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ABSTRACT
The effective analysis of social networks and graph-structured
data is often limited by the privacy concerns of individuals
whose data make up these networks. Differential privacy
offers individuals a rigorous and appealing guarantee of pri-
vacy. But while differentially private algorithms for comput-
ing basic graph properties have been proposed, most graph
modeling tasks common in the data mining community can-
not yet be carried out privately.

In this work we propose algorithms for privately estimat-
ing the parameters of exponential random graph models
(ERGMs). We break the estimation problem into two steps:
computing private sufficient statistics, then using these to
estimate the model parameters. We consider recent specifi-
cations of ERGMs and show that our perturbation method,
the chain mechanism, offers provably less error than compa-
rable methods. In addition, our redesigned estimation algo-
rithm considers the noise distribution of the private statistics
and offers better accuracy than directly performing param-
eter estimation on the statistics.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Security, integrity, and
protection; H.2.8 [Database Management]: Data Mining

Keywords
Differential privacy; Exponential random graph model

1. INTRODUCTION
The explosion in the collection of networked data has fu-

eled researchers’ interest in modeling networks and predict-
ing their behavior. However, for important application areas
such as disease transmission, network vulnerability assess-
ment, and fraud detection (among others), networks con-
tain sensitive information about individuals and their rela-
tionships. It is difficult for institutions to release network
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data and it remains difficult for reseachers to acquire data
in many important application domains.

Recently, a rigorous privacy standard, differential privacy
[8] was proposed that allows for formal bounds on the disclo-
sure about individuals that may result from computations
on sensitive data. Differential privacy provides each partic-
ipant in a dataset with a strong guarantee and makes no
assumptions about the prior knowledge of attackers.

Since its introduction, differentially private algorithms have
been developed for a wide range of data mining and anal-
ysis tasks, for both tabular data and networked data. For
networks, existing work has focused on algorithms for accu-
rately releasing common graph statistics under differential
privacy [12, 16, 25, 26, 28, 31]. However, graph statistics
are only one aspect of social network analysis and are often
most useful in conjunction with some paradigm for model-
ing structural features of graphs. Privately modeling graph
data has only rarely been explored by researchers; we are
aware only of work using the Kronecker model [19] under
differential privacy [22].

In this work, we study the differentially private use of the
classic exponential random graph model (ERGM) [21, 30,
27]. ERGMs are a powerful statistical modeling tool that al-
lows analysts to analyze a network’s social structure and for-
mation process. In social science and related fields ERGMs
have been successfully applied to many scenarios, such as
co-sponsorship networks [5], friendship networks [11], and
corporate and inter-organizational networks [21].

Our goal is to accurately support parameter estimation
for ERGMs under differential privacy, focusing on a specific
set of model parameters of recent interest to researchers:
the alternating statistics. These sophisticated statistics rep-
resent more structural information than traditional star and
triangle counts, and have been shown to lead to much better
modeling results [30, 27, 13, 11].

Our adaptation of differential privacy to graphs protects
relationships of individuals by limiting the influence on the
output of any single relationship (edge) that is created or
removed from the network.1 A standard algorithm that im-
plements this idea is the Laplace mechanism [8], which adds
random noise to the output. The amount of noise required
is related to the maximum difference in the output due to
a single edge addition or removal for any possible network

1This is one of the most common interpretations of differen-
tial privacy for graphs, called edge differential privacy [12].
Node differential privacy is stronger, but often hurts util-
ity. Our results for edge-differential privacy can easily be
extended to k-edge privacy to protect multiple edges.
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(this is the global sensitivity of the function producing the
output). For ERGM estimation, this requires calculating
the exact change in the ERGM parameter estimates as a
result of changing an edge. Unfortunately, the global sensi-
tivity for most ERGM parameters is either hard to compute
in general, or too high, so that using noise calibrated to the
global sensitivity is not acceptable.

To overcome this obstacle, we decompose private ERGM
estimation into two separate steps. We first privately com-
pute the sufficient statistics for ERGM estimation (typically
the model statistics required by model description) and then
estimate the parameters using only these sufficient statistics.
Since the estimation process uses only the differentially-
private statistics, and there is no additional access to the
original graph, the output of estimation is also differentially
private. In practice, the estimation algorithm is executed
either on the server side (data owner) or client side (the
analyst). In either case, it does not violate the privacy con-
dition to release both the statistics and the derived ERGM
parameters.

Challenges arise in both steps of our approach. While
prior work has proposed mechanisms for various graph statis-
tics, common ERGM models use unique statistics, e.g., al-
ternating graph statistics [30], which are a complex aggre-
gation of a series of basic graph statistics. We propose new
approaches for privately computing these statistics. The
second parameter estimation step could be implemented us-
ing standard methods [29, 3] while treating the privately-
computed statistics as if they were the true statistics. In-
stead, we propose a novel parameter estimation method
based on Bayesian inference, which considers the noise dis-
tribution from which the private statistics are drawn and
produces more accurate parameter estimates.

Contributions
• We propose a novel chain mechanism (in Section 3) that
adds noise in proportion to a bound on the local (rather than
global) sensitivity. Unlike global sensitivity, local sensitiv-
ity focuses only on changes to the current network. We use
the chain mechanism to compute particular graph statistics
(alternating k-triangle and alternating k-twopath) but it is
a general technique that can be used more broadly. Com-
pared with competing techniques that use local sensitivity,
the chain mechanism is easier to deploy and more efficient.
• We provide a formal analysis of the error of the chain

mechanism (in Section 3), showing that it provably outper-
forms prior work [16], offering lower error and a stronger
privacy standard (ε-differential privacy, versus relaxed (ε, δ)-
differential privacy).
• We describe a new Bayesian method for ERGM param-

eter estimation (in Section 4) that is designed for the noisy
sufficient statistics produced by a differentially private algo-
rithm. While it is possible to use a standard algorithm for
estimation, our inference takes the unknown network as a
hidden variable and can result in estimates with lower error.
• We study a set of ERGM models based on model terms

consisting of alternating graph statistics [30] (in Section 5).
Our experiments on both synthetic and real graphs show
that our techniques significantly reduce noise over competing
techniques, for fixed ε.

