo social graph in January 2011 237 / 1,000

Table 4: Real data: the real world graphs we study are complete social graphs with multimillion nodes and billion edges. We have
used human labor to label a small piece of both of them for ground truth.

number of nodes N . We denote by G the number of grids that
we divided the InF-plot into. Thus, the total time complexity is
O(E+NG). CATCHSYNC is a scalable algorithm and able to pro-
cess huge, directed graphs.

5. EXPERIMENTS
In this section we present an empirical evaluation of CATCH-

SYNC, demonstrating its effectiveness in spotting suspicious be-
havior. Although much of the research on anomaly detection frames
the problem as a labelling task, in real world anomaly detection is
a combination of machine learning, manual verification, and dis-
covering new types of attacks as they arise. Here, we provide evi-
dence that CATCHSYNC is effective at both the classic problem of
labelling suspicious behavior, as well as surfacing new patterns of
unusual group behavior:
• Detection effectiveness: We demonstrate CATCHSYNC’s abil-

ity to accurately label suspicious behavior and remove anoma-
lies through three techniques.
(a) Injected attacks: We begin by testing the accuracy, pre-
cision, and recall on synthetic graphs with injected group
attacks. We compare our algorithm against state-of-the-art
methods and show that CATCHSYNC performs the best.
(b) Labelling task: We also test our accuracy, precision, and
recall on two real datasets, where we use the labeled data
from random sampling of TWITTERSG and WEIBOSG as
ground truth of suspicious and normal nodes.
(c) Restore normal patterns: For all of these cases we show
that removing the suspicious nodes restores the power law
properties of the graph’s edge degree, which when distorted
is a common sign of spam, and remove anomalous patterns
in the feature spaces (OutF-plots and InF-plots).
• CATCHSYNC properties: We test a number of properties of

CATCHSYNC, including the robustness with respect to α, the
speed and the scalability.
• Discovery: We demonstrate the effectiveness of CATCH-

SYNC as a discovery tool. We discuss a number of the un-
usual accounts caught and patterns detected in the TWIT-
TERSG and WEIBOSG datasets.

5.1 Evaluation: Data and Ground Truth
We carry out experiments on synthetic and real datasets to eval-

uate the performance of CATCHSYNC. The synthetic datasets are
described in Table 5, while the real datasets are in Table 4.

# of # of Camouflage
Nodes Injected

sources
SYNTH-1M 1,034,100 31,000 -
SYNTH-2M 2,034,100 =16K -
SYNTH-3M 3,034,100 +8K+4K -
SYNTH-3M-RAND 3,034,100 +2K+1K +10% Random
SYNTH-3M-POP 3,034,100 +50% Popular

Table 5: Synthetic data: we inject 5 different sizes of group
attacks on random power law graphs of 1-3M nodes.

5.1.1 Synthetic data
Description. We generate random power-law graphs, following

the Chung-Lu model 1 [14], and with a power-law exponent −1.5
since most real-world networks have been shown to have this value
[17]. Next we inject groups of source and target nodes.

To demonstrate the effectiveness, we vary the following proper-
ties of the synthetic graphs:
• Size of graph: The random power-law graphs we gener-

ate contain approximately 1M, 2M, or 3M nodes, named as
SYNTH-1M, SYNTH-2M and SYNTH-3M.

• Size of injection: We inject 5 source and target nodes groups
of different sizes. The smallest group has 1,000 new sources,
connecting to 20 of 100 new targets, because of the real case
that the smallest number of fake followers a user can buy is
often 1,000 [1]. The size of the injected group doubles one by
one and thus the largest group has 16,000 sources and 1,600
targets. The total number of injected sources is 31,000.
• Camouflage: The injected source nodes may try to use “cam-

ouflage” to evade the detection, for example, the fake ac-
counts can follow Barack Obama, Taylor Swift, or some ran-
dom users, though they connect to tens or hundreds of cus-
tomers. Inspired by this, we try two different techniques
on SYNTH-3M: for each injected node, let it connect to (a)
some “random”, ordinary targets; (b) some from the top 100
“popular” targets. We also vary the weights of camouflage
dcamou: (a) dcamou = 10%, 18 injected targets and 2 for
camouflage; (b) dcamou = 50%, 10 injected ones and 10 for
camouflage. Specifically, we denote by SYNTH-3M-RAND
the injected graph with 10% random camouflage, and by
SYNTH-3M-POP the graph with 50% popular camouflage.

