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ABSTRACT
Information networks, such as social media and email net-
works, often contain sensitive information. Releasing such
network data could seriously jeopardize individual privacy.
Therefore, we need to sanitize network data before the re-
lease. In this paper, we present a novel data sanitization
solution that infers a network’s structure in a differentially
private manner. We observe that, by estimating the connec-
tion probabilities between vertices instead of considering the
observed edges directly, the noise scale enforced by differen-
tial privacy can be greatly reduced. Our proposed method
infers the network structure by using a statistical hierarchi-
cal random graph (HRG) model. The guarantee of differen-
tial privacy is achieved by sampling possible HRG structures
in the model space via Markov chain Monte Carlo (MCMC).
We theoretically prove that the sensitivity of such inference
is only O(logn), where n is the number of vertices in a net-
work. This bound implies less noise to be injected than those
of existing works. We experimentally evaluate our approach
on four real-life network datasets and show that our solution
effectively preserves essential network structural properties
like degree distribution, shortest path length distribution
and influential nodes.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords
Network data; differential privacy; structural inference

1. INTRODUCTION
Information networks are invaluable assets for exploratory

data analysis in a wide range of real-life applications. For in-
stance, online social networks (e.g., Facebook and Twitter)
are studied by sociologists to understand human social re-
lationships; co-author networks are explored to analyze the
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degree and patterns of collaboration between researchers;
voting and election networks are used to expose different
views in the community; trust networks like Epinions are
great resources for personalized recommendations. However,
many of such networks contain highly sensitive personal in-
formation, such as social contacts, personal opinions and
private communication records. To respect the privacy of in-
dividual participants in the networks, network data cannot
be released for public access and scientific studies without
proper “sanitization”.

Previously, a great deal of work has investigated anonymi-
zation techniques [27, 16, 8, 13, 28, 5] to ensure network data
privacy. However, it has been shown that anonymization is
susceptible to several newly discovered privacy attacks and
might lead to further privacy breaches. Recently, differen-
tial privacy [9] has been proposed to solve such vulnerabil-
ity. In this paper, we study the problem of releasing network
data under this emerging privacy standard. Given a network
dataset, our goal is to release its sanitized differentially pri-
vate version to hide each participant’s connections to others
while preserving essential structural information to support
data analysis.

To ensure differential privacy, the standard technique is
to add Laplace noise to query answers. However, network
data can be very sensitive to relatively small changes in the
network structure. Direct perturbation in the data domain
(e.g., adding noise to a subgraph counting query in order to
obscure the presence or absence of an edge) normally incurs
excessive noise, which makes it impossible to conduct any
effective data mining on the sanitized data. An alternative
solution is to first project the data to other domains (e.g.,
the graph spectral domain [25], which is analogous to the
classical frequency domain, or some parametric model space
that describes the observed network, such as dK-2 series [21,
24]). While this idea is appealing, the resultant data utility
of the existing works in this line is still undesirable for many
graph mining algorithms. For example, Wang et al. [25]
propose to perturb the eigenvalues and eigenvectors of the
corresponding adjacency matrix. This approach requires to
impose noise of magnitude proportional to O(

√
n), where n

is the number of vertices in the input network, and therefore
massive noise has to be injected in large real-life network
datasets. As another example, the works [21, 24] consider
to approximate the original network by the dK-series. To
achieve ε-differential privacy, the global sensitivity of this
scheme is O(n) even for dK-2 series, which also demands
excessive noise to be added.
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In this paper, we advocate a different approach that can
offer better data utility. Broadly, we propose to encode
a network’s structural information in terms of connection
probabilities between vertices, rather than the presence or
absence of the observed edges. The fundamental advantage
of adopting such a perspective is that we can capture the
generally understandable and statistically meaningful prop-
erties of the network while “diluting” the impact of a single
edge. In the context of differential privacy, this means that
we can significantly lower the magnitude of noise added to
mask the change of a single edge.

In essence, connection probabilities can be estimated by
a set of edge-counting queries (i.e., a query that counts the
number of edges between two given sets of vertices). There-
fore, our problem can be converted to find a strategy that
identifies a good set of edge-counting queries in order to
truthfully represent a network’s structure. This can be done
in many possible ways. In particular, in this paper, we use
a statistical hierarchical random graph (HRG) model [7] for
this purpose. This HRG model carefully maps all partic-
ipants of a network into a hierarchical structure (called a
dendrogram) and records connection probabilities between
any pair of vertices in the network. This allows us to draw a
sample model from the model’s space, which essentially con-
sists of a set of good edge-counting queries. Moreover, the
model itself is paired with a likelihood score, which makes
it possible to observe the quality of released data.

Technically, we make the following contributions. Unlike
existing studies, we propose to infer a network’s structure
via connection probabilities. We further identify that the
HRG model can be used to encode a network in terms of
a set of such connection probabilities. Generating a good
HRG under differential privacy requires careful design. We
do not directly perturb the best-fitting HRG of the input
network (i.e., the HRG generated by the non-private algo-
rithm), but rather, we infer the HRG by learning in the en-
tire HRG model space and sampling an HRG by a Markov
chain Monte Carlo (MCMC) method while satisfying differ-
ential privacy. Given a sampled HRG, we propose a care-
fully designed thresholding strategy coupled with the Erdős-
Rényi model to calculate the noisy connection probabilities.