2. BACKGROUND

2.1 Exponential random graph model (ERGM)
A graph G = (V,E) is defined as a set of nodes V and

relationships E : V ×V → {0, 1}. A common representation
of a graph is as an adjacency matrix x, where xij ∈ {0, 1}
indicating whether there is an edge from node i to j. Let f(·)
define a vector of graph statistics called the model terms; the
concrete values of f(x) are the model statistics. Formally,
the ERGM with parameter vector θ defines a probability
distribution over graphs in the space X (typically the set of
all simple graphs with n vertices):

p(x|θ) =
exp(θ · f(x))

Zθ
(1)

Zθ is a normalizing constant to make p(x) a true probabil-
ity distribution, parameterized by θ. If x0 is the observed
graph and X represents the random variable defined by the
distribution above, our goal is to tune the parameter vector
θ, s.t. the expected value of f(X) is equal to observed statis-
tics, meaning Eθ(f(X)) = f(x0), which intuitively puts the
observed graph in the “center” of space of possible graphs
implied by the model. For example, the simplest ERGM
uses the number of edges as the only model term. If m0 is
the total number of edges in x0, the θ, which enables the
expected number of edges of ERGM equal to m0, is given
by [24]:

θ = log
m0(

n
2

)
−m0

(2)

Estimating θ. The optimal θ maximizes the likelihood of
x0 given θ [24], i.e., arg maxθ p(x0|θ). Unfortunately, most
ERGMs do not have an analytical or closed-form estimate
for the optimal θ. Thus, numerical solutions are proposed in
the literature, such as Markov chain monte carlo maximum
likelihood estimation [29] and Bayesian inference [3]. An
interesting property of these inference methods is that the
algorithm does not require access to the input graph itself,
i.e., the sufficient statistics for the parameter estimation are
just the model statistics. This feature enables us to decom-
pose the private inference problem into two steps, allowing
analysts to see only the sufficient statistics.

Alternating statistics. A model term is usually a count-
ing query of a specific graph pattern. Common patterns
include triangles, stars and loops [21]. Recent research has
introduced alternating statistics for k-star, k-triangle and
k-twopath, which can represent structural properties of a
graph better than traditional star and triangle counts [30].
Many works have explored these statistics since they were
proposed, and they are an active and promising form of
ERGM [30, 27, 13, 11]. Our work is focused on these alter-
nating statistics (defined precisely in Section 3) which have
not been studied before under differential privacy. A wide
variety of other model terms are used with ERGMs; our gen-
eral approach is compatible with other terms but they are
beyond the scope of this work.

2.2 Differential privacy
Differential privacy is traditionally defined over a tabular

based database D consisting of records, each of which de-
scribes an individual. When querying the database, differ-
ential privacy protects individuals by restricting the impact
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on the output of any individual who opts into or out of the
database. Two such databases that differ by one record are
called neighbors.

Definition 2.1 (Differential Privacy[7]). Let D and D′ be
neighboring databases and K be any algorithm. For any
subset of outputs O ⊆ Range(K), the following holds:

Pr[K(D) ∈ O] ≤ exp(ε)× Pr[K(D′) ∈ O] + δ

If δ = 0, K is standard ε-differentially private. Otherwise,
K is relaxed (ε, δ)-differentially private.

The input privacy parameter ε (and δ if using the relaxed
definition) are non-negative and are used to measure the
degree of privacy protection. Smaller ε means better privacy
as exp(ε) is close to one.

In this paper, our database is a graph describing rela-
tionships among individuals. Our purpose is to protect rela-
tionships among individuals so we adapt differential privacy,
following [12, 16, 26, 31, 28], by defining a neighboring graph
as a graph that differs by one edge.

Global sensitivity and the Laplace mechanism
Differential privacy can be achieved by adding noise to the
output of algorithms according to privacy parameters and
query sensitivity. The global sensitivity of a query is the
maximum possible difference in the output when evaluating
the query on two neighboring graphs. E.g., the query asking
for the maximum degree of a graph has global sensitivity 1,
because adding or removing one edge changes any degree by
at most 1. Let Lap(b) be a Laplace random variable with
mean 0 and scale b.

Definition 2.2 (Laplace mechanism [8]). Given query f on
graph x, the following algorithm K(f, x) is ε-differentially
private:

K(f, x) = f(x) + Lap(GSf/ε)

where global sensitivity

GSf = max
∀x1,x2 neighbors

|f(x1)− f(x2)|

A basic property we rely on is that post-processing a noisy,
differentially-private output using any algorithm that does
not access the original data cannot alter the privacy guaran-
tee [18]. Past research has shown that post-processing the
noisy output can, however, have significant impact on utility.
In addition, composition rules for differential privacy allow
us to compute the ε privacy standard that results from the
combined release of multiple query answers or releases. Pre-
cisely, if each release is εi-differential privacy, the combined
is then

∑
i εi-differential privacy.

In our perturbation step, we will use the composition rule
to add noise to multiple model terms. In the parameter
estimation step, we run post-processing.

Local sensitivity and its smooth bound
Some common graph analyses have high global sensitivity,
requiring the Laplace mechanism to add enormous amounts
of noise. For example, consider the simplest ERGM model
above where θ is calculated by (2). On a graph wherem0 = 0
or a graph where m0 =

(
n
2

)
, θ can change drastically with

the addition or deletion of one edge. In other words, the
global sensitivity is very high for this function. But the fact

is that most real graphs are nothing like these extremes.
Thus, by only focusing on the input graph’s neighbors, the
local sensitivity [25] can be much smaller.