With different settings of the above, we have the 5 synthetic datasets.
Evaluation. If we denote the injected nodes by positive samples,

and the others by negative samples, we can record the true posi-
tive (TP), true negative (TN), false positive (FP), and false negative
(FN) rates, which we use the standard definition [18] to calculate
the three popular metrics: accuracy, precision and recall. High ac-
curacy, precision and recall will be a better method.

5.1.2 Real data
Description. We also use our two real world datasets, TWIT-

TERSG and WEIBOSG, both of which are complete graphs of pop-
ular online social networks with billions of edges. Thanks to the
public download links 2, CATCHSYNC is reproducible. As the web-
page says, due to Twitter’s new Terms of Services, we academic
researchers cannot access the side information like the tweet data.
Fortunately, we can usually get the who-follows-whom data, or di-
rected graphs from different applications. Then we can operate our
side-information oblivious method CATCHSYNC.

WEIBOSG was crawled in January 2011 from Tencent Weibo,
one of the biggest microblogging services in China. For each dataset

1Following the model, we assign out-degrees do(u) and in-degrees
di(v) to each node u and v respectively; we then create edge (u, v)
with probability proportional to do(v)di(u).
2http://an.kaist.ac.kr/traces/WWW2010.html
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Synthetic graph SYNTH-1M SYNTH-2M SYNTH-3M SYNTH-3M-RAND SYNTH-3M-POP

Camouflage (dcamou) None (0) None (0) None (0) 10% 50% 10% 50%
CATCHSYNC 0.998 0.987 0.956 0.910 0.764 0.885 0.792
ODDBALL 0.827 0.796 0.755 0.702 0.525 0.657 0.433
OUTRANK 0.805 0.777 0.725 0.678 0.516 0.694 0.392
SPOKEN 0.695 0.682 0.677 0.586 0.470 0.553 0.351

Table 6: CATCHSYNC consistently wins, despite of “camouflage”: it reaches higher accuracy on detecting injected nodes.

CATCHSYNC only uses the graph structure, but we also have user
id and name associated with the nodes, so that we can provide real
links to check the users’ profile information.

(a) SYNTH-3M-RAND (b) SYNTH-3M-RAND

(c) SYNTH-3M-POP (d) SYNTH-3M-POP
Figure 3: Our CATCHSYNC catches injections, despite of “cam-
ouflage”: camouflage can hide the injected nodes in or put them
close to dominating parts in (a) and (c), but SN-plots can catch
them with big synchronicity and small normality in (b) and (d).

Evaluation. For WEIBOSG and TWITTERSG, we sample 1,000
nodes and conduct user study to label them as suspicious or normal
accounts. Half of the nodes are randomly selected from the set
Usync and half are not. Although the average suspiciousness of
samples is higher than that of the entire dataset, it is fair for all
the algorithms in our experiments. The 5 volunteers are all 20 to
25-year-old college students who have been social network users
for at least 3 years. They are provided URL links directed to the
1000 users’ Twitter or Tencent Weibo pages, and read their tweets
and profile information. A user is labeled as a suspicious one if the
volunteer finds he or she matches too many of the following clues:
• Disabled account: It has been disabled by the services. For

example, Weibo user @marra_xiao_bai had 9 followers and
36 followees in 2011. Twitter user @wYWvk0310 had 666
followers and 926 followees in 2010. But both of them have
been disabled now.
• Suspicious user name: They have strange self-declared in-

formation that follows a narrow pattern such as Twitter names
in the form of @“Buy_XX##” (@Buy_AB22, @Buy_BT47),
Weibo names in the form of “a#####” (@a58444, @a70054).
• Many followees but few or zero tweets: It has hundreds

of followees but it never posts a single tweet. Twitter user
@P8igBg801 had 923 followees in 2010 and @AjaurNYj2
had 869 followees, but both of them post nothing.

• Malicious tweet content: The account posts duplicated tweets
or malicious links for monetary purposes. For example, Twit-
ter user @Buy_BT66 posts only 3 messages but all of them
are about “bed flat for sale”. Weibo account @aa52011
posts hundreds of similar messages about online games.