We adopt such a methodology for two reasons. First, rely-
ing on the best-fitting HRG itself will incur a high sensitivity.
Changing even one edge in the network may result in a great
number of changes in both the dendrogram’s structure and
the set of its associated connection probabilities. This is un-
desirable since it may alter many of the HRG’s parameters
in the worst case. In contrast, we design an MCMC method
to iteratively learn a reasonably good HRG from the entire
HRG space. By construction, with a single edge difference,
only one probability in the HRG would be influenced. Sec-
ond, it is non-trivial to sample a good HRG in our setting be-
cause it is computationally challenging to compute the scores
of all possible HRGs even for a small network. It can be seen
that there are a total of (2n − 3)!! ≈

√
2(2n)n−1e−n possi-

ble dendrograms for a network with n vertices. Hence, it is
computationally infeasible to directly apply the exponential
mechanism. We side-step this problem by using an MCMC
method, which is in a similar spirit to the idea in [23]. How-
ever, our problem and challenges are quite different from
those in [23]. Our goal is to publish the entire graph, not
frequent subgraphs. A direct consequence is that we have

to harness the large sensitivity in our problem, while it is
always 1 in [23].

From the perspective of utility, we rigorously prove that
the sensitivity of our proposed approach is O(logn) for fit-
ting the dendrogram structure, which reaps the benefit of
preserving good data utility in theory. We conduct exten-
sive experiments on four real-life datasets to evaluate the
effectiveness of our solution. We demonstrate that our ap-
proach significantly outperforms the state-of-the-art com-
petitors [24, 25].

2. PRELIMINARIES
In this section, we briefly introduce the hierarchical ran-

dom graph (HRG) model and differential privacy.

2.1 Hierarchical Random Graph
In this study, we follow the convention to model an input

network dataset as a simple undirected graph G = (V,E),
where V is the set of vertices and E ⊆ V × V is the set
of edges. Let A ∈ {0, 1}n×n be the adjacency matrix that
represents a graph G, where Ai,j = 1 if there is an edge
between vertices i and j in G and Ai,j = 0, otherwise.

The HRG model is based on the intuition that the con-
nection probability between two vertices depends on their
degree of relatedness, which can be modelled mathemati-
cally via statistical inference. Specifically, the HRG model
represents a graph G in terms of its hierarchical structure
and a set of connection probabilities [6, 7]. The hierarchical
structure of G in an HRG is captured by a dendrogram T ,
which is a rooted binary tree with n leaf nodes correspond-
ing to the n vertices of G. Each internal node r of T is
associated with a probability pr. For any two vertices i, j
of G, their probability of being connected pi,j = pr, where
r is their lowest common ancestor in T . Formally, an HRG
is defined by a pair (T, {pr}).

Let Lr and Rr be the left and right subtrees of r respec-
tively, and nLr and nRr be the numbers of leaves in Lr and
Rr respectively. Let er be the number of edges in G whose
endpoints are leaves of each of the two subtrees of r in T .
The likelihood of an HRG for a given graph G measures how
plausible this HRG is to represent G, which can be calcu-
lated, by Bayes’ theorem, as follows:

L(T, {pr}) =
∏
r∈T

perr (1− pr)nLrnRr−er (1)

For a fixed dendrogram T , the maximum likelihood esti-
mator of pr = er

nLr·nRr
, which is the fraction of potential

edges between the leaves of Lr and Rr that actually exist
in G. In our scheme, we work with the logarithm of the
likelihood (referred to as log-likelihood in the sequel):

logL(T, {pr}) = −
∑
r∈T

nLrnRrh(pr) (2)

where h(pr) = −pr log pr − (1− pr) log(1− pr) is the Gibbs-
Shannon entropy function. Essentially, a dendrogram paired
with a higher likelihood is a better representation of the
network’s structure than those with lower likelihoods. We
denote logL(T, {pr}) by logL(T ) from now on when no con-
fusion arises.

Example 1. Figure 1(b) and (c) give an example of two
possible dendrograms, T1 and T2, for an original graph in
Figure 1(a). We first calculate the set of {pr} for each
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Figure 1: An example of the HRG model in [7]

dendrogram. For example, to compute pr2 associated with
the root r2 of T2, we first obtain the two groups of leaf
nodes in r2’s left and right subtrees, that is, {a, b, c} and
{d, e, f}. Since there is only one edge between these two sets
of leaf nodes (i.e., the edge {c, d}), we have er2 = 1 and
pr2 = 1/(3 ∗ 3) = 1/9. Similarly, we can calculate all {pr}
and compute the likelihoods of the dendrogram T1 and T2.
Specifically, L(T1) = (1/3)(2/3)2(1/4)2(3/4)6 ≈ 0.00165,
and L(T2) = (1/9)(8/9)8 ≈ 0.0433. Since L(T2) is much
larger than L(T1), T2 is a more plausible hierarchy to de-
scribe the original graph.

2.2 Differential Privacy
Differential privacy [9] has emerged as a prevalent pri-

vacy model to quantify the notion of “indistinguishability”
of neighboring databases. The privacy guarantee of differ-
ential privacy in the context of network data depends on
the interpretation of neighboring graphs. In this paper, we
define two graphs G1 = (V1, E1) and G2 = (V2, E2) to be
neighbors if V1 = V2, E1 ⊂ E2 and |E1|+1 = |E2|. Formally,
ε-differential privacy for network data is defined below.

Definition 1 (ε-Differential privacy). A random-
ized algorithm A is ε-differentially private if for any two
neighboring graphs G1 and G2, and for any output O ∈
Range(A),

Pr[A(G1) ∈ O] ≤ eε × Pr[A(G2) ∈ O]

Our definition of differential privacy is also known as edge
differential privacy [12]. Intuitively, it hides the existence
of any single edge from an adversary. The smaller ε is, the
better the privacy protection is. Normally, ε is a small value
(e.g., ε ≤ 1).