Definition 2.3 (Local sensitivity[25]). Given query f and
graph x, local sensitivity LSf (x)

LSf (x) = max
x,x′neighbors

|f(x)− f(x′)|

However, one cannot achieve differential privacy by adding
noise proportional to the local sensitivity because local sen-
sitivity itself could disclose information. The authors of [25]
proposed using a smooth upper bound on the local sensi-
tivity, the smooth sensitivity. Intuitively, smooth sensitivity
tries to “smooth” out the difference between local sensitiv-
ities of two neighbors, so that it is itself not sensitive. Let
d(x, x′) be the distance between two graphs, i.e. the number
of edges in which they differ:

Definition 2.4 (Smooth bound and smooth sensitivity[25]).
Function Sf : X ⇒ R defines a β-smooth bound of local
sensitivity on query f if

∀x : Sf (x) ≥ LSf (x)

∀x, x′ neighbors : Sf (x) ≤ exp(β)Sf (x′)

The β-smooth sensitivity of f is a β-smooth bound, and

SSf,β(x) = max
x′

{
LSf (x′) · exp

(
−βd(x, x′)

)}
Calculating the smooth sensitivity for a function may be

easy (in cases like the median of a list of numbers [25]) but
could be quite difficult for other functions, requiring complex
proofs and nontrivial algorithms [16]. Even though smooth
sensitivity may provide tight bound for local sensitivity, we
show that it is NP-hard for two alternating statistics com-
monly used in ERGMs.

3. PERTURBING MODEL STATISTICS
In this section we provide methods for privately comput-

ing alternating graph statistics. We show alternating k-star
has a constant global sensitivity which allows the Laplace
mechanism to be applied with relatively small error. How-
ever, alternating k-triangle and alternating k-twopath both
have high global sensitivity. It is even hard to resort to
smooth sensitivity, as calculating smooth sensitivity is NP-
hard in both cases. To address this challenge, we propose the
novel chain mechanism which allows us to efficiently bound
the local sensitivity. We apply it to these two alternating
statistics, but note that it is a technique that is widely appli-
cable. We defer some proofs in this section to the Appendix.

3.1 Alternating graph statistics
Three alternating graph statistics, alternating k-star, al-

ternating k-triangle and alternating k-twopath, are essen-
tially complex aggregations of traditional k-star, k-triangle
and k-twopath statistics. Instead of considering a vector of k
terms, the alternating statistics aggregate over the terms but
enforce alternating signs between each consecutive term, to
weaken the correlation among different terms and effectively
reduce the weight on higher terms near k.

Alternating k-star. The k-star is a counting query of a star
pattern in the graph, where each star contains k edges, i.e.,
Sk =

∑
i

(
di
k

)
where di is the degree of node i.
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Definition 3.1 (Alternating k-star [30]). With parameter
λ ≥ 1, alternating k-star S is defined as

S(x;λ) = S2 −
S3

λ
+ . . .+ (−1)n−1 Sn−1

λn−3

The λ parameter here is a good way to control the geo-
metrical weights on all k-stars.

Alternating k-triangle. A k-triangle is a graph pattern in
which k triangles share a common edge. The k-triangle
query asks for the total number of k-triangles in the graph.
Define the shared partner matrix C, where each entry (i, j)
in C is the count of shared partners between nodes i and j,
mathematically Cij(x) =

∑
l xilxlj . Formally, k-triangle Tk

is defined:

Tk =
∑
i<j

xij

(
Cij
k

)
(k ≥ 2), and T1 =

1

3

∑
i<j

xijCij

Alternating k-triangle is defined similarly as alternating k-
star, using parameter λ:

Definition 3.2 (Alternating k-triangle [30]). With param-
eter λ ≥ 1, alternating k-triangle T is:

T (x;λ) = 3T1 −
T2

λ
+
T3

λ2
− . . .+

(
−1

λ

)n−3

Tn−2

Alternating k-twopath. A k-twopath graph pattern is very
similar to k-triangle, except it does not require the shared
edge required by the k-triangle statistic. Using the shared
partners matrix C above, the counting query for k-twopath
Uk is:

Uk =
∑
i<j

(
Cij
k

)
(k 6= 2), and U2 =

1

2

∑
i<j

(
Cij
2

)
And alternating k-twopath is:

Definition 3.3 (Alternating k-twopath [30]). With param-
eter λ ≥ 1, alternating k-twopath U is

U(x;λ) = U1 −
2

λ
U2 +

n−2∑
k=3

(
−1

λ

)k−1

Uk

Alternating k-star S is the only statistic that can be read-
ily solved using existing privacy mechanisms. Because the
degree sequence is a sufficient statistic for S, one natural ap-
proach is to use the mechanism described by Hay et al [12]
to compute a private degree sequence from x, and then use
it to compute S by Eq. (3). But, in fact, it can be shown
that the global sensitivity of S is at most 2λ. Thus, Laplace
noise may be a better choice (λ is usually set to a small in-
teger in practice). We make empirical comparisons between
these methods in Section 5.

Lemma 3.4. The global sensitivity of alternating k-star is
at most 2λ.

3.2 Chain mechanism
As the global sensitivity of alternating k-triangle and k-

twopath could be as large as O(n), we would like to use
smooth sensitivity for perturbation. However, the following
lemma shows the NP-hardness of finding the smooth sensi-
tivity of these two statistics:

Lemma 3.5. Computing the smooth sensitivity for both al-
ternating k-triangle and alternating k-twopath is NP-hard.

Inspired by the previous work [16], we should consider
other techniques for bounding local sensitivity. There are
two general conditions that must be satisfied if we are to use
a bound on local sensitivity can be used safely (i.e., using
the bound does not violate the privacy condition).