Finally, we give a user a “suspicious” label if 3 (more than a half)
of the volunteers think it is suspicious. Our task here is to detect
the users with the “suspicious” labels. Similarly with the evaluation
method on synthetic data, we also use accuracy, precision and recall
to evaluate the effectiveness. A good detection algorithm will have
high values of accuracy, precision and recall.

5.2 Competing Algorithms
We carefully implement the following state-of-the-art methods

as competing algorithms: (a) ODDBALL [6], looking for near-cliques
and stars that are suspected as strange nodes in the graph; (b) OUT-
RANK [28], using random walk model across the similarity mea-
sure to give the outlierness of each node; (c) SPOKEN [33], using
pairs of eigenvectors to find well-connected communities. When
operating on the labeled real data, we implement a content-based
spammer detection method SPOT [32], which learns the words and
the number of malicious links in the accounts’ tweets.

As mentioned before, our CATCHSYNC is orthogonal to the text-
based methods like SPOT. Thus, we develop a hybrid method,
CATCHSYNC+SPOT, that suspects the nodes detected by either
CATCHSYNC or SPOT. It learns from both the graph structure and
text-based features from tweets.

All the algorithms are implemented with JAVA, and all experi-
ments are performed on a single machine with Intel Xeon CPU at
2.40GHz and 32GB RAM.

5.3 Detection Effectiveness on Synthetic Data

(a) SYNTH-3M-RAND (b) SYNTH-3M-POP
Figure 4: CATCHSYNC achieves higher precision and recall.

Injected group attacks shown in feature space and SN-plot. We
plot the feature space (InF-plots) and SN-plots of two synthetic
graphs with camouflage SYNTH-3M-RAND and SYNTH-3M-POP
in Figure 3. When the weight of camouflage is small (dcamou=10%
in SYNTH-3M-RAND), the InF-plot in Figure 3a shows the injected
node groups as outliers from the majority. With the SN-plot in Fig-
ure 3c, CATCHSYNC can easily catch them since they fall along
the synchronicity axis. When dcamou is as big as 50%, Figure 3c
shows that the camouflage can hide the injected nodes in the dom-
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inating part. Our SN-plot in Figure 3c can catch them for their big
synchronicity and small normality values.

Accuracy, precision and recall on injected node detection. Ta-
ble 6 shows the accuracy on detecting the injected nodes from all
the 5 synthetic datasets. When there is no “camouflage”, CATCH-
SYNC reaches greater than 95% accuracy. When the nodes have
camouflage, it can still outperforms the best of the other meth-
ods by 29.6% accuracy on SYNTH-3M-RAND and 27.5% accuracy
on SYNTH-3M-POP. Figure 4 plots the precision-recall curves
to test the performance of ranking the suspiciousness of nodes.
Our method CATCHSYNC (the red filled triangle) can achieve both
higher precision and higher recall.

Restoring the power law. The injected source nodes connect to
20 from the same set of targets. Due to this anomalous behavior
pattern, the out-degree distribution has a spike at degree 20. Fig-
ure 5 plots the out-degree distributions before and after we operate
CATCHSYNC on the synthetic graphs of different sizes. The spike
on the distribution shrinks with the size of the graph increasing.
No matter how big the spike is, our method can detect the injected
nodes and we see if we remove them and their out-going edges,
then the power-law degree distribution is restored.

(a) SYNTH-1M (b) SYNTH-2M (c) SYNTH-3M
Figure 5: CATCHSYNC restores the power law: the degree dis-
tribution is recovered after the removal of suspicious nodes.

5.4 Detection Effectiveness on Real Data
Accuracy, precision and recall on real data. Table 7 shows the

accuracy on detecting the labeled suspicious nodes from the two
real social graphs. Also in Figure 6, we plot the precision-recall
curves of CATCHSYNC, OUTRANK, SPOT and the hybrid algo-
rithm CATCHSYNC+SPOT. We examine the results and give the
following observations and explanations.
• CATCHSYNC outperforms OUTRANK. CATCHSYNC learns

graph-based features of synchronized behavior that OUTRANK
cannot capture using a random walk model with a data dedi-
cated threshold.
• CATCHSYNC outperforms SPOT. CATCHSYNC learns graph-

based features from the structural information, and SPOT
learns text-based features from users’ tweets. Since the main
characteristics of the suspicious users are group attacks, CATCH-
SYNC has high accuracy, precision and recall than SPOT.

