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ABSTRACT
It is often crucial for manufacturers to decide what product-
s to produce so that they can increase their market share
in an increasingly fierce market. To decide which products
to produce, manufacturers need to analyze the consumers’
requirements and how consumers make their purchase de-
cisions so that the new products will be competitive in the
market. In this paper, we first present a general distance-
based product adoption model to capture consumers’ pur-
chase behavior. Using this model, various distance metrics
can be used to describe different real life purchase behav-
ior. We then provide a learning algorithm to decide which
set of distance metrics one should use when we are given
some historical purchase data. Based on the product adop-
tion model, we formalize the k most marketable products
(or k-MMP) selection problem and formally prove that the
problem is NP-hard. To tackle this problem, we propose an
efficient greedy-based approximation algorithm with a prov-
able solution guarantee. Using submodularity analysis, we
prove that our approximation algorithm can achieve at least
63% of the optimal solution. We apply our algorithm on
both synthetic datasets and real-world datasets (TripAdvi-
sor.com), and show that our algorithm can easily achieve
five or more orders of speedup over the exhaustive search
and achieve about 96% of the optimal solution on average.
Our experiments also show the significant impact of differ-
ent distance metrics on the results, and how proper distance
metrics can improve the accuracy of product selection.

Categories and Subject Descriptors
F2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems
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1. INTRODUCTION
Product competition in the current digital age is becoming

increasingly fierce. Consumers can easily access the infor-
mation about a given product via the Internet. Moreover,
consumers can share their opinions on products in the form
of ratings or reviews via various web services, e.g., Amazon.
Therefore, instead of relying on the sales pitch by salesmen
or traditional TV advertisements, consumers can now re-
view many competing products before they make their final
purchase decision. Manufacturers, on the other hand, can
use the web information, such as ratings and reviews, to
gain a better understanding of consumers’ requirements on
various products. This leads to a new challenge on how to
discover consumers’ preferences, and how these preferences
may help manufacturer to select appropriate new products
so to compete with other manufacturers in the market.

To introduce new products into a market, a manufacturer
usually has a set of candidate products to consider. How-
ever, due to budget constraints, the manufacturer can only
produce a small subset of these candidate products. The
objective of a manufacturer is to select a subset of products
which can maximize its profit or market share. In this study,
we consider the following scenario: In a market consisting
of a set of existing products from various manufacturers and
a set of consumers, a manufacturer wants to select “k most
marketable products” from a set of candidate products so as
to maximize the market share of all products from this man-
ufacturer (this includes the possibility that some existing
products in the market are from the same manufacturer).

One of the major challenges of the “k most marketable
products” problem is how to model various consumers’ adop-
tion behavior, i.e., how consumers make their purchase de-
cisions. Different adoption behavior may lead to different
product selection results. However, there is a lack of formal
work of how to model these behaviors using available data.
Furthermore, finding the optimal solution to the “k most
marketable products” problem can be shown to be NP-hard
in general.

In this paper, we first model the consumers’ adoption be-
havior with a generalized distance-based model where differ-
ent distance metrics can be used to describe many different
consumers behaviors. We then propose a method to learn
which set of distance metrics one should use when we are
given some historical purchase data. We also present a com-
putationally efficient approximation algorithm to solve the
k most marketable products problem. To the best of our
knowledge, this is the first paper that provides the formal
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consumers’ adoption model and the analysis of product se-
lection. The contributions of this paper are:

• We formulate the problem of finding the k most mar-
ketable products (k-MMP) for a manufacturer.

• We model the adoption behavior of consumers using
a general distance-based product adoption model which
can take on various different distance metrics.

• We provide a learning method to determine the ap-
propriate set of distance metrics using the historical
purchase data on market share of a subset of the ex-
isting products.

• We prove that the k-MMP problem is NP-hard and
propose a computationally efficient approximation al-
gorithm. By proving the monotonicity and submod-
ularity properties of the objective function, we show
that our approximation algorithm provides a (1−1/e)-
approximation as compared with the optimal solution.