Differential privacy can be achieved by two standard mech-
anisms, the Laplace mechanism [9] and the exponential mech-
anism [18]. Both mechanisms are based on the concept of
global sensitivity of a function f . For any two neighbor-
ing graphs G1 and G2, the global sensitivity of a function
f : G→ Rd is defined as ∆f = maxG1,G2 ‖f(G1)− f(G2)‖1.

The Laplace mechanism is mainly used for queries which
return real values. It adds properly calibrated noise to the
true answer to a query. More precisely, given a function
f and the privacy parameter ε, the noise is drawn from a

Laplace distribution with the probability density function
p(x|λ) = 1

2λ
e−|x|/λ, where λ = ∆f/ε.

Theorem 1 (Laplace mechanism [9]). For any func-
tion f : G→ Rd, the mechanism A

A(G) = f(G) + 〈Lap1(
∆f

ε
), . . . , Lapd(

∆f

ε
)〉

gives ε-differential privacy, where Lapi(
∆f
ε

) are i.i.d Laplace

variables with scale parameter ∆f
ε

.

The exponential mechanism is mainly used for functions
whose outputs are not real numbers. Its general idea is
to sample an output O from the output space O accord-
ing to a utility function u. It assigns exponentially greater
probabilities of being selected to outputs of higher scores
so that the final output would be close to the optimum
with respect to u. Let the global sensitivity of u be ∆u =
maxO,G1,G2 |u(G1, O)− u(G2, O)|.

Theorem 2 (Exponential mechanism [18]). Given a
utility function u : (G × O) → R for a graph G, the mech-
anism A that samples an output O with probability propor-

tional to exp( ε·u(G,O)
2∆u

) satisfies ε-differential privacy.

3. STRUCTURAL INFERENCE UNDER
DIFFERENTIAL PRIVACY

3.1 Overview
Before presenting the details, we first give an overview of

our method. Our goal is to release a sanitized network G̃
that matches the structural properties of the original net-
work G as closely as possible while satisfying ε-differential
privacy. Our general idea is to identify the hierarchical ran-

dom graph (HRG) that best fits G and then generate G̃ from
the identified HRG.

Recall that an HRG consists of a dendrogram T and a
set of associated probabilities {pr}. This means that we
need to not only identify a good fitting dendrogram but
also calculate its associated probabilities. In this process,
we face several major technical challenges: (1) How to find
a good dendrogram from a factorial number of candidates
while satisfying ε-differential privacy, and (2) how to calcu-
late the probabilities that might be dominated by injected
noise. We address the first challenge by designing a Markov
chain Monte Carlo (MCMC) procedure, which samples a
good dendrogram according to its likelihood. We cope with
the second challenge by developing an effective thresholding
strategy that is backed up by the Erdős-Rényi model. After

generating a representative HRG for G, we generate G̃ by
placing edges according to {pr}.

3.2 Algorithms
We now formally describe our solution (referred to as HRG

in the sequel). Our solution is composed of three steps: (1)
differentially privately sample a good dendrogram Tsample
from the entire dendrogram space (Algorithm 1); (2) given
the sampled dendrogram Tsample, compute the probabilities
{pr} associated with Tsample (Algorithm 2); (3) generate
the sanitized graph according to the identified HRG (Algo-
rithm 3). We divide the total privacy parameter ε into 2
portions, ε1 and ε2, each being used in one of the first two
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Algorithm 1: Differentially Private Dendrogram Fit-
ting

Input : Input graph G, privacy parameter ε1
Output: Sampled dendrogram Tsample

1 Initialize the Markov chain by choosing a random
starting dendrogram T0;

2 for each step i of the Markov chain do
3 Randomly pick an internal node r in Ti−1;

4 Pick a neighboring dendrogram T ′ of Ti−1 by
randomly drawing a configuration of r’s subtrees;

5 Accept the transition and set Ti = T ′ with

probability min(1,
exp(

ε1
2∆u
·logL(T ′))

exp(
ε1

2∆u
·logL(Ti−1))

);

6 end

7 //when equilibrium is reached

8 return the sampled dendrogram Tsample = Ti;

steps. Note that the third step does not require any privacy
parameter.

Differentially Private Dendrogram Fitting. Since, for
an input graph G with n vertices, each of its dendrograms T
is associated with a log-likelihood logL(T ), which measures
its goodness of representing G, a straightforward attempt
to achieve differential privacy is to employ the exponential
mechanism. Let the utility function be u(T ) = logL(T ).
The exponential mechanism samples T with probability pro-

portional to
exp(

ε1
2∆u
·u(T ))∑

T ′∈T
exp(

ε1
2∆u
·u(T ′))

, where T is the entire output

space (i.e., the set of all possible dendrograms of G). Unfor-
tunately, this simple idea is computationally infeasible be-
cause it requires to enumerate a total of |T | = (2n− 3)!! ≈√

2(2n)n−1e−n possible dendrograms. In our solution, we
overcome the issue by designing an MCMC process, which
simulates the exponential mechanism by a sequence of lo-
cal transitions in T . Our differentially private dendrogram
fitting algorithm is summarized in Algorithm 1.

Algorithm 1 is based on the Metropolis algorithm [2]. It
starts by choosing an arbitrary dendrogram T0 ∈ T as the
initial state of the Markov chain (Line 1). It then iteratively
performs the following procedure (Lines 2-6): randomly pro-
pose a neighboring dendrogram T ′ of the dendrogram Ti−1

in the previous iteration and update the current state in the
following way:

Ti =

{
T ′ with probability α
Ti−1 with probability 1− α

where the acceptance ratio α = min(1,
exp(

ε1
2∆u
·logL(T ′))

exp(
ε1

2∆u
·logL(Ti−1))

)

and ∆u is the global sensitivity of the utility function u. We
show how to calculate ∆u in Section 4.2.

