
Top-k Frequent Itemsets via Differentially Private FP-trees

Jaewoo Lee
Dept. of Computer Science / CERIAS

Purdue University
West Lafayette, IN USA

jaewoo@cs.purdue.edu

Chris Clifton
Dept. of Computer Science / CERIAS

Purdue University
West Lafayette, IN USA

clifton@cs.purdue.edu

ABSTRACT

Frequent itemset mining is a core data mining task and has
been studied extensively. Although by their nature, frequent
itemsets are aggregates over many individuals and would not
seem to pose a privacy threat, an attacker with strong back-
ground information can learn private individual information
from frequent itemsets. This has lead to differentially pri-
vate frequent itemset mining, which protects privacy by giv-
ing inexact answers. We give an approach that first identifies
top-k frequent itemsets, then uses them to construct a com-
pact, differentially private FP-tree. Once the noisy FP-tree
is built, the (privatized) support of all frequent itemsets can
be derived from it without access to the original data. Ex-
perimental results show that the proposed algorithm gives
substantially better results than prior approaches, especially
for high levels of privacy.

Categories and Subject Descriptors

H.2.0 [Information Systems]: Database Management

General Terms

Algorithms, Security, Theory

Keywords

Frequent itemset, Differential privacy, FP-tree

1. INTRODUCTION
As volumes of personal data collected by many organiza-

tions increase, the problem of preserving privacy is increas-
ingly important. In this paper, we investigate the problem of
releasing top k frequent itemsets in a differentially private
way. The problem of frequent itemset mining (FIM) has
been extensively studied in the data mining community[2,
9] and it serves as an important building block for many ex-
ploratory data mining algorithms. Although frequent item-
sets are inherently aggregated information common to many

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’14, August 24–27, 2014, New York, NY, USA.

Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.

http://dx.doi.org/10.1145/2623330.2623723.

individuals, näıve release of frequent itemsets can reveal sen-
sitive information about individuals in the dataset[3].

Differential privacy[7, 8] is a recent notion of privacy that
guarantees the output of an algorithm is insensitive to the
change of one individual’s data. Differential privacy adds
noise to the output (in our case, the frequent itemsets and
their supports) such that the impact of any individual (trans-
action) on the outcome is small relative to the added noise -
ensuring that even an adversary with extensive background
knowledge cannot use the result to determine an individual’s
value. The main advantage of differential privacy is that it
provides protection against a strong adversary without re-
quiring a model of the adversary’s knowledge, or defining
what information is sensitive.

The main challenge in developing a differentially private
FIM algorithm is that the sensitivity of an itemset query
(the maximum impact a single individual can have on the
set of frequent itemsets) is dependent on the dimensionality
of itemsets in the dataset. Recently two works on differen-
tially private FIM, PrivBasis[15] and SmartTruncation[19],
were introduced. They reduce the dimensionality by pro-
jecting the data into a lower dimensional space and by trun-
cating the transactions, respectively. While these methods
guarantee differential privacy, they come at a substantial
cost in the quality of the results.

In this paper, we propose a novel approach that integrates
the low sensitivity of a threshold query set and the com-
pactness of the FP-tree data structure[9]. The proposed al-
gorithm uses a modified version of the general sparse vector

technique introduced in [11, 10]. The sparse vector tech-
nique was originally used to release a small number of count
queries whose count is greater than or equal to the given
threshold. A variation of it appears in [17]. A big advan-
tage of this technique is that information disclosure affect-
ing differential privacy occurs only for count queries above
the threshold; negative answers do not count against the
“privacy budget”. Intuitively, the itemsets whose supports
are far above (below) the threshold remain frequent (infre-
quent) even after adding or removing one transaction. Only
those itemsets whose supports are near the threshold can
be switched from frequent to infrequent or vice versa by
the change of single transaction. Based upon this obser-
vation, we modify the sparse vector technique to privately
answer exponentially many threshold queries (with a con-
stant number of non-null results) given a fixed threshold.
The proposed algorithm is composed of two phases: (i) fre-
quent itemset discovery and (ii) noisy support derivation.
In the first phase, all frequent itemsets are identified. At

931

this stage, the algorithm does not know their supports, but
only that their supports are above the threshold. Using this
information, the second phase builds a differentially private
FP-tree with privatized supports of the frequent itemsets.
The proposed algorithm injects noise in the data structure at
the intermediate (FP-tree) step. The final output (Frequent
Itemsets, or any other output derivable from an FP-tree)
can be further refined through an optional post-processing
step.
The rest of this paper is organized as follows: In Section 2,

related works are discussed. Section 3 defines the notations
used throughout the paper and introduces the background
knowledge about differential privacy. In Section 4, given
the threshold, how the proposed algorithm identifies the set
of frequent itemsets and derives their supports via differen-
tially private FP-tree are described. In Section 5, the per-
formance of the proposed algorithm is evaluated on a variety
of datasets. Finally, Section 6 concludes our work.

2. RELATED WORKS
There has been concern for some time that data mining

results could lead to privacy violations [13]. In [1], Aggarwal
et al. claimed that in practice it is possible for an adversary
to predict sensitive fields in records by using association rules
learned from the dataset. Therefore, it is insufficient to sim-
ply hide sensitive values in the dataset. They introduced
a technique for hiding minimal set of association rules to
prevent disclosure of sensitive entries in the dataset. In or-
der to hide sensitive association rules, the input dataset is
anonymized so that sensitive rules cannot be learned.
Atzori et al. applied the concept of k-anonymity to the

mining result instead of input dataset. To prevent inference
on sensitive information, frequent patterns are distorted by
changing their support values [3]. A collection of frequent
patterns is called k anonymous if and only if the support of
each pattern in the collection is greater than or equal to k.
The common problems from which both approaches de-

scribed above suffer are difficulty on determining sensitive
information and on modeling an adversary’s background knowl-
edge. Differential privacy, proposed in [8], has emerged as a
promising solution for privacy protection and received con-
siderable attention because of its privacy guarantee against
an adversary with arbitrary background knowledge.
Bahaskar et al. studied the problem of differentially pri-