1. The bound is not smaller than the local sensitivity.

2. The bound itself is private.

In Definition 2.4 of the smooth bound, its first requirement
is exactly our first condition and its second requirement sat-
isfies the second condition here. However, the tightness of
their second requirement results in the complexity of calcu-
lation of smooth sensitivity in some applications. To make
the bound itself private, by relaxing the bound a bit, a sim-
pler process can be applied. Before we introduce the chain
mechanism, we define a random variable chain.

Definition 3.6. Y0, Y1, . . . , Yn is a random variable chain,
when the following condition is satisfied: for any i ∈ [0, n−
2], Yi is conditionally independent of Yi+2, Yi+3, . . . Yn given
Yi+1.

From conditional independence, an important property of
random variable chain is the following:

Pr(Yi|Yi+1, Yi+2, . . . , Yn) = Pr(Yi|Yi+1)

Let f(x) be the sensitive function/query. We use LSf,1(x)
to denote the local sensitivity of f , a function of the in-
put graph x. More generally, we use LSf,i(x) to denote the
local sensitivity of function LSf,i−1(x). We call LSf,0(x),
LSf,1(x),LSf,2(x),. . .,LSf,n(x) a local sensitivity chain of f .

To satisfy condition one above, we bound the local sen-
sitivity by adding random positive noise to LSf,1(x) (recall
Laplace noise is symmetric), so that we can calibrate the
noise added to f(x) according to that bound. The question is
now how much noise should be added into LSf,1(x), so that it
is itself private, satisfying condition two above. It is actually
decided by its global sensitivity GS(LSf,1(x)). Moreover, if
GS(LSf,1(x)) is too large, we could repeat the step by adding
noise to LSf,1(x) calibrated to local sensitivity of LSf,1(x),
LSf,2(x), and then safely bound LSf,2(x) by its global sensi-
tivity GS(LSf,2(x)). We describe this general process as the
chain mechanism. Let Expn(b) be an exponential random
variable with density function p(y) = 1

b
exp(−y

b
) for y ≥ 0

and p(y) = 0 for y < 0.

Algorithm 1 Chain mechanism

Require: input graph x, query f , ε0, ε1, . . . , εn
1: yn = LSf,n(x) + Expn(GS(LSf,n)/εn)
2: for i in n− 1 to 1 do
3: yi = LSf,i(x) + Expn(yi+1/εi)

4: ỹ = f(x) + Lap(y1/ε0)
5: return ỹ, . . . , yn

Theorem 3.7. Chain mechanism (Algorithm 1) is
∑
i εi-

differential privacy.

In Algorithm 1, we refer to n as the size of the chain mech-
anism, i.e., the n-chain mechanism. Note that the chain
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mechanism does not specify how to distribute the privacy
parameters εi among steps. An optimal distribution will
require the knowledge of local sensitivity chain, which is
sensitive information itself. A simple way is to distribute ε
evenly, i.e., ∀i εi = ε/(n+ 1).

Error analysis. We use mean squared error (MSE) as the
measurement of error. MSE of ỹ in Algorithm 1 can be
written as E[(ỹ− f(x))2] = V[ỹ] + (E[ỹ]− f(x))2. Since ỹ is
always unbiased (Laplace noise in the last step with mean
zero), MSE(x) = V[ỹ]. It is easy to see that ỹ, y1, . . . , yn is
actually a random variable chain. Specifically,

yi − LSf,i(x) ∼ Expn(yi+1/εi)
∣∣∣yi+1, ∀i ∈ [1, n− 1]

ỹ − f(x) ∼ Lap(y1/ε0)
∣∣∣y1

Without knowing the true value of the local sensitivity
chain, it is quite hard to compute the MSE. That is to say,
we cannot compute the error of the chain mechanism like we
do for the Laplace mechanism, since the noise in the latter is
independent of input graph x. But, by exploring properties
of the random variable chain, it is possible to utilize the
following Lemma as a closed form calculation tool for the
MSE of the chain mechanism. In fact, we generalize law of
total expectation/variance [32] for random variable chains.

Lemma 3.8. Y0, Y1, . . . , Yn is a random variable chain. Write⊔
n,i E[·] as a shortcut for EYn [EYn−1|Yn [. . .EYi|Yi+1

[·]]]. Then

E[Y0] =
⊔
n,0

E[Y0]

V[Y0] =
⊔
n,1

E[ V
Y0|Y1

[Y0]]

+

n−2∑
i=2

(⊔
n,i

E[ V
Yi−1|Yi

[
⊔
i−2,0

E[Y0]]]

)
+ V
Yn

[
⊔
n−1,0

E[Y0]]

Theorem 3.9 (MSE of chain mechanism). Given the output
of an n-chain mechanism, ỹ, y1, . . . , yn, the mean squared
error (MSE) is

MSEf,n =
⊔
n,1

E[ V
ỹ|y1

[ỹ]]

Let l1, . . . , ln be the local sensitivity chain, with li = LSf,i(x).
Writing GS(LSf,n(x)) as gn, we have:

MSEf,1 =
2

ε21ε
2
0

[
g21 + (l1ε1 + g1)2

]
(3)

MSEf,2 =
2

ε22ε
2
1ε

2
0

[
2g22 + (l2ε2 + g2)2 + (l2ε2 + l1ε2ε1 + g2)2

]
(4)

Theorem 3.9 is verified by applying Lemma 3.8 to Algo-
rithm 1. The general MSE for any size n chain mechanism
can be written as a lengthy closed-form equation, which we
omit here. In experiments, n = 2 performs well for alter-
nating statistics. In general, n should not be a very big
number otherwise each part gets smaller εi, but users should
also consider the difficulty of computing the local sensitivity
chain, as well as the amount of global sensitivity at the tail
(it should not be too large).