To draw a neighbor T ′ of Ti−1 uniformly at random, we
first randomly choose an internal node r in Ti−1 (other than
the root) and then permute the three subtrees associated
with r to generate two alternative configurations of r’s sub-
trees, as illustrated in Figure 2. One of these two configura-
tions is chosen to be the neighboring candidate T ′. Let the
state space of this Markov chain be T . It is easy to verify
that the transitions based on this permutation scheme are
both reversible and ergodic (i.e., any pair of dendrograms

r

s t u t us s u t

Figure 2: Three configurations of r’s subtrees

can be connected by a finite sequence of such transitions).
Hence, such an MCMC procedure has a unique stationary
distribution after it converges to equilibrium. We run the
above Markov chain until equilibrium is reached, which indi-
cates that the desired distribution has already been reached.
Therefore, the sampled dendrogram Tsample is indeed drawn
from the stationary distribution (Line 8).

In practice, there are many approaches to diagnose MCMC
convergence. Here we follow the method used in [6, 7].
Specifically, we use the heuristic of the average log-likelihood
to judge whether the Markov chain has converged to the
stationary distribution. We will elaborate more details of
MCMC convergence time in Section 5.2. Additional discus-
sion about the convergence and its mixing time can be found
in [6, 7].

Noisy Probability Calculation. In the second step, we
calculate the noisy probabilities associated with Tsample’s
internal nodes. Recall that, for an internal node r, its as-
sociated probability pr = er

nLr·nRr
(see Section 2.1). It is

easy to observe that the probabilities of the internal nodes
rooted in smaller subtrees (i.e., in lower levels of Tsample)
are generally more sensitive to Laplace noise injected. In-
deed, according to our experiments, the direct application of
the Laplace mechanism to these nodes’ probabilities results
in poor utility. To relieve such negative effects, we propose
a carefully designed thresholding strategy coupled with the
Erdős-Rényi model, which is presented in Algorithm 2.

The general idea is that if a probability pr cannot be
“reliably” estimated by applying the Laplace mechanism to

er
nLr·nRr

, we employ the Erdős-Rényi model to approximate

the probability. To measure the reliability of a noisy prob-
ability, we set up the sentinel λb. For an internal node
r∗ in Tsample, λb is set to 1

ε2·(nLr∗ ·nRr∗ )
(Line 1), which

measures the noise scale of the potential noisy probability
p̃r∗ . If λb is relatively large with respect to a threshold
value τ1 (that is, the probability cannot be reliably calcu-
lated by the Laplace mechanism), we model the subgraph
induced by all leaf nodes of the subtree rooted at r∗ as
an Erdős-Rényi random graph. With this model, the con-
nection probability of any pair of vertices in this subgraph

is ec(r
∗)

(nLr∗+nRr∗ )(nLr∗+nRr∗−1)/2
, which is later perturbed by

the Laplace mechanism (Line 5). Otherwise, we can ex-
pect that er

nLr·nRr
still gives a good estimation after adding

noise. Hence we directly generate the noisy probability as

min{1,
er∗+Lap( 1

ε2
)

nLr∗ ·nRr∗
} (Line 10) and perform the similar pro-

cedure on r∗’s children (Lines 11-14).
In Algorithm 2, we calculate the noisy probabilities in a

top-down manner over Tsample. During this process, the ap-
proximated probabilities based on the Erdős-Rényi model
also become less accurate due to added Laplace noise. Here,
we would also like to guarantee the accuracy of the per-
turbed approximated probabilities. For this reason, we in-

914



Algorithm 2: CalculateNoisyProb(G,Tsample, r
∗, ε2)

Input : Input graph G, sampled dendrogram Tsample,
privacy parameter ε2, internal node r∗

Output: A vector of noisy probabilities {p̃r}, where
r ∈ {r∗, all internal nodes below r∗}

1 λb = 1
ε2·(nLr∗ ·nRr∗ )

;

2 λc = 1
ε2·((nLr∗+nRr∗ )(nLr∗+nRr∗−1)/2)

;

3 if λb ≥ τ1 and λc ≥ τ2 then

4 ec(r
∗)← number of edges in the subgraph induced

by all leaf nodes of the subtree rooted at r∗;

5 p̃ = min{1,
ec(r

∗)+Lap( 1
ε2

)

(nLr∗+nRr∗ )(nLr∗+nRr∗−1)/2
};

6 for each r in {r∗, all internal nodes below r∗} do
7 p̃r = p̃;
8 end

9 else

10 p̃r∗ = min{1,
er∗+Lap( 1

ε2
)

nLr∗ ·nRr∗
};

11 rL ← r∗’s left child;

12 rR ← r∗’s right child;

13 CalculateNoisyProb(G,Tsample, rL, ε2);

14 CalculateNoisyProb(G,Tsample, rR, ε2);

15 end

troduce another sentinel λc (Line 2), which is compared with
a threshold value τ2 to indicate whether the noise scale of the
approximated probabilities is acceptable. In summary, we
employ the Erdős-Rényi model when (1) the probability can-

not be accurately estimated by
er∗+Lap( 1

ε2
)

nLr∗ ·nRr∗
(guarded by λb),

and (2) injecting noise to ec(r
∗)

(nLr∗+nRr∗ )(nLr∗+nRr∗−1)/2
would

not seriously affect its accuracy (guarded by λc). This ex-
plains our condition in Line 3. In this case, the probabilities
of r∗ and all internal nodes below r∗ will be approximated
by the Erdős-Rényi model (Lines 6-8). In our experiments,
we observe that setting τ1 = 0.05 and τ2 = 0.01 gives good
results over different real-life datasets. Note that the choices
of these thresholds are data-independent : the tuning of τ1
and τ2 only relies on ε2.