vately releasing top k frequent itemsets of length m [4].
Given the mining result of a non-private algorithm, it first
selects top k itemsets to release using either the Laplace or
exponential mechanism and then adds noise to each item-
set’s support value.
Li et al. proposed a method called PrivBasis[15], that

finds top k frequent itemsets in a differentially private way.
PrivBasis tries to reduce the search space by finding minimal
sets of items in an initialization stage, that covers the top k

frequent itemsets. Each such set is called a basis. The item-
sets in transactional data are viewed as tabular data and
projected onto each basis. The supports of all subsets of
a basis are derived by using binary itemset support count-
ing[5]. To find a basis set, PrivBasis employed the tech-
nique used in MaxClique[18]. However, basis finding based
on frequent 2-itemsets may be very inaccurate and tends to
generate many more bases than actually required.
Zeng et al. built a differentially private FIM algorithm[19]

on apriori. Inspired by the observation that the sensitivity of

Symbol Description

D = {t1, · · · , tn} A database of transactions
I = {I1, · · · , Ip} Set of items

ℓ-itemset An itemset of length ℓ

Lap(λ) Laplace distribution with mean 0 and
scale factor λ

σ(X) Support of X, |{t ∈ D|X ⊆ t}|
σ̂(X) Noisy support of X, σ(X) + Lap(·)
τ A user defined minimum support
Li Set of large i-itemset
Ci Set of candidate i-itemset
M Set of maximal frequent itemsets
v<t Prefix of vector v of length t−1

Table 1: Notations

a counting query set used for support verification is depen-
dent on the maximal length of transactions in the dataset,
they introduced the idea of truncating transactions to reduce
the amount of noise to inject. However, truncating transac-
tions in their algorithm is heuristic and its performance is
quite sensitive to parameter settings.

3. PRELIMINARIES

3.1 Notation
Let I = {I1, · · · , Ip} be a set of items. An ℓ-itemset

X = {x1, · · · , xℓ} is a subset of I whose length is ℓ where
xi ∈ I(1 ≤ i ≤ ℓ). The support of itemset X, denoted by
σ(X), is the number of transactions in D that includes X as a
subset. An itemset X is frequent if and only if its support is
greater than or equal to minimum support τ (i.e.,if σ(X) ≥

τ). We use Ŷ to denote the noisy version of Y , i.e., Ŷ =
Y + Lap(λ) where Lap(λ) is a random sample (i.i.d) drawn
from a Laplace distribution whose scale factor is λ.

3.2 Differential Privacy
Two databases D1 and D2 are referred to as neighboring if

one can be obtained by adding or removing one tuple from
the other, i.e., |(D1 −D2) ∪ (D2 −D1)| = 1. Informally,
differential privacy ensures that any changes in the proba-
bility of any outcome due to a single change in the input
database is bounded by a constant ratio.

Definition 1 (ǫ-differential privacy). A random-

ized mechanism K is ǫ-differentially private if for all neigh-

boring databases D1 and D2, ∀S ⊆ Range(K)

P[K(D1) ∈ S] ≤ exp (ǫ) P[K(D2) ∈ S]

One way to achieve differential privacy is to perturb the
output with random noise. The magnitude of noise should
be large enough to hide the change that can be made by one
individual in the universe. This is captured by the concept
of sensitivity [8].

Definition 2 (Sensitivity). The sensitivity of a query

function q is defined as

∆q = max
D1,D2

|q(D1)− q(D2)|

where D1 and D2 are neighboring databases.

It is known that Laplace mechanism achieves ǫ-differential
privacy [7].

932

Definition 3 (Laplace mechanism). Given a query

function q, a mechanism K that adds a random noise drawn

from Lap
(
∆q

ǫ

)
to the output value of q is referred to as

Laplace mechanism.

One nice property of differential privacy is that it is compos-
able. The privacy guarantee provided by differential privacy
gracefully degrades under sequential composition: any se-
quential composition of differentially private sub-routines,
each of which satisfies ǫi-differential privacy, satisfies

∑
i ǫi-

differential privacy. This is useful when designing a differ-
entially private algorithm since the entire algorithm will be
ǫ-differentially private as long as the privacy budget allo-
cated to each sub-routine sums to ǫ.

3.3 Sparse Vector Algorithm
The sparse vector algorithm was developed to release κ

count queries that are above the given threshold τ . The
algorithm starts by calculating the noisy threshold τ̂ using
part of the privacy budget. Given a count query q, it calcu-
lates the noisy count and compares it with τ̂ . Let K denote
the algorithm and q be a count query.

K(D) =

{
q(D) + Lap

(
2κ
ǫ

)
if q(D) + Lap

(
2κ
ǫ

)
≥ τ̂

⊥ otherwise

The algorithm uses another half of the privacy budget to
answer above threshold queries. Notice that the remain-
ing privacy budget ǫ

2
is divided into κ count queries. Af-

ter answering κ count queries it halts. The nice property
of this algorithm is that it only pays privacy budget for
above threshold queries and all below threshold queries are
answered without wasting the privacy budget. Hence, any
number of below threshold queries can be answered with-
out compromising privacy. In essence, although the noisy
count is calculated for each query and it is compared to the
noisy threshold τ̂ , the algorithm does not release it but ⊥
for all below threshold queries hence not paying the privacy
budget. The privacy guarantee of above threshold queries
is immediate since each query pays the budget of ǫ

2κ
. The

privacy of below threshold queries comes from the fact that
it is compared to the noisy threshold. The formal privacy
proof appears in [10].