Comparison with RLSB [16]. Karwa et al. proposed a
similar idea for bounding local sensitivity by adding specially
generated noise [16]. We call their technique relaxed local
sensitivity bounding (RLSB) because their bound does not
strictly satisfy the first condition above for safely bounding
local sensitivity. Consequently, only relaxed (ε, δ)-differential
privacy is supported. More importantly, because they add
too much noise to the local sensitivity, our work, which sup-
ports stronger privacy definition (ε-differential privacy), still
offers better utility, as stated in Lemma 3.10.

Lemma 3.10. Assuming ε is evenly distributed, for any
function f , chain mechanism offers lower mean squared er-
ror than RLSB.

3.3 Alternating k-triangle and k-twopath
Now we apply the chain mechanism to alternating k-triangle

and alternating k-twopath. Let β = 1 − 1/λ. By binomial
coefficients, we can rewrite alternating k-triangle T (x;λ) as

T (x;λ) = λ
∑
i<j

xij
{

1− βCij

}
(5)

Lemma 3.11. Set C′iv = Civ − xij and C′vj = Cvj − xij.
Let Nij be all shared partners of node i and j and Cmax =
maxi<j Cij. The local sensitivity of T is

LST,1(x) = max
i<j

λ
{

1− βCij

}
+
∑
v∈Nij

{
βC
′
iv + βC

′
vj

}
(6)

≤ λ+ 2Cmax (7)

As Cmax has global sensitivity 1, LST,1 has global sensi-
tivity at most 2. So we can construct a 1-chain mechanism
using LST,1 = λ + 2Cmax to compute private alternating
k-triangle.

For alternating k-twopath U(x;λ), we can rewrite it as

U(x;λ) = λ
∑
i<j

{
1− βCij

}
(8)

Lemma 3.12. Let Ni be the set of neighbors of node i and
dmax be the maximum degree. Set C′iv = Civ − xij and
C′vj = Cvj − xij. We have local sensitivity

LSU,1(x) = max
i<j

 ∑
v∈Ni,v 6=j

βC
′
vj +

∑
v∈Nj ,v 6=i

βC
′
iv

 (9)

≤ 2dmax (10)

LSU,2(x) ≤ max(4, 1 + Cmax)

λ
(11)

From Lemma 3.12 above, 2dmax has global sensitivity 2,
since dmax will change by at most 1 by adding or remov-

ing an edge. max(4,1+Cmax)
λ

has global sensitivity 1/λ for
Cmax > 3. Therefore, we can construct either a 1-chain
or 2-chain mechanism. We will compare the resulting error
empirically in Section 5.

4. ERGM PARAMETER ESTIMATION
The parameter estimation step in our workflow takes the

private sufficient statistics ỹ from the previous perturbation
step and finds the best parameter vector θ. As stated above,
this step is essentially post-processing a differentially private
output, so the output θ is also differentially private. In this
section, we discuss different ways of estimating θ given ỹ.
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4.1 Standard estimation
Current estimation techniques [29, 3] provide a baseline

solution for parameter estimation with private statistics. As
these procedures essentially only need access to model statis-
tics, our sufficient statistics in ỹ take the place of the true
model terms. The semantics is now to search for θ that
defines a probability distribution on graphs with expected
model statistics equal to ỹ. Intuitively, the utility of this
method depends on the amount of noise added into y0 and
how θ reacts to those changes in y0.

Prior to applying standard estimation, we post-process ỹ
to cope with some of the difficulties of the perturbed model
statistics. As the output of perturbed ỹ might not be graph-
ical (i.e., no graph has statistics equal to ỹ), standard esti-
mation may fail to converge. We propose generating a graph
that has the closest statistics to ỹ and use the statistics from
that graph to replace ỹ, in order to avoid non-converging
situations and to potentially remove noise from ỹ simulta-
neously. We use simulated annealing for this purpose and,
in practice, we often see big improvements in the accuracy
of estimates.

4.2 Bayesian inference
Standard estimation is the direct way of post-processing

ỹ, but since we know the distribution of the noise added
to ỹ, we can “guess” the true values and incorporate them
into the estimation algorithm. This idea naturally fits into
Bayesian inference based post-processing. While based on
earlier work [3] on Bayesian inference for non-private esti-
mation, our method deals with the extra hidden variable of
graph x in our setting. And later we will see, by introducing
the unknown x, our method can utilize more information
from private statistics, such as the local sensitivity chain
from the chain mechanism. In particular, we search for θ
given ỹ, represented as the posterior distribution of ERGM
parameter θ:

p(θ|ỹ) ∝ p(ỹ|θ)p(θ) =
∑
x

p(ỹ|x)p(x|θ)p(θ)

=
∑
x

p(ỹ|x)q(x; θ)p(θ)/Zθ (12)

where x is our guess about x0, but the fact is that we need
to summarize over all possible x to get to the posterior. In
(12), p(ỹ|x) is the privacy distribution, defined by the dif-
ferential privacy mechanism applied on sufficient statistics.
p(x|θ) is the ERGM distribution, as shown in (1) and q(x; θ)
represents the unnormalized distribution.

q(x; θ) = exp(θ · f(x)) (13)

The probability distribution (12) is hard to calculate or
even sample from directly due to summarization over all
graphs and normalizing constant Zθ. Using the exchange
algorithm [23], we introduce extra variables x, θ′ and x′ to
bypass the difficult terms (12). By carefully choosing the
probability distribution of these new random variables, the
posterior distribution is now augmented as shown in (14).
The key is that the marginal posterior distribution for θ in
(14) is equivalent to (12). Thus, if we are able to sample from
the distribution in (14), the marginal posterior distribution
for θ can be obtained by summarizing over all samples.

p(θ, x, θ′, x′|ỹ) ∝ p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′) (14)

θ′ is sampled from proposal distribution p(θ′|θ), where, for
a given θ, a new θ′ can be proposed according to p(θ′|θ).
A common choice is a multivariate normal distribution or a
multivariate t distribution, with mean equal to θ. x, x′ are
sampled graphs under the ERGM with parameter θ and θ′.