Sanitized Graph Generation. With the sampled den-
drogram Tsample and the set of noisy probabilities {p̃r}, we
generate the sanitized graph as follows (Algorithm 3). For
each pair of vertices i, j ∈ V , we find their lowest common
ancestor r in Tsample (Line 4), and then place an edge be-

tween them in G̃ with probability p̃r (Line 5).

4. PRIVACY ANALYSIS
In this section, we formally analyze the privacy guarantee

of our algorithm HRG.

4.1 Privacy via Markov Chain Monte Carlo
We first show that the MCMC-based Algorithm 1 can

satisfy differential privacy. Recall that the main purpose
of applying the MCMC method is to draw a random sam-
ple from the desired distribution. Essentially, the standard
exponential mechanism for achieving differential privacy is

Algorithm 3: Generate Sanitized Graph G̃

Input : Input graph G, sampled dendrogram Tsample,
privacy parameter ε2

Output: Sanitized graph G̃

1 rroot ← root node of Tsample;

2 CalculateNoisyProb(G,Tsample, rroot, ε2);

3 for each pair of vertices i, j ∈ V do

4 Find the lowest common ancestor r of i and j in
Tsample;

5 Place an edge in G̃ between i and j with
independent probability p̃r;

6 end

7 return sanitized graph G̃;

also a method to sample an output x ∈ X in the target dis-
tribution with probability proportional to exp(εu(x)/2∆u),
where u(x) is the utility function and ∆u is its sensitivity.
Hence we see that, by matching the stationary distribution
of MCMC with the target distribution required by the ex-
ponential mechanism, MCMC can be used to realize the
exponential mechanism.

In our setting, we set the utility function u(T ) of a den-
drogram T to be logL(T ), the log-likelihood of T , and the

acceptance ratio of MCMC to be min(1,
exp(

ε1
2∆u
·logL(T ′))

exp(
ε1

2∆u
·logL(Ti−1))

).

Therefore, when the Markov chain converges to the station-
ary distribution π, we indeed draw a sample T from π with
the probability mass function:

Pr(T ) =
exp( ε1

2∆u
· logL(T ))∑

T ′∈T
exp( ε1

2∆u
· logL(T ′))

.

This is equivalent to the exponential mechanism which out-
puts T with probability proportional to exp( ε1

2∆u
· logL(T )).

Therefore, we can conclude that Algorithm 1 satisfies ε1-
differential privacy.

We refer interested readers to [23] in which the idea of
applying MCMC to achieve the exponential mechanism was
first proposed for more discussion about how MCMC’s sta-
tionary distribution perfectly matches the required distribu-
tion under the exponential mechanism.

4.2 Sensitivity Analysis
We now formally analyze the global sensitivity ∆u. In this

section, we will first derive how the utility function u (i.e.,
logL(T )) varies in neighboring databases. After that, we
will formulate ∆u and show that ∆u monotonically increases
as n grows. Lastly, we prove that ∆u is O(logn).

In this work, we consider each possible output to be a
dendrogram T in the output space T . From the definition
of global sensitivity, we have the following.

Definition 2 (Global sensitivity ∆u).

∆u = max
T∈T ,G,G′

| logL(T,G′)− logL(T,G)|

where G and G′ are neighboring graphs.

Intuitively, ∆u is the maximum change in the log-likelihood
of any dendrogram in the output space if one edge is miss-
ing. It is easy to observe that missing one edge will influence
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exactly one internal node’s probability pr in a dendrogram.
Thus, we have:

Lemma 1. ∆u = max
r∈T
|(−nLrnRrh(pr))−(−nLrnRrh(p′r))|,

where pr = er
nLrnRr

and pr
′ = er−1

nLrnRr
.

We now analyze how ∆u varies as parameters change. Let
N = nLr ·nRr . It is easy to see that there are two indepen-
dent variables in ∆u, the number of all possible connections
N and the number of the observed edges er.

Theorem 3. ∆u monotonically increases as n → +∞,
and

∆u = logNmax + log(1 +
1

Nmax − 1
)Nmax−1,

where Nmax = n2

4
when n is even and Nmax = n2−1

4
when n

is odd.

Proof. To analyze ∆u, we first fix N . Let f(e) = h(p)−
h(p′) and ∆u = max |f(e)|. Figure 3(a) plots the entropy
value h(p) as p varies. Since f(e) has the format of discrete
derivative of h(p), we can analyze the monotonicity of f(e)
by computing the second order derivative of h(p). We have

h′′(p) = − 1

1− p −
1

p

It can be observed that h′′(p) < 0 for all p. Hence h(p) is a
concave function and h′(p) (or the acceleration) monotoni-
cally decreases. Therefore, f(e) monotonically decreases.