4. THE NOISYCUT ALGORITHM
We now describe each step of the proposed algorithm,

called NoisyCut. The algorithm takes an integer k and out-
put the top k most frequent itemsets. The algorithm first
learns the support of the kthmost frequent itemset σk and
uses it as a threshold. This can be done by running any non-
private FIM algorithm. Since the only output of this stage
is the σk, using only the noisy threshold τ̂ = σk + Lap(·)
ensures differential privacy.
For each itemset in the itemset lattice, the algorithm tests

if its noisy support is above the noisy threshold. If it is, the
algorithm regards it as frequent. This can be viewed as cut-
ting the itemset lattice into two groups, frequent L and infre-

quent L∁, and hence the name of algorithm. We will show
that this can be done with high accuracy and with small
privacy budget while guaranteeing differential privacy. Af-
ter identifying all frequent itemsets, to derive the support of
each frequent itemset, the algorithm builds a noisy FP-tree.
The supports of itemsets can be derived from the FP-tree

Algorithm 1 FindFreqItemsets

Input: Transactional database D, set of items I, Top k,
privacy budget ǫ1

Output: a set of frequent itemsets L
1: function FindFreqItemsets(D,I, k, ǫ1)

2: τ̂ ← σk + Lap
(

4
ǫ1

)

3: L1 ← GetFrequent(I, τ̂ , 3ǫ1
4
, ∅)

4: ℓ← 2, L ← L1

5: while Lℓ−1 6= ∅ and |L| < k do

6: Cℓ ← {a ∪ b | a, b ∈ Li−1 ∧ a < b}
7: Lℓ ← GetFrequent(Cℓ, τ̂ ,

3ǫ1
4
,L)

8: L ← L ∪ Lℓ, ℓ← ℓ+ 1

9: return L

10: function GetFrequent(C, τ̂ , ǫ, L)
11: S ← ∅
12: for each itemset X ∈ C do

13: σ̂(X)← σ(X) + Lap
(
1
ǫ

)

14: if σ̂(X) ≥ τ̂ and |L ∪ S| < k then

15: S ← S ∪ {X}

16: return S

in a recursive manner. Generating noisy counts for frequent
itemsets can also be done using the binary itemset support
counting method proposed in [5].

The privacy budget ǫ is allocated between two phases. Let
ǫ1 = ξǫ and ǫ2 = (1 − ξ)ǫ be the privacy budget allocated
to the first and second phase, respectively (i.e., ǫ = ǫ1 +
ǫ2), where ξ ∈ (0, 1) is the parameter that controls privacy
budget allocation between two phases. The larger ξ is, the
more accurately the proposed algorithm can find frequent
itemsets in the first phase while it would increase the amount
of noise added to the support of each itemset in the second
phase. We empirically settled on ξ = 1

3
and use this value

in the experiments.

4.1 Discovering Frequent Itemsets
The algorithm for finding a set of frequent itemsets L is

described in Algorithm 1. The algorithm is Apriori-based.
The candidate (ℓ+1)-itemsets are generated by joining two
previously found frequent ℓ-itemsets that share a frequent
(ℓ − 1)-itemset as a prefix. While the proposed algorithm
follows the intuition of Apriori algorithm, the biggest differ-
ence is that Algorithm 1 finds frequent itemsets by asking
a set of threshold queries, each of which asks if the noisy
support of itemset in question is above the noisy threshold
or not and receives a boolean answer.

This threshold query based approach has a significant ad-
vantage over the count query based one in terms of noise
addition. Let’s consider the case where count queries are
used instead of threshold queries.

Definition 4 (ℓ-count query set). Given a set of can-

didate ℓ-itemsets, Cℓ, an ℓ-count query set CQℓ is defined as

CQℓ = 〈q1, · · · , q|Cℓ|〉

where each query qi asks for the count of ith itemset in Cℓ.

At each iteration, the algorithm throws CQℓ to the privacy
mechanism to verify the supports of candidate itemsets.

Theorem 1. The sensitivity of an ℓ-count query set ∆CQℓ

is the size of candidate set, Cℓ.

933

Proof. Assume there is a transaction t that contributes
to every qi(1 ≤ i ≤ n). Adding or removing t from D

will change the answer of each qi by one. Therefore, the
global sensitivity of CQℓ is the size of candidate set (i.e.,
∆q = |C|).

Since the sensitivity of a count query set is very high, a näıve
application of the Laplace mechanism to the Apriori method
will add unacceptable noise to each itemset.

Definition 5 (ℓ-threshold query set). An ℓ-threshold

query set is a set of threshold queries for candidate ℓ-itemsets.

TQℓ = 〈q1, · · · , q|Cℓ|〉

where each qi returns 1 if σ(X) ≥ τ , and 0 otherwise.

Privacy Analysis..
In a differentially private algorithm, all information dis-

closures must be performed in a differentially private way.
Based on the sparse vector method, the noise in the result
comes from the noise in the threshold, resulting in either
near-frequent itemsets being treated as frequent, or vice-
versa. This ensures that the effect of a single transaction
on an itemset appearing in the result is low relative to the
noise causing an itemset to appear in the result.
There would appear to be one issue: we don’t ask if all

itemsets are frequent, only candidates. However, the first
round considers all possible items, and subsequent round
candidates are generated from the (differentially private)
output of the previous round without access to the database,
satisfying differential privacy.
Given an integer k > 0, the algorithm starts from calcu-

lating the noisy threshold by adding noise to the support of
the kthmost frequent itemset, σ(k) (line 2). Observe that
adding or removing a transaction can only change the sup-
port of the kthmost frequent itemset, σ(k), by at most one.

Hence, adding a random noise drawn from Lap
(

4
ǫ1

)
to σ(k)

satisfies ǫ1
4
-differential privacy. Let τ̂1 and τ̂2 be the noisy

thresholds for two neighboring database D1 and D2, respec-
tively. For ∀x ∈ R,

P[τ̂1 = x] ≤ exp
(ǫ1
4

)
P[τ̂2 = x] (1)

After computing τ̂ , for each itemsetX ∈ C, the algorithm in-
ternally computes the noisy support σ̂(X) by adding Lapla-
cian random noise to its true support σ(X). If the calculated
noisy support is greater than or equal to the noisy threshold,
the itemset is regarded frequent. Otherwise, it is regarded
infrequent. Notice that in either case what is released by
this phase of the algorithm is not the noisy support but
whether the itemset is frequent or not. Let C be the set of
all candidate itemsets and Xi be the ithelement in C. We
can model the set of answers the algorithm receives from
the privacy mechanism as a vector v = 〈v1, · · · , vt〉 where
vi = 1 if σ̂(Xi) ≥ τ̂ , otherwise vi = 0.

vi =

{
1 if σ̂(Xi) ≥ τ̂

0 otherwise

Therefore, to prove the privacy of Algorithm 1, it is suffi-
cient to show that the privacy loss for all possible v ∈ Z is
bounded by exp (ǫ) where Z is the set of all possible binary
vectors. In Theorem 2, we prove that vector v released by

the Algorithm 1 satisfies ǫ1-differential privacy regardless of
its length.