• We carry out experiments on synthetic and real-world
datasets to demonstrate the computational efficiency
of our algorithm and quality of its solutions. We also
illustrate how one can select the appropriate distance
metrics by learning from the historical purchase data
so as to improve the market share.

The outline of the paper is as follows. In Section 2, we
propose a general product adoption model which can accom-
modate different distance metrics to describe the consumers’
adoption behavior, and we formulate the k-MMP problem.
In Section 3, we present a learning method to select the ap-
propriate set of distance metrics according to the historical
market share of existing products. In Section 4, we pro-
pose an exact algorithm for the case of k = 1 and prove
that finding the exact solution for k > 1 is NP-hard. To
tackle the computational challenge, we present an approxi-
mation algorithm in Section 5. We show that this algorithm
is computationally efficient and also provides a high quality
solution guarantee. In Section 6, we perform experiments
on both the synthetic data and the real-world data. Related
work is shown in Section 7, and Section 8 concludes.

2. MATHEMATICAL MODELS AND PROB-
LEM FORMULATION

In this section, we first present a model of a market by
considering both products and consumers. Then we present
a distance-based product adoption model to describe vari-
ous consumers’ product adoption behaviors. Based on these
models, we formulate the k-MMP problem.

2.1 Market Model
Let us consider a market which consists of a set of l con-

sumers C= {c1, c2, . . . , cl} and a set of m existing product-
s PE = {p1, p2, . . . , pm}. Let M represent a manufacturer
in the market, and PM denote the set of existing products
produced by M , where PM ⊆PE and |PM |=mM . The re-
maining products in PE are from other manufacturers who
are the competitors of M . These competing products are
denoted by PC , where PC ⊆PE and |PC |=mC . According
to these definitions, we have m=mM +mC , PE =PM ∪ PC ,
and PM ∩ PC = ∅.

Suppose the manufacturer M wants to produce some new
products to maximize its utility, i.e., the market share. M
has a set of n candidate new products to choose from, which

we denote by PN = {pm+1, pm+2, . . . , pm+n}. Note that all
the products in PN are new to the market, in other words,
PN ∩ PE = ∅. Due to the budget, technological and manu-
facturing constraints, the manufacturer M can only produce
k ≤ n of these candidate products in PN .

Each product in PE∪PN is associated with d attributes
denoted by A = {a1, a2, . . . , ad}. Each attribute ai is rep-
resented by a non-negative real number, and higher value
implies higher quality. One can use ai to represent various
attributes of a given product, e.g., durability, ratings, inverse
of price. Hence, the quality of a product can be described
by a d-dimensional vector. Specially, the quality of produc-
t pj is described by the vector qj = (qj [1], qj [2], . . . , qj [d]),
where qj [t]∈ [0,∞), ∀t ∈ {1, 2, .., d} indicates pj ’s quality on
attribute at. Similarly, each consumer in C is also associated
with A to describe his requirements on different attributes.
Let ri = (ri[1], ri[2], . . . , ri[d]) be the requirement vector of
consumer ci, where ri[t]∈ [0,∞), ∀t∈{1, 2, . . . , d} indicates
ci’s minimum requirement on attribute at, i.e., ci requires
that the product’s quality on attribute at is at least ri[t], or
he will not adopt (or purchase) that product.