Actually, CATCHSYNC is complementary to SPOT: combining the
flagged nodes, we get even better performance (purple line on Fig-
ure 6). The hybrid algorithm uses both of them to catch the different
types of attackers. CATCHSYNC+SPOT consistently outperforms
the competitors in detection accuracy by 36% on TWITTERSG and
20% on WEIBOSG. We suggest the social network applications
to operate our CATCHSYNC on their who-follows-whom graphs,
while they have used methods like SPOT that learns text-based
features from their tweets and profiles.

Restoring the power law. While in the synthetic datasets the
recovery of the power law followed directly from our high recall,
this is not necessarily the case on real world data sets because we
can only measure our accuracy on the subset of nodes we label.

TWITTERSG WEIBOSG
CATCHSYNC 0.751 0.694
OUTRANK 0.412 0.377
SPOT 0.597 0.653
CATCHSYNC+SPOT 0.813 0.785

Table 7: CATCHSYNC+SPOT outperforms each part: CATCH-
SYNC is better than OUTRANK at learning the structure, while
SPOT learns the text; the combination wins the last.

(a) TWITTERSG (b) WEIBOSG
Figure 6: CATCHSYNC+SPOT is the best at ranking the suspi-
ciousness: it reaches the highest precision and recall.

Looking at the out-degree distribution of TWITTERSG in Figure 1b
and WEIBOSG in Figure 1c, we see that removing the millions of
caught suspicious nodes from the graph does leave only a smooth
power law distribution on the remaining part of the graph. Be-
cause a power law distribution has been found to be typical of so-
cial networks and because the original distribution is not directly
used in CATCHSYNC, this is strong evidence that our recall on the
full datasets is high and that CATCHSYNC is effective.

Observations in the feature space. We provide interesting ob-
servations from the change of feature space before and after we op-
erate CATCHSYNC on WEIBOSG. Figure 7a, 7b and 7c are OutF-
plots arranged as an equation: all nodes minus suspicious nodes
with synchronized behaviors equals normal nodes. Figure 7b shows
the suspicious source nodes look synchronized and abnormal in the
OutF-plot: they are coherent in red clusters or on blue stripes that
deviate from the majority. The red clusters and blue stripes dis-
appear in Figure 7c after we remove them from the graph. Fig-
ure 7d, 7e and 7f show a similar equation of InF-plots. Figure 7e
shows that the suspicious targets are in a purple cluster in Figure 7f
the cluster disappears after we remove them. The above observa-
tions provide evidence of the suspiciousness of the nodes who have
synchronized behaviors. Our method CATCHSYNC can remove the
strange patterns in the feature space.

5.5 CatchSync Properties
Robustness with respect to α. Within the synthetic data, we con-

duct experiments on the robustness to changes in α, the number of
standard deviations from the mean for a node to be labelled as sus-
picious. In short, α=3.0 gives either the best result, or very close
to it, and so do nearby values of α. In more detail, we test the sen-
sitivity of precision and recall with respect to α, on the synthetic
graphs of 3 different sizes. Figure 8 plots precision-recall curves:
the ideal point is, of course, (1.0, 1.0); although α changes from
0.5 to 5.0, both precision and recall are still over 0.8. The perfor-
mance of our algorithm is rather robust on α. We set α = 3.0 as
the default value for all of our other experiments. Note that approx-
imately 99.7% of the observations fall within 3 standard deviations
of the mean in the normal distribution. The suspicious nodes take
the small percentage (0.3%) but still a big number since the graphs
often contain millions of nodes, which makes this detection prob-
lem rather challenging.
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(a) All sources

–

(b) Caught sources

=

(c) Normal sources (d) All targets

–

(e) Caught targets

=

(f) Normal targets
Figure 7: Sources and targets caught by CATCHSYNC are outliers: (a,b,c) and (d,e,f) form two equations of OutF-/InF-plots. (a)
minus (b) equals (c); (d) minus (e) equals (f), where (a,d) show all nodes, (b,e) show suspicious nodes and (c,f) show normal ones.

(a) SYNTH-1M (b) SYNTH-2M (c) SYNTH-3M
Figure 8: Robustness is perfect: the performance of CATCH-
SYNC is rather insensitive. We suggest α = 3.0 as default.