Theorem 2. Algorithm 1 is ǫ1-differentially private.

Proof. Given any two neighboring databasesD1 andD2,
let V1 and V2 denote the output distribution on v when
D1 and D2 are the input databases, respectively. We use
v<t to denote (t− 1) previous answers from the mechanism
(i.e., v<t = 〈v1, · · · , vt−1〉). Using the law of conditional
probability, the privacy loss due to v = 〈v1, · · · , vt〉 for every
ai ∈ {0, 1} is

V1 (v)

V2 (v)
=

∏t

i=1 V1

(
vi = ai | v

<i
)

∏t

i=1 V2 (vi = ai | v<i)

=
∏

i:ai=1

V1

(
vi=1 | v<i

)

V2 (vi=1 | v<i)
·

∏

j:aj=0

V1

(
vj=0 | v<j

)

V2 (vj=0 | v<j)

Once v<i is fixed, the conditional distributions of τ̂ and
σ̂(X) are just a Laplace distribution. Let H1

i (x) be the
probability that the itemset Xi is frequent (i.e., vi = 1) in
D1 when the threshold is x.

H
1
i (x) = P

[
vi = 1 | v<i

]
= P

[
σ̂1(Xi) ≥ x | v<i

]

= P

[
Lap

(
4

3ǫ1

)
≥x−σ1(Xi)

∣∣∣∣ v
<i

]

Let λ = 4
3ǫ1

and f(y;µ, λ) = 1
2λ

exp
(
− |y−µ|

λ

)
.

H
1
i (x) =

∫ ∞

x

f

(
y;σ1(Xi),

4

3ǫ1

)
dy

Recall that ∆σ = 1. If we make a substitution u = y + 1,
from du = dy, the above yields

H
1
i (x) =

∫ ∞

x+1

f

(
u;σ1(Xi)+∆σ,

4

3ǫ1

)
du (2)

There are two possible cases:

• If σ2(Xi) = σ1(Xi) + 1, then equation (2) yields

H
1
i (x) =

∫ ∞

x+1

f

(
u;σ2(Xi),

4

3ǫ1

)
du = H

2
i (x+ 1)

• If σ2(Xi) = σ1(Xi), then H1
i (x) = H2

i (x).

Let the set of indices of answers for itemsets whose supports
are the same in both D1 and D2 and for itemsets whose
supports increase by one be S = {i|ai=1 ∧ σ1(Xi)=σ2(Xi)}
and S̄ = {i|ai = 1 ∧ σ2(Xi)=σ1(Xi)+1}, respectively.
∏

i:ai=1

V1

(
vi=1 | v<i

)

=
∏

i∈S

V1

(
vi=1 | v<i

)
·
∏

j∈S̄

V1

(
vj=1 | v<j

)

= A ·B (3)

whereA=
∏

i∈S V1

(
vi=1 |v<i

)
andB=

∏
j∈S̄ V1

(
vj=1 |v<j

)
.

A =

∫ ∞

−∞
P[τ̂1=x]

∏

i∈S

H
1
i (x) dx=

∫ ∞

−∞
P[τ̂1=x]

∏

i∈S

H
2
i (x) dx

≤ exp
(ǫ1
4

)∫ ∞

−∞
P[τ̂2=x]

∏

i∈S

H
2
i (x) dx

= exp
(ǫ1
4

)∏

i∈S

V2

(
vi=1 | v<i

)
(4)

934

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140

P
ro

b
a
b
ili

ty

α

ε=0.1
ε=0.3
ε=0.5
ε=0.7
ε=1.0

Figure 1: False negative probability

B =

∫ ∞

−∞
P[τ̂1=x]

∏

j∈S̄

H
1
j (x) dx

=

∫ ∞

−∞
P[τ̂1=x]

∏

j∈S̄

H
2
j (x+ 1) dx

≤ exp
(ǫ1
4

)∫ ∞

−∞
P[τ̂2=x+1]

∏

j∈S̄

H
2
j (x+ 1) dx

= exp
(ǫ1
4

)∫ ∞

−∞
P[τ̂2=x]

∏

j∈S̄

H
2
j (x) dx

= exp
(ǫ1
4

) ∏

j∈S̄

V2

(
vj=1 | v<j

)
(5)

From (4) and (5), it is seen that
∏

i:ai=1

V1

(
vi=1 | v<i

)
≤ exp

(ǫ1
2

) ∏

j:aj=1

V2

(
vj=1 | v<j

)

By the same argument as in the preceding, we can prove
∏

i:ai=0

V1

(
vi=0 | v<i

)
≤ exp

(ǫ1
2

) ∏

j:aj=0

V2

(
vj=0 | v<j

)

Therefore, for all v of any length t, V1(v)
V2(v)

≤ exp (ǫ1).

Utility Analysis..
As shown in Figure 1, the farther an itemset is from the

threshold, the lower chance of being a false negative it has,
which means that, except for itemsets that are close to the
“borderline”, the algorithm is highly likely to find all frequent
itemsets.

Theorem 3. Given an itemset X whose support is τ+α,

the probability that this itemset will become a false negative

is 1
4
exp

(
−αǫ

2

) (
αǫ
2

+ 2
)
.