Example 1. To illustrate the notations, we present an
example in Figure 1. Consider a market of smart phones
where we have two existing products PE ={p1, p2} and three
consumers C = {c1, c2, c3}. Manufacturer M is considering
two candidate products PN = {p3, p4}. Let say each prod-
uct is described by two attributes: a1 is the inverse of price
(units per thousand dollars, UPM for short) and a2 is dura-
bility (years), and they are represented in the horizontal and
the vertical axis respectively. The quality vectors of products
and the requirement vectors of consumers are shown in the
figure (with PE:♦, PN :2, C:◦). For instance, the quality
vector of p1 is (2, 6), so we can purchase two units of p1
with one thousand dollars (or the price of p1 is $500), and
the durability of p1 is six years. Similarly, the requirement
vector of c1 is (1, 5), so consumer c1 wants a product which
is at most $1000 and can last for at least five years.
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Figure 1: An illustration of the market model

2.2 Product Adoption Model
We assume that a consumer may adopt a product if the

product satisfies his requirement. We say that a product
satisfies a consumer’s requirements if and only if the product
meets the requirements of that consumer on all attributes.
Formally, we define the product satisfiability condition.

Definition 1. (Product satisfiability) Consider a con-
sumer ci and a product pj. We say the product pj satisfies
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the consumer ci if and only if qj [t] ≥ ri[t], ∀t=1, . . . , d. We
denote this relationship as pj % ci, and pj is said to be a
satisfactory product of ci, while ci is a potential consumer
of pj in other words.

For example, consider the products and consumers depict-
ed in Figure 1. One can observe that the quality vector of
p1 is (2, 6) and the requirement vector of c1 is (1, 5). Since
2 > 1 and 6 > 5, so p1 satisfies c1, or p1% c1. Similarly, we
have p3 % c2 and p3 % c3.

We assume that if a consumer has some satisfactory prod-
ucts, then he will adopt one unit of product from any of
these feasible products. When a consumer ci has only one
satisfactory product, say pj , then ci will adopt pj for sure.
However, it becomes complicated when there are multiple
satisfactory products. All previous works [7, 12, 13, 16] as-
sume that the consumer will randomly adopt one of the sat-
isfactory products, but this is not realistic in many situation-
s. In the following, we present the distance-based adoption
model to describe some realistic and representative product
adoption behavior when consumers make their purchase de-
cisions. Our model is very general to model various product
adoption behaviors in the real world scenarios.

In a real world market, products with higher quality usu-
ally attract more consumers. Therefore, we use a distance
measure between a product’s quality and a consumer’s re-
quirement to decide which product the consumer may adop-
t. Note that consumers will only consider their satisfactory
products. Furthermore, larger distance implies better qual-
ity. Let di,j be the distance between the consumer ci’s re-
quirement vector (ri) and the product pj ’s quality vector
(qj). We assume that ci will adopt the product pj which
has the largest distance among all his satisfactory products.
If there are multiple satisfactory products which have the
same largest distance measure with ci, then ci will random-
ly select one of these products. Mathematically, we define
the distance-based adoption model as follows.

Definition 2. (Distance-based adoption model) Giv-
en a consumer ci and a set P of products available in the
market, let FP(ci|P) be the set of products which have the
largest distance between their quality vectors and ci’s require-
ment vector among all ci’s satisfactory products. The prob-
ability that ci adopts a product pj ∈P is

Pr(i, j|P)=

{ 1
|FP(ci|P)| if pj ∈ FP(ci|P),

0 otherwise.
(1)

Note that we can use many distance metrics, e.g., l1, l2, l∞
norms. For instance, if l1 norm (or the Manhattan distance)
is used, then consumers will choose the satisfactory products
which have the largest sum of all components’ values in the
quality vectors. To describe different adoption behaviors of
different consumers in a real world market, we also take into
account the weighted distance metrics. Let wt be the weight
of attribute at, wt≥0,∀at∈A, then under the l1 norm, the
distance di,j can be expressed as:

di,j =
∑
at∈A

wt · (qj [t]− ri[t]). (2)

It is important to point out that the algorithms we present
in this paper are general to all distance metrics. Readers
can use other distance metrics when appropriate. In here,

we present four representative distance metrics which we use
as examples for illustrations and experiments.