Speed and scalability. We measure the run time on synthetic
graphs with 1-3 million nodes. Figure 9 plots processor time vs
graph size, showing that CATCHSYNC (the red filled triangles) scales
linearly with the graph size and runs faster than alternatives. The
measures, synchronicity and normality, could be computed very
fast, taking only 10% time of the features (degree and HITS score),
while the features can be previously chosen and calculated. There-
fore, CATCHSYNC performs fast online for large graphs.

Figure 9: CATCHSYNC is fast and scalable: run time to detect
injected nodes as the graph grows.

5.6 Discovery: A Case Study
As was mentioned earlier, detecting suspicious behavior is not

merely a labeling problem. In the real world there are always new
types of attacks that arise and distort the service being provided.
While we have demonstrated that CATCHSYNC is successful at de-
tecting classic spammy behavior, it also discovers more subtle types
of suspicious behavior that a simpler labeling analysis would miss.

Looking online, it is easy to see that fraud on Twitter is much
more complex than individual users posting tweets for money. In
general users can get paid to tweet and the amount is based on
how many followers they have [1, 2]. As a result, this has created
marketplaces for buying Twitter followers, which besides provid-
ing politicians the appearance of popularity, also raises the value of
the “Tweeter.” Additionally there are marketplaces, e.g. buytwit-
teraccounts.org [2] and socialsellouts.com [3] to buy and sell
Twitter accounts, again with the number of followers being the pri-
mary value. Because the market is complex, labeling accounts can
be difficult with only a subtle red flags raising eyebrows. Here we
examine closer some of the Twitter accounts we caught and we use

side information to explain the range of suspicious behavior de-
tected by CATCHSYNC.

Figure 10 shows a tiny subset (3 followers and 4 followees),
from a large, suspicious group of 91K followers and about 700 fol-
lowees), that was caught by CATCHSYNC. We see 3 accounts on
the left that follow the 4 accounts on the right (and many others).
Overall, each account, on its own, raises a few small suspicions,
but our point is that, collectively, these accounts raise many more
suspicions. Below we break down the types of accounts we find:

Dedicated Followers: Looking in Figure 10, we see on the
left three followers: @AjaQwX1Z3, @AjaurNYj2 and @mas-
tertwitlist. All three accounts have a slightly unusual name, few or
no tweets, follow approximately 700 other accounts, and are sur-
prisingly followed by approximately 400 accounts. Alone, each
account may look slightly unusual but none of this evidence looks
truly incriminating. As a group, however, the accounts are clearly
suspicious because, along with them all having the same red flags,
they all follow the same group of slightly unusual people.

Surprising Followees: On the right side of Figure 10 we see
four of the accounts being followed. Within the group of followees,
we find a few common patterns of obviously spam accounts, “SEO
experts” tweeting suspicious content, and small business owners
with an unusual number of followers. In the first case, @Aaron-
Martirano is slightly suspicious with a most recent gibberish tweet
(with words “auto follower”, “follback”) linking to an empty Blog-
ger that had been labeled “Unsafe” by Twitter. Slightly different to
the right we see @aaronseal, whose profile offers the GPS coordi-
nates of a Bell Credit Union in Kansas and tweets to free Wordpress
themes or asks users to “Like our Facebook Page” for a restaurant.
Similarly we observe @biz2day, a self described “webmaster in
the advertising and SEO business,” who does not tweet “Unsafe”
content, but links to other suspicious content like get-rich-quick
schemes. For both @aaronseal and @biz2day, the consistent
odd linking raises a red flag, and paired with the synchronized fol-
lowers suggests that these are possibly purchased tweets and fol-
lowers were bought to inflate the price. Last we see @HousingRe-
porter a real estate agent with 164,700 followers - more than Mas-
sachusetts Senator and U.S. Presidential Hopeful Elizabeth Warren.
A small red flag, but of course it is possible for a small business
owner to want to appear more popular and thus buy followers.

In all of these cases it is of course impossible to know for sure
how their followers were obtained or why they tweet the way they
do. However, given that CATCHSYNC found these very different
accounts based only on the graph structure, all of these other con-
textual red flags provide strong additional evidence that the fol-
lowees caught are in fact very suspicious and that CATCHSYNC is
effective at catching even subtle or hidden suspicious behavior.