Proof. The mechanism will answer correctly if the fol-
lowing condition is satisfied:

τ̂ − τ − (σ̂(X)− σ(X)) < α (6)

Observe that τ̂ − τ and σ̂(X) − σ(X) are two independent
random variables whose distribution is Lap

(
λ = 2

ǫ

)
. Let V

and W be random variables corresponding to τ̂ − τ and
σ̂(X) − σ(X), respectively. Let Z = V − W denote the

difference between two random variables. Since Laplace dis-
tribution is symmetric, Z=V−W=V+W . To denote the
probability density function of Z, we use the notation fZ(z).

fZ(z) =

∫ ∞

−∞

fV (x)fW (x− z) dx

=

∫ ∞

−∞

1

4λ2
exp

(
−
|x|

λ

)
exp

(
−
|x− z|

λ

)
dx

=

∫ 0

−∞

1

4λ2
exp

(x

λ

)
exp

(
−
|x− z|

λ

)
dx

+

∫ ∞

0

1

4λ2
exp

(
−
x

λ

)
exp

(
−
|x− z|

λ

)
dx

=
1

4λ
exp

(
−
|z|

λ

)(
1−
|z|

λ

)

The probability of not satisfying (6) is

1−
∫ α

−∞
1
4λ

exp
(
− |z|

λ

)(
1 + |z|

λ

)
dz = 1

4
exp

(
−α

λ

) (
α
λ
+ 2

)

False positives may also occur (again, most likely if close to
the top k), but are less critical as they may later be filtered
by having a low (noisy) support.

4.2 Deriving Noisy Support
Given a set of frequent itemsets L, it is easy to find the

set of maximal frequent itemsets M. This can be done on
the fly by checking if the newly added frequent itemset is
subsumed by any existing itemsets.

Algorithm 3 derives noisy supports of all itemsets in L.
The algorithm employs an FP-tree data structure and the
FPGrowth algorithm [9]. As the algorithm follows the usual
procedure of the FPGrowth algorithm, we only remark on
the differences.

• A node v in the FP-tree has three fields: v.item, v.count
and v.children, where item denotes which item v rep-
resents, count is the number of transactions repre-
sented by the path from the root to v, and children is
an array of v’s child nodes.

• The original algorithm arranges items in a transaction
in a decreasing order of their supports. However, since
that information is not available to our algorithm, we
sort them lexicographically.

• Before counting the support of each itemset, a node
is created for each itemset l ∈ 2M where 2M denotes
the power set of M (line 3 in Algorithm 2). This is to
ensure that the structure of FP-tree is not dependent
on any particular database instance; the tree structure
is completely determined by the output of the previous
phase,M, learned in a differentially private way.

• The count attribute of a newly created node in the FP-

tree is initialized to Lap
(

|M|
ǫ2

)
. Note that, although it

is omitted in the algorithm, every newly created node
should be linked to the nodes with the same item via
the side-link structure (line 8 in Algorithm 2).

• A transaction is mapped to a single path in the FP-
tree and only increases the count of the last node on
the path (line 17) by one. This means that adding or
removing one transaction can only change the count
of a node by at most one. Hence the sensitivity of
releasing counts in the FP-tree is 1.

935

Algorithm 2 BuildFPTree

Input: set of dimensions for projection M

Output: FP-tree T

1: function BuildFPTree(M, ǫ)
2: γ ← create a root node
3: for each itemset l ∈ 2M do

4: v ← γ

5: for each item i ∈ l do

6: if 6 ∃w s.t. w ∈ v.children ∧ w.item = i then

7: create a new node w under v
8: w.item← i; w.count← Lap

(
1
ǫ

)

9: v ← w

10: return γ

11: function UpdateCount(D,M, T)
12: for each transaction t ∈ D do

13: t← t ∩M ; v ← T

14: for each item i ∈ t do

15: if v has a child w s.t. w.item = i then

16: v ← w

17: v.count← v.count+ 1

• To get the correct count after building the FP-tree,
starting from the leaf nodes going up toward the root
node, the count of each node is added to its parent
(line 7 in Algorithm 3). Observe that both actual oc-
currence count and noise are propagated to the parent.

Given an itemset X, its noisy support σ̂(X) is an unbi-
ased estimator of the true support and we measure the er-
ror of noisy support of X as its variance, i.e., Error(X) =
E
[
(σ̂(X)− σ(X))2

]
. If an itemset X is a subset of mul-

tiple maximal frequent itemsets, say M1,M2, · · · ,Mm, its
support is counted by m FP-trees and they need to be ag-
gregated in a way that minimize Error(X). To aggregate
multiple noisy supports, each noisy support is weighted pro-
portional to the inverse of its variance as in Lemma 1.

Lemma 1. Given m noisy supports, σ̂1(X), · · · , σ̂m(X),
and their respective variances v1, · · · , vm, the variance of

weighted mean Var
(∑m

i=1 wiσ̂i(X)
)
is minimized by setting

wi =
1
vi

/∑m

j=1
1
vj

.

While Algorithm 3 looks like a (non-noisy) query to the
database, which would appear to violate differential privacy,
the output is equivalent to constructing a tree from the (dif-
ferentially private) set of maximal frequent itemsets, then
filling in supports using a noisy count query for each node.
The algorithm as written does this with a single pass through
the database.

Theorem 4. Algorithm 3 achieves ǫ2 differential privacy.

Proof. Given an input database D, the process of build-
ing the FP-tree can be viewed as a query function g(D)
which returns an FP-tree built upon D. An FP-tree is a set
of nodes each of which contains the count of the correspond-
ing itemset. Hence, using an arbitrary traversal order, it
can be modeled as a vector u

D
= (u1, · · · , ui, · · · , uq) where

ui(1 ≤ i ≤ q) represents a node count and q is the number of
nodes in the tree. For the proof, it suffices to show that the
function UpdateCount satisfies differential privacy since
this is the only place in the algorithm that requires access

Algorithm 3 GetNoisySupport

Input: database D, set of maximal frequent itemsets M,
privacy budget ǫ2

Output: Top k frequent itemsets in L and their support
1: function GetNoisySupport(D,M, ǫ2)
2: L ← φ

3: for each maximal itemset M ∈M do

4: T ← BuildFPTree(M, ǫ2
|M|

)

5: UpdateCount(D,M, T)
6: for each node v ∈ T do

7: v.count = v.count+
∑

w∈v.children w.count

8: FPGrowth(T,M, φ,L)