Algorithm 2 ERGM parameter estimation with private
model statistics

Require: ỹ, initial θ, x
1: for i in 1 to T do
2: Sample θ′ ∼ p(θ′|θ)
3: Sample x′ ∼ p(x′|θ′)
4: Replace θ with θ′ and x with x′, with probability

min(1, H) //H by (15) below

5: return average of multiple samples of θ.

A MCMC based sampling process for (14) is shown in
Algorithm 2. In particular, the initial input θ and x could
be any parameters and any graph. In Line 3, we need a
separated MCMC chain to sample x′ ∼ p(x′|θ′). In such
MCMC algorithms, at each iteration, we propose adding
or removing edges in the current state of graph, calculate
the new model statistics, compare the probability of new
state xnew to that of old state xold, and with probability
p(xnew|θ′)/p(xold|θ′) the change is accepted. This process
should be run long enough so that final sample x′ is truly
from p(x′|θ′).
H in Line 4 is the ratio of accepting the exchange, com-

puted by comparing the probability before and after ex-
change. That is, we exchange θ with θ′ and x with x′ in
(14) and calculate the ratio. Then the complex terms are
cancelled out and each remaining term is easy to compute.

H =
p(ỹ|x′)p(x′|θ′)p(θ′)p(θ|θ′)p(x|θ)
p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′)

=
p(ỹ|x′)p(θ′)p(θ|θ′)
p(ỹ|x)p(θ)p(θ′|θ) (15)

In practice, Algorithm 2 usually results in low acceptance
rates in the exchange step in Line 4 and thus long mixing
times for the MCMC process. We now propose to separate
that last step, isolating simultaneously updated θ and x into
two different steps, as shown in Algorithm 3, which improves
the acceptance rate significantly.

Algorithm 3 Improved ERGM parameter estimation with
private model statistics

Require: ỹ, initial θ, x
1: for i in 1 to T do
2: Sample θ′ ∼ p(θ′|θ)
3: Sample x′ ∼ p(x′|θ′)
4: Exchange θ with θ′, with probability min(1, H1)

//H1 by (16) below
5: Replace x with x′, with probability min(1, H2)

//H2 by (17) below

6: return average of multiple samples of θ.

H1 and H2 in Algorithm 3 are defined as follows.

H1 =
p(ỹ|x)p(x|θ′)p(θ′)p(θ|θ′)p(x′|θ)
p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′)

=
q(x; θ′)p(θ′)p(θ|θ′)q(x′; θ)
q(x; θ)p(θ)p(θ′|θ)q(x′; θ′) (16)
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H2 =
p(ỹ|x′)p(x′|θ)p(θ)p(θ′|θ)p(x|θ′)
p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′)

=
p(ỹ|x′)q(x′; θ)q(x; θ′)

p(ỹ|x)q(x; θ)q(x′; θ′)
(17)

The correctness of Algorithm 3 can be proved briefly in
terms of a component-wise Metropolis-Hasting algorithm,
with hybrid Gibbs updating steps. In each iteration, θ′ and
x′ (Line 2 and 3) are drawn based on full conditional distri-
bution, so the updating probability is always 1. In Line 4
and 5, we update θ and x with Hasting ratios. Although we
may end up updating θ′ and x′ more times in a iteration,
we still get to the detailed balance in MCMC [9].

When applying Algorithm 3 to real ERGM models, the
key is correctly computing H1 and H2. Everything in H1 is
independent of the privacy mechanism used for the model

terms. In H2, the ratio of privacy distribution p(ỹ|x′)
p(ỹ|x) is

mechanism dependent. Here, we illustrate the cases for both
Laplace and Chain mechanism.

Example 4.1 (Laplace mechanism). If the Laplace mecha-
nism is applied on all model terms (fi for i-th model term)
independently, and ỹ, ε and GS are the vectors of private
statistics, privacy parameters and global sensitivities respec-
tively, p(ỹ|x) is then:

p(ỹ|x) ∝ exp

(
−
∑
i

|ỹi − fi(x)|εi/GSi

)
(18)

Assume we use a symmetric proposal distribution for θ, i.e.,
p(θ′|θ) = p(θ|θ′). With Algorithm 3, ratio H1 and H2 can
be written as (after taking logarithm)

logH1 = log
p(θ′)

p(θ)
+ (θ − θ′) ·

(
f(x′)− f(x)

)
(19)

logH2 = (θ − θ′) ·
(
f(x′)− f(x)

)
+∑

i

εi
GSi

(
|ỹi − fi(x)| − |ỹi − fi(x′)|

)
(20)

Example 4.2 (Chain mechanism). Assume a single model
term (multiple model terms can be adjusted accordingly),
and privacy parameter ε. In the process of MCMC, for
current sampled graph x, we write l1, . . . , ln as the local
sensitivity chain and yn+1 for the global sensitivity of ln.
The chain mechanism returns ỹ, y1, . . . , yn for the observed
graph. Based on Algorithm 1, p(ỹ|x) is then:

p(ỹ|x) = p(ỹ|x, y1)p(y1|y2, l1) . . . p(yn|yn+1, ln)

∝ exp

 ∑
i∈[1,n]

li − yi
yi+1/εi

− |ỹ − f(x)|
y1/ε0

 (21)

Calculation of p(ỹ|x) deals with not only the private version
of local sensitivity chain (y1, . . . , yn), but also more statis-
tics from the sampled graph in each iteration of MCMC
(l1, . . . , ln). Recall in the standard estimation, none of them
is incorporated in the process. In the next section, we em-
pirically show that such extra information can benefit the
estimation. As in the example above, assume a symmetric
proposal distribution. With Algorithm 3, ratio H1 is the
same as (19). Before calculating H2, we first check if all
li ≤ yi, otherwise H2 = 0, because exponential noise in the
chain mechanism is non-negative. If the check passes, H2 is:

logH2 = (θ − θ′) ·
(
f(x′)− f(x)

)
+∑

i∈[1,n]

l′i − li
yi+1/εi

+
|ỹ − f(x)| − |ỹ − f(x′)|

y1/ε0
(22)

Marginal maximum a posterior. In practice, instead of
returning the mean of the marginal posterior (14), using
a marginal maximum a posterior (MMAP) could give an-
alysts better estimates. Formally, MMAP of θ is defined
as argmax

θ
p(θ|ỹ). A fast method we apply is reusing the

samples of θ from Algorithm 3, and performing approxi-
mate MMAP estimation by histogram or density estimation.
More sophisticated solutions require further expanding (14)
before MCMC sampling [6, 15].