6. CONCLUSION
We propose a novel method called CATCHSYNC that exploits
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Figure 10: CATCHSYNC at work: using only structure information, we illustrate the biggest group that CATCHSYNC flagged (91,035
followers, 667 followees); we show 3 of the former and 4 of the latter. Side information corroborates our findings, raising several red
flags: (a) the 3 shown followers have∼0 tweets, and near-identical counts of followers and followees, (b) the 4 shown followees mainly
tweet urls, one of which is flagged by Twitter as unsafe.

two signs of artificial and non-organic behavior, synchronicity and
normality, to automatically report and catch suspicious nodes on
large directed graphs. CATCHSYNC has desirable properties:
• Effectiveness: it spots synchronized behavior and indeed catches

suspicious source-target groups.
• Scalability: its complexity is linear in the number of edges.
• Parameter free: the operator can easily implement the algo-

rithm without specifying any parameters such as the density,
the number and scale of groups.
• Side information oblivious: it needs no side information. It

is solely based on topology, and it requires neither labeled
nodes nor node attributes, though it can incorporate them for
better performance.

Experimental results using both real and synthetic datasets demon-
strated that CATCHSYNC can catch the suspicious behavior patterns
that previous approaches cannot capture.
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APPENDIX
Here we provide the proof of Theorem 1.

PROOF. In order to find the lower limit of synchronicity when
given a normality, we define the problem as follows.

Given G grids, fg and bg counts of points (fg ≤ bg) from the
foreground/background cloud in grid g (g = 1, . . . , G), the nor-
mality n of ~f , find values of ~f to minimize the synchronicity s.

Remind that (1) the synchronicity s is the synchronicity of fore-
ground points, i.e., the dot product of (unit sum) foreground with

the same foreground: s =
∑

g

f2
g

F2 ; (2) the normality n is the
dot product of (unit sum) foreground with (unit sum) background:
n =

∑
g

fgbg
FB

.

Let B(F ) be the total counts:
∑
fg = F and

∑
bg = B. Let

b̂g = bg/B and similarly f̂g = fg/F . Thus, the resulting vectors
sum up to one (“probability vectors”). The problem definition is
updated as follows.

Given a (probability) vector ~̂b with M entries (M ≤ G), find a

(probability) vector ~̂f with given normality n =
~̂
f ·~̂b =

∑
(f̂g ∗ b̂g)

and minimum synchronicity s =
~̂
f · ~̂f =

∑
f̂2
g , and report both

the optimal such vector ~̂fopt, as well as the minimum synchronicity
smin.

The method of Lagrange multipliers is a well-known strategy for
finding the local minima (maxima) of a function subject to equality
constraints. Here the Lagrange function is

F(f̂g, λ, µ) = (
∑
g

f̂2
g )+λ(

∑
g

f̂g−1)+µ(
∑
g

(f̂g∗b̂g)−n) (5)

The gradients of the function are

∂F/∂f̂g = 2f̂g + λ+ µb̂g = 0 g = 1, . . . ,M (6)

and the two initial conditions are

∂F/∂λ =
∑
g

f̂g − 1 = 0 (7)

∂F/∂µ =
∑
g

(f̂g ∗ b̂g)− n = 0 (8)

From Eq 6 we have, after summing them all up:

2 +Mλ+ µ = 0 (9)

From Eq 6 we have, after multiplying each with b̂g and summing
them all up:

2 ∗ n+ λ+ µsb = 0 (10)

where we call sb the synchronicity of the background: sb =
∑

g b̂
2
g =∑

g

b2g
B2 . Solving for µ we get

µ = −2−Mλ (11)

and substituting µ and for λ we get

λ = 2(sb − n)/(1−M ∗ sb) (12)

We can substitute the values of µ and λ into Eq 6 and solve for each
f̂g , or, even faster, we multiply each of Eq 6 with the corresponding
f̂g and we add, obtaining:

2 ∗ s+ λ+ µn = 0 (13)

which gives that the (optimal) sopt satisfies

sopt = 1/2(−λ− µn) (14)

If the Hessian matrix is positive definite at a point, then the func-
tion is a convex function and it attains a local minima at the point.
Here the Hessian is a diagonal matrix with “2” in the first M po-
sitions, and zeros everywhere else. So eventually the minimum
synchronicity is

smin = (−Mn2 + 2n− sb)/(1−Msb) (15)

That is, the minimum synchronicity smin for a given normality n,
is a quadratic function of n.
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