Since ∆u = max |f(e)|, we just need to derive the ex-
treme values of f(e). Note that f(e) > 0 when p is in
[0,0.5] and f(e) < 0 when p is in (0.5,1]. Hence, ∆u =
max(−min(N · f(e)),max(N · f(e))). Due to the symmet-
ric property of h(p), we can get max(f(e)) = −min(f(e)).
With the monotonic property of f(e), we can derive the
value of ∆u when e = 1 or e = Nmax. Next we fix e = 1
and vary N . Let ∆u = max

N∈[1,Nmax]
|f(N)|, where

f(N) = 1 · log
1

N
+ (N − 1) · log(1− 1

N
)− 0

= − logN + (N − 1) · log(1− 1

N
)

The first order derivative of f(N), f ′(N) = log(1 − 1
N

) <
0. Hence f(N) is a decreasing function. Since f(N) ≤ 0
for N in [1,+∞], we conclude that ∆u = −min(f(N)) =
−f(Nmax). Hence,

∆u = logNmax − (Nmax − 1) · log
Nmax − 1

Nmax

= logNmax + (Nmax − 1) log(1 +
1

Nmax − 1
)

= logNmax + log(1 +
1

Nmax − 1
)Nmax−1

This completes the proof.

Next we show that ∆u is O(logn), where n is the number
of vertices in the input network.

Theorem 4. The global sensitivity of a dendrogram’s log-
likelihood, ∆u, is O(logn).

Proof. Based on Theorem 3, we first analyze the second
term of ∆u, that is, log(1 + 1

Nmax−1
)Nmax−1. Let y = (1 +
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Figure 3: Gibbs-Shannon entropy and plot of ∆u
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1

k!

x(x− 1) · · · (x− (k − 1))

xk

Since, for each k ∈ {2, 3, ..., x},

1

k!

x(x− 1) · · · (x− (k − 1))

xk
=

k−1∏
j=1

(
1− j

x

)
which increases with x, we learn that y = (1 + 1

x
)x also

increases with x. As x→∞, we have limx→∞
(
1 + 1

x

)x
= e.

Therefore we have:

∆u = logNmax + log(1 +
1

Nmax − 1
)Nmax−1

< logNmax + log e ≤ log
n2

4
+ 1

= O(logn)

This completes the proof.

Figure 3(b) plots the value of ∆u as n increases. We see
that ∆u increases slowly when n becomes larger. Thus we
expect that applying the exponential mechanism in terms
of MCMC in this setting would guarantee good data utility
even for large-scale networks.

4.3 Privacy via Structural Inference
Finally, we prove that our solution HRG is ε-differentially

private based on the sequential composition property.

Theorem 5 (Sequential Composition [17]). Let each
Ai provide εi-differential privacy. A sequence of Ai(D) over
the database D provides

∑
εi-differential privacy.

Taken with the above theorem, we can derive that our
scheme ensures ε-differential privacy.

Theorem 6. HRG satisfies ε-differential privacy.

Proof. We use ε1 in Algorithm 1 for sampling the den-
drogram and ε2 in Algorithm 2 for calculating the prob-
abilities associated with the sampled dendrogram. From
the analysis in above sections, we learn that Algorithm 1
is ε1-differentially private. In Algorithm 2, we employ the
Laplace mechanism to obtain the noisy answers to a set of
counting queries. Since, by construction of a dendrogram,
a single edge change will affect only one counting query by
1, Algorithm 2 is ε2-differentially private. Since Algorithm
3 is based on the differentially private HRG generated by

916



Table 1: Network dataset statistics

Dataset #Nodes #Edges Max Degree Pair
polblogs 1,224 16,715 (351, 277)

wiki-Vote 7,115 100,762 (1065, 773)
ca-HepPh 12,008 118,489 (491, 486)

ca-AstroPh 18,772 198,050 (504, 420)

Algorithm 1 and Algorithm 2, it does not consume any
privacy budget. Hence, based on Theorem 5, we can con-
clude that our solution satisfies ε-differential privacy, where
ε = ε1 + ε2.

5. EXPERIMENTAL EVALUATION
In this section, we experimentally study the equilibrium

of our MCMC method and evaluate the utility of HRG over
four real-life datasets, namely polblogs, wiki-Vote, ca-HepPh
and ca-AstroPh1. polblogs is a network of hyperlinks be-
tween weblogs on US politics recorded in 2005. wiki-Vote is
a social network containing Wikipedia voting information for
adminship elections. An edge is created between two partic-
ipants if one voted on or was voted by the other. ca-HepPh
and ca-AstroPh are collaboration networks which cover sci-
entific collaborations between authors submitted to High
Energy Physics and Astro Physics categories, respectively.
An edge is created if two authors co-authored a paper. The
statistics of these datasets are given in Table 1. All datasets
are pre-processed to be undirected without self-loops. All
experiments were done on Intel Xeon E5607 servers with
2.27G CPU and 32GB RAM.

5.1 Experimental Settings
In our first set of experiments, we fix ε = 1.0. Specifi-

cally, we assign (ε1, ε2) = {(0.1, 0.9), (0.5, 0.5), (0.9, 0.1)} for
sampling the dendrogram and computing noisy connection
probabilities, respectively (see Figures 5-8). In the second
set of experiments, we study the influence of different pri-
vacy parameters on data utility. Due to space constraint, we
only report the results on wiki-Vote (Figures 9 and 10). We
do observe similar trends on other datasets. In the figures,
we denote our solution HRG with the legend hrg-ε1-e-ε2.

For comparison purposes, we implemented two state-of-
the-art competitors, spectral [25] and dk2 [24]. Since no
systematic approach of choosing parameter values is pro-
vided in [25], we tune the parameters in spectral and report
the best performance we obtain. More specifically, let k be
the number of eigenvalues chosen in the scheme, ε1 be the
privacy budget for computing noisy eigenvalues and ε2 for
computing noisy eigenvectors. The literature [26] referred
by Wang et al. in [25] suggests that k is usually in [2, 9].
Hence we vary k from 2 to 9 and report the best case. In
the figures, spectral is denoted by the legend spec-k-ε1-ε2.