5. EVALUATION
Our evaluation has two goals. First we assess the per-

turbation error of our privacy mechanisms, particularly the
Laplace mechanism on alternating k-star and the Chain mech-
anism on alternating k-triangle and k-twopath. Second,
we evaluate the ERGM parameter estimation with private
statistics using different approaches proposed in Section 4.
All our experiments are run on Linux servers with Intel Xeon
CPU and 8GB memory.

5.1 Perturbation error
Our datasets include synthetic and real graphs. Synthetic

graphs are generated using a random graph model, G(n, p),
where parameters n and p control the size of graph and the
probability of two nodes connecting respectively. We iterate
n from 100 to 1000 with step 100. p is set to log(n)/n for
relatively sparse graphs and then moved to 0.1 and higher
by a step of 0.1. Though we only report the sparse case
and p = 0.1, results for larger p agree with the conclusions.
Error measurement is root mean square error (RMSE).

Alternating k-star As described in Section 3.1, we can
apply the Laplace mechanism (LAP) directly or compute
the degree distribution privately first, by isotonic regression
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(ISO) from [12] and use it as a sufficient statistic for alter-
nating k-star. Figure 1 shows the error of the two methods
by varying p and λ, with different settings of ε = 1, 0.1, listed
in the legend text. As we do not have analytical RMSE for
the ISO case, it is calculated from 100 independent pertur-
bations. We clearly see LAP significantly outperforms ISO,
even when λ = 10 at both ε settings (and recall that the
global sensitivity is 2λ). For the rest of this section, if not
stated, we set λ = 2 as it is the value normally recommended
[21] and usually plays a minor part in the workflow.

Alternating k-triangle The chain mechanism is applied
to alternating k-triangle, with a size-one chain. We compare
with RLSB [16], setting ε to 1 and 0.1 and fixing δ = 0.01 for
RLSB. Figure 2 shows that the Chain is constantly better,
as stated by Lemma 3.10. Moreover, with smaller ε (mean-
ing greater privacy protection), Chain can gain even more
advantage over RLSB, not to mention that RLSB only offers
relaxed differential privacy.

Alternating k-twopath We discussed in Section 3.3 how
a 1-chain or 2-chain can be used for alternating k-twopath.
Using RLSB’s noise generation, we can bound local sensitiv-
ity with its global sensitivity (1-RLSB), or treating Cmax as
the deciding factor of local sensitivity and bounding it first
(2-RLSB). We present results in Figure 3. As above, in all
circumstances, Chain illustrates superior utility over RLSB
and the difference is even more drastic in the 2-chain case.
This is because RLSB adds more noise than necessary in
each step of the local sensitivity chain, which accumulates
in the final output. If the local sensitivity chain size is larger
than 2, there will be an even greater difference. In Figure 3,
with λ = 2, 1-chain generates less error than 2-chain on most
cases, except on random graphs with p = 0.1 and n > 300.
When increasing λ, 2-chain benefits from shrinked LSU.2.
At small ε = 0.1, with random graphs with n = 1000 and

Network nodes edges astar atri atwop

karate 34 78 194.0 88.7 411.7
dolphins 62 159 418.1 177.5 705.4
lesmis 77 254 756.4 426.5 1565.5
adjnoun 112 425 1292.9 452.2 3801.1
football 115 613 1992.4 922.4 3675.4

Table 1: Real networks for ERGM parameter estimation

Model Model terms Perturbation mech

M1 edges, astar LAP, LAP
M2 edges, atri LAP, 1-Chain
M3 edges, atwop LAP, 1-Chain

Table 2: Model descriptions

p = 0.1, 2-chain needs roughly λ = 10 to surpass 1-chain,
which happens when Eq. (9) is much smaller than Eq. (10).
Real graphs For real graphs, we consider several collected
networks from the SNAP collection2 in order to figure out if
our alternating statistics can be perturbed in a “meaningful”
way, i.e., small relative noise that doesn’t destroy the util-
ity. Our metric is relative RMSE, which is RMSE divided
by the true statistic. As shown in Figure 4, with ε = 0.1,
all three alternating statistics (with shortened names: astar,
atri, atwop) are estimated with low relative error. In partic-
ular, error for alternating k-star is between 10−3 and 10−4,
alternating k-triangle at 10−1 and alternating k-twopath at
10−2.

5.2 ERGM parameter estimation
For the evaluation of ERGM parameter estimation, we

want to compare the algorithms in Section 4. In practice, the
data owner will only perturb each statistic once and then re-
lease it to the analysts. As the perturbation is a randomized
process, our goal is to understand how good our estimation
algorithm is on average. So for each graph and each model
description, we perturb the statistics N = 50 times and
run the estimation algorithm on each perturbation, finally
measuring their quality by RMSE with respect to estimates

in the non-private case,
√

1/N
∑
i∈[1,N ](θ̂i − θ)2, where θ is

the “true” value, calculated from the non-private estimation
algorithm from [14] or [3], θ̂i is θ from i-th perturbation.