9: return top k itemsets and their supports in L

10: function FPGrowth(T,M,α,L)
11: if T has a single path P then

12: for each combination β ∈ P do

13: L(β ∪α).count← min. support of nodes in β

14: else

15: for each bi ∈M do

16: β ← bi ∪ α

17: L(β).count← support of bi
18: construct β-conditional FP-tree Tβ

19: FPGrowth(Tβ ,M, β)

to D. Other steps, such as noise propagation and support
derivation, can be done purely based on the output of the
function. Notice that changing a transaction in D can only
change the value of one entry by at most 1. This is because
the algorithm is designed to update the count of only one
node per transaction. Suppose the itemset X corresponding
to ui is removed fromD. It will only decrease ui by exactly 1
and other entries will remain the same. The resulting vector
will be u

D′
= (u1, · · · , ui−1, ui−1, ui+1, · · · , uq). Therefore,

for all D and its neighboring database D′,

∆g = max
D,D′

∣∣g(D)− g(D′)
∣∣ = 1

According to the Laplace mechanism adding independent

Laplace noise drawn from Lap
(

|M|∆g

ǫ2

)
to each entry satis-

fies ǫ2
|M|

-differential privacy, and by the composition theorem

of differential privacy [16] constructing |M| noisy FP-trees
satisfies ǫ2-differential privacy.

Figure 2 gives an example of building a noisy version of
an FP-tree. Let the input database be Figure 2(a) and,
for simplicity, assume each transaction is lexicographically
ordered after removing infrequent items. Given the mini-
mum support τ=2, there are two maximal frequent item-
sets, M1 = {a, c, d} and M2 = {b, e}. The proposed algo-
rithm will construct two FP-trees, one for M1 and the other
for M2. We now explain how the algorithm constructs the
noisy FP-tree for M1 = {a, c, d}. First, the algorithm starts
by creating a root node and inserts all the subsets of M1 to
the tree. I.e., it creates nodes corresponding to {a}, {c}, {d},
{a, c}, {a, d}, {c, d} and {a, c, d}. The count of each newly
created node is initialized with Laplace noise (line 8 in Al-
gorithm 2). After creating nodes, the algorithm takes each
transaction and filters out any item that does not appear in
M1. The item e is removed from the first transaction since it
is not a part of M1. The count of the node corresponding to

936

TID Items

1 {a, c, d, e}
2 {a, c, d}
3 {b, d, e}
4 {a, c}
5 {b, e}

(a) Input database

root

a:3

c:3

d:2

e:1

b:2

d:1

e:1

e:1

(b) original FP-tree

root

a

0+1.05

c

1+1.37

d

2-1.45

d

0+0.52

c

0-0.62

d

0+0.10

d

1+0.82

(c) the tree built

root

a

4.49

c

2.92

d

0.55

d

0.52

c

-0.52

d

0.10

d

1.82

(d) after count propagation

Figure 2: Construction of noisy FP-tree

this filtered transaction is updated. Unlike the original FP-
tree, only the count of the last node in the matching path is
increased by 1 to reflect the occurrence of the transaction. In
Figure 2(c), those nodes whose counts are updated to reflect
the occurrence of transactions are marked as shaded. The
first transaction causes to increase the count of node d, on
the path 〈(a : 1.05), (c : 1.37), (d : −1.45)〉, by 1. The second
transaction also increases the count of the same node since
they become the same after the filtering step. The third
transaction updates the count of node d on the first level.
The fourth transaction results in 〈(a : 1.05), (c : 2.37)〉. The
fifth transaction is ignored since it has no common item with
M1. All the items are removed from the transaction and the
resulting transaction becomes an empty set. After building
the tree, from the leaf toward the root, the count of each
node is added to its parent. The FP-tree after the count
propagation is shown in Figure 2(d).

4.3 Imposing Consistency
Given a node v in a non-perturbed FP-tree, according to

the construction of the tree, the count of v cannot be smaller
than the sum of counts of its children. Formally,

v.count ≥
∑

w∈v.children

w.count (7)

However, the constraint (7) may be violated in the noisy
tree created by Algorithm 3 due to the noise injected to each
node. The accuracy of randomized output can be improved
though post-processing to impose consistency on the tree-
like data structure [12, 6]. This is done without reference
to the original data, only the already differentially-private
structure, so the result is still differentially private.
In this section, we formulate the problem of imposing con-

sistency on the noisy FP-tree as a constrained least squares

problem and provide the formulation to find the solution.
Let x̂ = (x̂1, · · · , x̂n) be an n-vector of noisy counts of nodes
in an FP-tree, i.e., the ithelement of x̂i corresponds to the
noisy count of the ithnode vi in the tree. Note that the
ordering of nodes can be arbitrarily chosen. We impose con-
sistency constraints on the noisy FP-tree by constructing a
consistent vector x̄ such that the distance between x̄ and x̂

is minimized. In other words, given a noisy FP-tree T̂ , our

algorithm tries to find another tree that is closest to T̂ while
also satisfying the constraint.
Constraint (7) can be represented by a system of linear

inequalities Cx̄ ≤ x̄ where

C = (cij) =

{
1 if vj ∈ vi.children

0 otherwise

Let cTi denote the ithrow of C and Wi be the set of indices
of vi’s children, i.e., wi = {j | vj ∈ vi.children}. The
ithcTi represents the constraint x̄i ≥

∑
j∈Wi

x̄j . Hence, the
problem can be formulated as follows:

minimize
x̄

‖x̄− x̂‖2 subject to Cx̄ ≤ x̄ (8)

We can reformulate the problem as a least distance program-

ming (LDP) by substituting x̄− x̂ with x̄′.

minimize
x̄′

‖x̄′‖2 subject to Gx̄
′ ≥ g (9)

where G = I − C and g = −Gx̂.

Theorem 5. Let u be the solution to the nonnegative
least squares problem

minimize
u

‖Eu− f‖2 subject to u ≥ 0

and r = (r1, · · · , rn+1) = Eu− f where

E =

[
GT

gT

]
, f = [

n︷ ︸︸ ︷
0, · · · , 0, 1]T

. The unique solution to the problem (8) is

x̄ = (x̄1, · · · x̄n), x̄j = −rj/rn+1 + x̂j

Proof. See [14].