Due to the poor performance of dk2 under ε-differential
privacy, we compare with the scheme under a more relaxed
privacy notion, that is, (ε, δ)-differential privacy. We follow
the parameter settings in [24] and set δ = 0.01. Unfortu-
nately, even under (ε, δ)-differential privacy, we still need to
use relatively large ε values (e.g., 200) to obtain compara-
ble results. Moreover, the sensitivity in this case is data-

1polblogs is available at http://www-personal.umich.edu/
~mejn/netdata/; wiki-Vote, ca-HepPh and ca-AstroPh are
available at http://snap.stanford.edu/data/index.html.

dependent. It depends on the maximum degree pair in the
networks (see Table 1). So we choose ε values proportional
to the maximum degree pair in each network. The choice of
parameters for dk2 is denoted by the legend dk2-ε-δ.

From a privacy’s perspective, spectral requires the number
of edges in the input network to be known, whereas our
scheme HRG and dk2 do not require so. In addition, dk2 is
not able to remap the nodes to the observed network, so the
experiments on influential node analysis is not applicable to
dk2.

5.2 Log-likelihood and MCMC Equilibrium
In practice, we diagnose MCMC’s convergence by trac-

ing the log-likelihood, logL(T ), of the sampled dendrograms.
The diagnostic takes down consecutive non-overlapping win-
dows of the Markov chain (each window consists of 65536
MCMC steps in our experiments) and compares the means
of logL(T ) within these windows. We use the difference of
the means to judge whether the means of logL(T ) within
the windows have stabilized. In our experiments, we contin-
uously examine whether the difference falls into the range
[−0.05n, 0.05n] to check the equilibrium state, where n is
the number of nodes in the network.

In Figure 4, we plot the trace of logL(T ) as a function
of the number of MCMC steps, normalized by n. We ob-
serve that the Markov chains mix well over all datasets (i.e.,
logL(T ) becomes stable soon after the initial state), indicat-
ing the convergence to the stationary distributions. Even
though the mixing time can be exponential in the worst
case [19], we observe that, in practice, the Markov chain in
HRG usually can converge within 1000n steps on networks
of around ten thousand nodes. Figure 4 also shows that
the integration of differential privacy actually speeds up the
movement of the Markov chains and makes them mix even
faster. Roughly, the running time of n MCMC steps in our
experiments is 0.18s for polblogs, 4.1s for wiki-Vote, 9.5s for
ca-HepPh and 22.9s for ca-AstroPh. More details about the
mixing time can be found in [6].

Figure 4 also shows the comparison of the sampled den-
drograms’ logL(T ) in different parameter settings, including
that of the dendrogram sampled in the non-private manner.
We can observe that, for networks with around ten thousand
vertices, logL(T ) of the dendrogram sampled under a rela-
tively small privacy parameter (e.g., ε1 = 0.5) is still compa-
rable with that under a relatively large privacy parameter
(e.g., ε1 = 0.9). Hence, we expect that even assigning a
relatively small ε1 for sampling the dendrogram will not sig-
nificantly harm the data utility of the released network. To
validate this, we further conduct experiments with smaller
ε1, such as 0.2 and 0.4. The performance shown in Fig-
ures 9 and 10 confirm that our scheme preserves reasonably
good data utility even under a stringent privacy parameter
(see Section 5.3 for the explanation of the utility metrics in
Figures 9 and 10).

5.3 Utility Analysis
To show the utility of the released networks, we compare

their degree distributions, shortest path length distributions
and influential node ranking with those of the original net-
works. Due to the randomness of our algorithm, we examine
the variance of its performance by running the algorithm ten
times on each network for each parameter setting. We ob-
serve that the variance in all cases is small.

917



−80000

−75000

−70000

−65000

0 1000 2000 3000

step/n

lo
g
L

origin

hrg−0.1

hrg−0.5

hrg−0.9

(a) polblogs

−660000

−630000

−600000

−570000

−540000

0 1000 2000 3000

step/n

lo
g
L origin

hrg−0.1

hrg−0.5

hrg−0.9

(b) wiki-Vote

−880000

−840000

−800000

−760000

0 1000 2000 3000

step/n

lo
g
L origin

hrg−0.1

hrg−0.5

hrg−0.9

(c) ca-HepPh

−1500000

−1450000

−1400000

0 1000 2000 3000

step/n

lo
g
L

origin

hrg−0.1

hrg−0.5

hrg−0.9

(d) ca-AstroPh

Figure 4: Trace of log-likelihood as a function of the number of MCMC steps, normalized by n
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Figure 5: Degree distribution
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Figure 6: Shortest path length distribution

Degree Distribution. Figure 5 shows the degree dis-
tributions of the released data under different sanitization
schemes, with y-axis in log-scale. It can be seen that, in all
cases, HRG preserves well the right-skewness of the origi-
nal networks, meaning that it preserves good distance scale
between “hubs” (i.e., nodes having high degrees) and the
majority of low-degree nodes.
Shortest Path Length Distribution. Figure 6 depicts
the shortest path length distribution of each network. We
observe that, in general, the released networks preserve the
shapes of the distributions with respect to those of the origi-
nal networks. However, we also observe the increase of paths
of small lengths (e.g., 1-3). We believe this is due to the ex-
tra edges added to the low levels of the sampled dendrogram,
which corresponds to the local structures in a network. But
this does not have a big influence on the network’s global
structure.
Influential Node Analysis. Identifying the most influen-
tial nodes in social networks is a key problem in social net-
work analysis. In our experiments, we consider the eigen-
vector centrality (EVC) score as the measure to rank the
nodes in networks. EVC scores correspond to the values
of the first leading eigenvector of the graph’s adjacency ma-
trix (the one with the greatest eigenvalue). Intuitively, EVC
measures the nodes’ influence by virture of their positions
in a network, that is, the sum of the geodesic distances from
each node to all others. The eigenvector approach attempts

to find the most central nodes (i.e., those with the small-
est geodesic distance to others) in terms of the “global” or
“overall” structure of the network. The first eigenvector usu-
ally captures the “global” aspects of distances among nodes,
while the second and subsequent ones capture more specific
and local structures.