As mentioned in [3], the estimation using the Bayesian
technique has general scalability issues, where it becomes
very slow for any graphs beyond a few hundred of nodes.
Moreover such time cost also varies with the model terms,

2http://snap.stanford.edu
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e.g., alternating k-twopath takes much more time than the
other two alternating statistics, as calculation of the accep-
tance ratio in MCMC sampling of x ∼ p(x|θ) is more compli-
cated. Therefore, here we focus on smaller graphs, and this
is the common practice for many ERGM works such as [3,
5, 21]. Our test networks3 include karate, dolphins, lesmis,
adjnoun and football. Detailed facts are listed in Table 1.
We fix ε = 1.

We experimented with three models, each of which corre-
sponds to one of the alternating statistics, with the purpose
of testing estimation by isolating other factors. We include
the count of edges as a shared term in all models, as it is
very common in ERGM applications. As shown in Table 2,
each model contains two terms, with correspondingly two
parameters, θ = (θ1, θ2). The estimation algorithms will be
standard estimation (STD) and Bayesian inference (BINF).
In all cases, the privacy budget is distributed evenly in a
way such that each generation of noise uses same share of
the overall ε. In Figure 5, each graph is represented with
4 bars, showing θ1 of STD, θ1 of BINF, θ2 of STD, θ2 of
BINF. In M1 and M2, we see a significant improvement of θ
from STD to BINF. Especially in M2, BINF limits all errors
to around 5 or smaller where STD can go up to 40. We be-
lieve this is because BINF can utilize the extra information
presented by the local sensitivity chain as shown in Exam-
ple 4.2. In M3, we find BINF helps a lot on the bad case
(karate graph) but not really on others as they already have
low error in STD.

6. RELATED WORK
Differential privacy [8] has been actively studied in many

sub-areas of computer science. Although the original focus
was mainly on tabular data, the definition can be adapted to
graph data [12] as well as other data models. Most research
into differentially private analysis of graphs has focused on
releasing graph statistics, e.g., degree sequence [12], trian-
gle/star [16, 25], joint degree distribution/assortativity [26,
28] and clustering coefficient [31]. For modeling graphs pri-
vately, we are aware only of a private Kronecker graph mod-
eling approach under differential privacy [22]. While our
work relies on obtaining good private statistics, the ultimate
goal is to allow ERGM modeling under differential privacy.

All of these works, including ours, protect relationships,
i.e. they support edge-differential privacy. A stronger stan-
dard is to protect individuals, where neighbors are defined by
changing a single node. Recently, researchers have developed

3http://www-personal.umich.edu/˜mejn/netdata/

some mechanisms for calculating private graph statistics un-
der node differential privacy [17, 2, 4]. Our chain mechanism
could be a good supporting algorithm when bounds on local
sensitivity are required [17, 2].

Parameter estimation for ERGMs has also evolved from
pseudo likelihood estimation (MPLE) [1], to Monte Carlo
maximum likelihood (MC-MLE) [10] to recent stochastic ap-
proximation [29] and Bayesian inference [3]. These advances
have helped ERGMs become central to social network anal-
ysis with many successful applications [21].

7. CONCLUSION AND FUTURE WORK
In this work, we consider the problem of estimating pa-

rameters for the exponential random graph model under dif-
ferential privacy. Our solution decomposes the process into
two steps: releasing private statistics first and running esti-
mation second. Our local sensitivity-based chain mechanism
can offer lower error than existing methods. The redesigned
Bayesian parameter estimation is flexible and more accurate
than standard methods. For future work, improving scala-
bility is an important direction as well exploring alternative
model terms.
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APPENDIX
We provide other proofs in the full version of this paper [20].

Proof of Theorem 3.7. Let Ỹ , Y1, . . . , Yn be the random vari-
ables representing output of chain mechanism. By the chain
property of Yi series (i.e., Yi is conditionally independent of
Yi+2, . . . , Yn given Yi+1), we have:

Pr(Ỹ = ỹ, Y1 = y1, . . . , Yn = yn)

= Pr(Ỹ = ỹ|Y1 = y1) Pr(Y1 = y1|Y2 = y2)

. . .Pr(Yn−1 = yn−1|Yn = yn) Pr(Yn = yn)

Now we want to prove for each combination of y1, . . . , yn,
the multiplicity of probabilities above satisfies differential
privacy. More precisely, each Pr(Yi = yi|Yi+1 = yi+1) offers
εi-differential privacy.

We start with i = n. Let Pr′(·) represent the probability
on neighbor x′ and g = GS(LSf,n(x))

Pr(Yn = yn)

Pr′(Yn = yn)
=

εn/g exp(−(yn − LSf,n(x)) ∗ εn/g)

εn/g exp(−(yn − LSf,n(x′)) ∗ εn/g)

= exp

(
(LSf,n(x)− LSf,n(x′)) ∗ εn

g

)
Because −g ≤ LSf,n(x)− LSf,n(x′) ≤ g, so

exp(−εn) ≤ Pr(Yn = yn)

Pr′(Yn = yn)
≤ exp(εn)

We move to Pr(Yi = yi|Yi+1 = yi+1) when i < n.

Pr(Yi = yi|Yi+1 = yi+1)

Pr′(Yi = yi|Yi+1 = yi+1)

=
εi/yi+1 exp(−(yi − LSf,i(x)) ∗ εi/yi+1)

εi/yi+1 exp(−(yi − LSf,i(x′)) ∗ εi/yi+1)

= exp

(
(LSf,i(x)− LSf,i(x

′)) ∗ εi
yi+1

)
Because −LSf,i+1(x) ≤ LSf,i(x) − LSf,i(x

′) ≤ LSf,i+1(x)
and yi+1 ≥ LSf,i+1 (due to positive exponential noise), we
have:

exp(−εi) ≤
Pr(Yi = yi|Yi+1 = yi+1)

Pr′(Yi = yi|Yi+1 = yi+1)
≤ exp(εi)

Similarly, line 4 in Algorithm 1 is ε0-differential private.
Therefore, the whole algorithm is

∑
i εi-differential private.
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