The impact of constraint enforcement on the accuracy is
evaluated in Section 5.2.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the pro-

posed algorithm (NC) on a variety of datasets and com-
pare it with two state-of-the-art algorithms: PrivBasis (PB)
and SmartTruncation (ST). The datasets used in the ex-
periments are described in Table 2. All experiments are
conducted on an Intel Xeon 2.4GHz machine with 24GB of
physical memory. To obtain an average performance esti-
mate, each algorithm was run 10 times. PrivBasis finds top
k frequent itemsets while SmartTruncation reports all fre-
quent itemsets with respect to the given threshold. For com-
parison, the minimum support for SmartTruncation was set
to the frequency of the kthmost frequent itemset. To com-
pare the performance of algorithms, we employ F score and
Relative error (RE) as measures of utility.

Definition 6 (F score). Let F and F̂ be the set of

correct and published frequent itemsets, respectively. The F
score is defined as follows

Fscore = 2×
precision ∗ recall

precision+ recall

937

dataset |D| |I| max |t| avg |t|

mushroom (MUS) 8,124 119 23 23
pumsb star (PUMSB) 49,046 2,088 63 50.5

retail (RETL) 88,162 16,470 76 10.3
kosarak (KOS) 990,002 41,270 2,498 8.1

aol (AOL) 647,377 2,290,685 48,070 34.9
BMS-POS (POS) 515,597 1,657 164 6.5

BMS-WebView1 (WV1) 59,602 497 267 2.5
BMS-WebView2 (WV2) 77,512 3,340 161 5.0

Table 2: Dataset description

where precision =
|{F

⋂
F̂}|

|F̂|
and recall =

|{F
⋂

F̂}|
|F|

Notice that for top k FIM algorithms |F| =
∣∣∣F̂

∣∣∣ = k, hence

precision = recall = Fscore = 1 − FNR where FNR, used
in [15] for utility measure, is the fraction of false negatives
in the released frequent itemsets.

Definition 7 (Relative Error). The relative error

of published frequent itemset F̂ is defined as

RE = medianX∈F̂

|σ̂(X)− σ(X)|

σ(X)

Before discussing the results, we note that the ST algorithm
has maximal cardinality parameter ℓ that controls the trade-
off between information loss and sensitivity reduction due
to the transaction truncation. Its performance heavily relies
on the proper setting of this parameter. However, there’s no
systematic way to set the parameter and the choice is merely
heuristic. We fine-tuned this parameter until reasonable ac-
curacy is obtained.

5.1 Comparison of Algorithms
Figure 3 shows the F scores of each algorithm by different

values of ǫ. Observe that the proposed algorithm consis-
tently outperforms both PB and ST algorithms and shows
stable performance for different privacy budget and k. The
F scores of PB and ST rapidly decrease at higher privacy
levels (smaller ǫ). As the value of ǫ is decreased — higher
privacy level is imposed—, the performance gap between the
proposed algorithm and other two algorithms becomes more
noticeable. Especially, in Figure 3(f) and 3(i) only the pro-
posed algorithm shows a good performance when ǫ = 0.1;
both PB and ST have unacceptably low F scores.
One interesting observation is that PB shows better per-

formance on POS dataset than ST while on the WV1 and
WV2 dataset ST outperforms PB. One reason for this is
that the maximal length of FIs in WV1 and WV2 dataset
is 2, hence transaction truncation effectively reduces noise
with relatively small cost of information loss. In contrast,
PB tends to generate long and many bases because of abun-
dance of frequent 2-itemsets. In addition, PB shows low
performance when k is large. The best F scores of ST we
were able to get for the PUMSB, retail and aol datasets were
under 0.6 even after substantial parameter tuning. As shown
in Figure 3, PB and ST algorithms are only useful when the
low privacy level is required (large ǫ). Figure 4 describes the
change of RE on different values of ǫ. Since ST algorithm
doesn’t report the support values of frequent itemsets, the
RE of proposed algorithm is only compared with that of PB.

The proposed algorithm shows similar or better performance
on all tested datasets. Observe that in Figure 4(b) and 4(c)
relative errors of PB are extremely high, which make the
released FIs almost useless in practice.

5.2 Impact of Imposing Consistency
Figure 5 illustrates how optional consistency enforcement

described in Section 4.3 affects performance. This experi-
ment used the PUMSB dataset. As shown in Figure 5(a),
imposing consistency on the FP-tree data structure not only
produces consistent results but also improves utility. Al-
though more improvement on accuracy is obtained when
k = 200, this post-processing step increases processing time.
The bigger FP-tree is, the longer it takes to find the con-
sistent result. This is because that the size of constraint
matrix is the number of nodes in the FP-tree, and solving
least distance for a huge matrix is computationally expen-
sive. Therefore, this post-processing step can be optionally
executed when the consistency is essential to the problem or
when there is enough computational power since the perfor-
mance of the proposed algorithm without the optimization
step is in general better than those of others. Although it
is unfair to compare the processing time of each algorithm
since the implementation of each algorithm is not written in
the same language, we present it to show that the proposed
algorithm is comparable to others.

6. CONCLUSION
We have proposed an algorithm for finding top-k frequent

itemsets in a differentially private way. Our algorithm first
discovers frequent itemsets (without their support values)
using a small portion of the privacy budget. This enables the
algorithm to use the remaining privacy budget to efficiently
and effectively build a differentially private FP-tree. Once
the tree is built, the supports of all frequent itemsets can be
derived from the tree without access to the database.

We believe that the sparse vector mechanism demonstrated
in this paper may also be applicable to other types of differ-
entially private data mining, as it allows a potentially large
amount of access to the data with the noise dependent only
on the data that affects the output, rather than all data
accessed.

Acknowledgment

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1012208.

7. REFERENCES

[1] C. C. Aggarwal, J. Pei, and B. Zhang. On privacy
preservation against adversarial data mining. In KDD

2006, pages 510–516, New York, NY, USA, 2006.
ACM.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In VLDB ’94,
pages 487–499, San Francisco, CA, USA, 1994.
Morgan Kaufmann Publishers Inc.

[3] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi.
Anonymity preserving pattern discovery. The VLDB

Journal, 17(4):703–727, July 2008.