In our experiments, we first test the percentage of common
nodes in top-k most influential nodes of the original graphs
and those of the sanitized graphs. We examine top 10, 20,
50 influential nodes as well as top 1% and 5% nodes in the
networks. The results are presented in Figure 7. We see that
HRG guarantees a consistent 25%-75% overlap of common
nodes in all the cases.

We then calculate the mean absolute error of the top-k
most influential nodes’ EVC scores. Let the set of top-
k nodes in the original graph be α and that of the sani-
tized graph be β. To show that nodes in β have similar
centralities to those in α, we use the mean absolute error
(MAE) to compare the EVC scores in β with those in α.
Formally, the MAE value is formulated by: MAE(α, β) =
1
k

∑k
i=1

∣∣EV C(viα)− EV C(viβ)
∣∣, where viα and viβ are the

top-i nodes in α and β, respectively. In Figure 8 , we observe
that the MAE of HRG with ε1 = 0.5 and 0.9 is reasonably
low (e.g., less than 25% in most cases). The overlaps in top-
k nodes and the low MAE together indicate that HRG well
preserves the hub nodes, which represent the global struc-
ture of the sanitized graph.
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Figure 7: Overlaps of top-k vertices
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Figure 8: Mean absolute error of top-k vertices

6. RELATED WORK
Early works on privacy-preserving network data publish-

ing [16, 27, 28, 5] mainly focus on developing anonymization
techniques for specific types of privacy attacks. Most of
them employ privacy models derived from k-anonymity [22]
by assuming different types of adversarial knowledge. Unfor-
tunately, all these anonymization techniques are vulnerable
to attackers with stronger background knowledge than as-
sumed, which has stimulated the use of differential privacy
for more rigorous privacy guarantees.

The recent research on applying differential privacy to net-
work data roughly falls into two directions. The first direc-
tion aims to release certain differentially private data min-
ing results, such as degree distributions, subgraph counts
and frequent graph patterns [12, 14, 11, 23]. However, our
problem is substantially more challenging than publishing
certain network statistics or data mining results. Our goal
is to publish the entire graph, which incurs a much larger
global sensitivity. Note that the sensitivity in the problem
setting of [23] is only 1. In contrast, our key technical contri-
bution is to achieve a smaller sensitivity in releasing a graph
(i.e., O(logn) as opposed to O(n) and O(

√
n) of our state-

of-the-art competitors [21, 24, 25]). In addition, some latest
studies [4, 1, 15] attempt to answer graph queries under
a more stringent instantiation of differential privacy known
as node differential privacy [12]. In spite of the significant
progress, it is still difficult to develop practical solutions un-
der node differential privacy in our problem setting.

The second direction aims to publish a sanitized graph,
which is also the objective of this paper. Most research in
this direction [21, 20, 24] projects an input graph to dK-
series and ensures differential privacy on dK-series statis-
tics. These private statistics are then either fed into graph
generators or used by MCMC to generate a fitting synthetic
graph. While the general idea is appealing, the current tech-
niques are still inadequate to provide desirable data utility
for many graph mining tasks unless the privacy parameter
is unreasonably large (e.g., ε ≥ 100), as demonstrated in
Section 5. Wang et al. [25] propose to project a graph to

the spectral domain and inject noise to the eigenvalues and
eigenvectors. This approach successfully reduces the sensi-
tivity to O(

√
n), which, unfortunately, is still not able to

achieve good data utility. Comparing with all these stud-
ies based on the idea of projection, our approach takes an
important step to achieve desirable data utility on real-life
datasets in many practical settings. Gupta et al. [10] give an
iterative database construction algorithm to generate syn-
thetic graphs for answering cut queries. However, it requires
an input graph to be dense, which is unlikely to be satisfi-
able on real-life network data and leaves finding an efficient
algorithm as an open problem. Very recently, Chen et al. [3]
propose a data-dependent solution by identifying and recon-
structing the dense regions of a graph’s adjacency matrix.
Though it achieves reasonable utility on some datasets, its
performance heavily relies on the fundamental assumption
that most edge information must be captured by the dense
regions of the adjacency matrix. In addition, this solution
involves multiple ad-hoc parameters, which are difficult for
a data publisher to tune.

7. CONCLUSION
In this paper, we address the privacy concerns in network

data release by proposing a novel data sanitization method
under differential privacy. Our solution is based on struc-
tural inference over the hierarchical random graph (HRG)
model. Compared with the existing works, we theoretically
prove that the sensitivity of our solution is much smaller,
only logarithmic in the order of the network size(i.e., the
number of vertices), implying a significant utility improve-
ment. Extensive experiments on four real-life datasets con-
firm that our solution outperforms the state-of-the-art com-
petitors.
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(c) Overlaps of top-k vertices
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Figure 9: wiki-Vote with hrg-0.2
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Figure 10: wiki-Vote with hrg-0.4
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