[4] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta.
Discovering frequent patterns in sensitive data. In

938

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

c
o

re

ε

NC (k=100)

NC (k=200)

PB (k=100)

PB (k=200)

ST (k=100)

ST (k=200)

(a) BMS-POS

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

c
o

re

ε

NC (k=50)

NC (k=150)

PB (k=50)

PB (k=150)

ST (k=50)

ST (k=150)

(b) BMS-WebView-1

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

c
o

re

ε

NC (k=50)

NC (k=150)

PB (k=50)

PB (k=150)

ST (k=50)

ST (k=150)

(c) BMS-WebView-2

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

c
o

re

ε

NC (k=50)

NC (k=100)

PB (k=50)

PB (k=100)

ST (k=50)

ST (k=100)

(d) mushroom

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

c
o

re

ε

NC (k=50)

NC (k=150)

PB (k=50)

PB (k=150)

ST (k=50)

ST (k=150)

(e) pumsb star

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

c
o

re

ε

NC (k=50)

NC (k=100)

PB (k=50)

PB (k=100)

ST (k=50)

ST (k=100)

(f) retail

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

c
o

re

ε

NC (k=100)

NC (k=200)

PB (k=100)

PB (k=200)

ST (k=100)

ST (k=200)

(g) kosarak

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

c
o

re

ε

NC (k=300)

NC (k=400)

PB (k=300)

PB (k=400)

ST (k=300)

ST (k=400)

(h) kosarak

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

c
o

re

ε

NC (k=100)

NC (k=200)

PB (k=100)

PB (k=200)

ST (k=100)

ST (k=200)

(i) aol

Figure 3: F score by varying ǫ

KDD 2010, pages 503–512, New York, NY, USA,
2010. ACM.

[5] J. Chen and K. Xiao. Bisc: A bitmap itemset support
counting approach for efficient frequent itemset
mining. ACM Trans. Knowl. Discov. Data,
4(3):12:1–12:37, Oct. 2010.

[6] B. Ding, M. Winslett, J. Han, and Z. Li. Differentially
private data cubes: optimizing noise sources and
consistency. In SIGMOD 2011, pages 217–228, New
York, NY, USA, 2011. ACM.

[7] C. Dwork. Differential privacy. In ICALP 2006, pages
1–12, July 9-16 2006.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In TCC 2006, pages 265–284. Springer, 2006.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. SIGMOD Rec.,
29(2):1–12, May 2000.

[10] M. Hardt. A Study of Privacy and Fairness in

Sensitive Data Analysis. PhD thesis, Princeton
University, 2011.

[11] M. Hardt and G. N. Rothblum. A multiplicative
weights mechanism for privacy-preserving data
analysis. In FOCS 2010, pages 61–70, Washington,
DC, USA, 2010. IEEE Computer Society.

[12] M. Hay, V. Rastogi, G. Miklau, and D. Suciu.
Boosting the accuracy of differentially private
histograms through consistency. Proc. VLDB Endow.,
3(1-2):1021–1032, Sept. 2010.

[13] M. Kantarcioǧlu, J. Jin, and C. Clifton. When do data
mining results violate privacy? In KDD 2004, pages
599–604, New York, NY, USA, 2004. ACM.

[14] C. L. Lawson and R. J. Hanson. Solving least squares

problems. Classics in applied mathematics. SIAM,
Philadelphia, PA, 3 edition, 1995.

[15] N. Li, W. Qardaji, D. Su, and J. Cao. Privbasis:
frequent itemset mining with differential privacy. Proc.
VLDB Endow., 5(11):1340–1351, July 2012.

[16] F. D. McSherry. Privacy integrated queries: An
extensible platform for privacy-preserving data
analysis. In SIGMOD 2009, pages 19–30, New York,
NY, USA, 2009. ACM.

939

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

ε

NC (k=100)

NC (k=200)

PB (k=100)

PB (k=200)

(a) BMS-POS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

ε

NC (k=50)

NC (k=150)

PB (k=50)

PB (k=150)

(b) BMS-WebView1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

ε

NC (k=50)

NC (k=150)

PB (k=50)

PB (k=150)

(c) BMS-WebView2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

ε

NC (k=50)

NC (k=100)

PB (k=50)

PB (k=100)

(d) mushroom

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

ε

NC (k=50)

NC (k=150)

PB (k=50)

PB (k=150)

(e) pumsb star

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

ε

NC (k=50)

NC (k=100)

PB (k=50)

PB (k=100)

(f) retail

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

ε

NC (k=100)

NC (k=200)

PB (k=100)

PB (k=200)

(g) kosarak

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

ε

NC (k=300)

NC (k=400)

PB (k=300)

PB (k=400)

(h) kosarak

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

ε

NC (k=100)

NC (k=200)

PB (k=100)

PB (k=200)

(i) aol

Figure 4: Relative error by varying ǫ

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

c
o

re

ε

NC (k=150)

NC (k=200)

NC-OPT (k=150)

NC-OPT (k=200)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

ε

NC (k=150)

NC (k=200)

NC-OPT (k=150)

NC-OPT (k=200)

 0

 5

 10

 15

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
T

 (
s
e

c
)

ε

NC (k=150)

NC-OPT (k=150)

PB (k=150)

ST (k=150)

Figure 5: Effectiveness of consistency enforcement

[17] A. Roth and T. Roughgarden. Interactive privacy via
the median mechanism. In STOC 2010, pages
765–774, New York, NY, USA, 2010. ACM.

[18] M. J. Zaki. Scalable algorithms for association mining.
IEEE Trans. on Knowl. and Data Eng.,
12(3):372–390, May 2000.

[19] C. Zeng, J. F. Naughton, and J.-Y. Cai. On
differentially private frequent itemset mining. Proc.
VLDB Endow., 6(1):25–36, Nov. 2012.

940

	Introduction
	Related Works
	Preliminaries
	Notation
	Differential Privacy
	Sparse Vector Algorithm

	The NoisyCut Algorithm
	Discovering Frequent Itemsets
	Deriving Noisy Support
	Imposing Consistency

	Experimental Results
	Comparison of Algorithms
	Impact of Imposing Consistency

	Conclusion
	References