• Discrete metric (DM). We define di,j =1 for consumer-
s ci and ci’s satisfactory product pj in the discrete met-
ric. This distance metric simplifies the adoption model that
consumers will randomly select one from all his satisfactory
products. Using this distance metric, our work subsumes
the adoption models of previous works [7, 12, 13, 16].

• Norm metric (NM). In this distance metric, we set the
weight wt = 1.0, ∀at ∈ A based on the l1 norm metric as
defined in Equation (2). Note that in general, one can use
other norm as distance metric and our algorithms still apply.

• Price metric (PM). In a real world market, one common
situation is that if a consumer’s requirements are satisfied,
then he will select the cheapest product, i.e., the one with the
highest quality on the attribute of “price”. In this case, we
can set the weight of all attributes to zero except the “price”
based on the l1 norm metric as defined in Equation (2).

• Richman metric (RM). Unlike the price metric, some
consumers may be rich and they are insensitive to the price
but only want the best product. In this case, we can set the
weight of “price” attribute to zero while setting the weight
of other attributes to one.

Example 2. To illustrate, let us consider the products
and consumers depicted in Figure 1. Suppose that manu-
facturer M decides to produce p3, then the set of available
products in the market is P = PE∪{p3}= {p1, p2, p3}. Let
us consider the probability c2 will adopt p3, i.e., Pr(2, 3|P),
when c2 uses the above four distance metrics. From Fig-
ure 1, one can observe that c2 is satisfied by p1, p2, and p3.
If c2 uses the discrete metric, then d2,1 = d2,2 = d2,3 = 1, so
Pr(2, 3|P) = 1/3. If c2 uses the norm metric, then we have
d2,1 =3, d2,2 =d2,3 =5. Hence, c2 will select p2 and p3 with
probability Pr(2, 2|P)=Pr(2, 3|P)=1/2. If c2 uses the price
metric, then we only need to consider the attribute inverse of
price. We have d2,1 =0, d2,2 =4, d2,3 =5, so Pr(2, 3|P)=1,
c2 will adopt p3. If c2 uses the richman metric, we have
d2,1 = 3, d2,2 = 1, d2,3 = 0. Thus c2 will adopt p1 only, or
Pr(2, 1|P)=1 and Pr(2, 3|P)=0.

2.3 Problem Formulation
To find the k most marketable products, we first need to

define the expected market share of a set of products under
the distance-based adoption model. Given the market con-
dition, i.e., the consumers C and the existing products PE ,
let P be the set of products we consider, then the expected
market share of P is defined as

MS(P ) =
1

l
·
∑
pj∈P

∑
ci∈PC(pj)

Pr(i, j|PE ∪ P ), (3)

where l= |C|, PC(pj) denotes the set of potential consumers
of product pj , and Pr(i, j|PE∪P ) is defined in Equation (1).

Example 3. Let us illustrate the expected market share
of p3, or MS({p3}), by considering the scenario depicted in
Figure 1. There are two existing products (PE = {p1, p2})
and three consumers (C = {c1, c2, c3}) in the market. By
adding product p3 into the market, p3 satisfies consumers c2
and c3. Assume that c2 uses the norm metric, then accord-
ing to Example 2, we have Pr(2, 3|P) = 1/2. Now consider
consumer c3. Since we have not added p4 into the market,
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p3 is c3’s only satisfactory product, so c3 will adopt p3 for
sure. Therefore, in this scenario, c2 and c3 will adopt p3 with
probability 1/2 and 1, respectively. So the expected sales of
p3 is 1.5 units, It follows that the expected market share of
p3 is 1.5/3=50% since there are three consumers in total.

Based on the definition of market share in Equation (3),
we formulate the k-Most Marketable Products (k-MMP)
problem as follows.

Definition 3. (k-MMP) Given a set of consumers C,
a set of existing products PE = PC ∪ PM in the market,
and PN , a set of candidate products by the manufacturer
M , select a set P ⊆ PN where |P | = k so to maximize
MS(P ∪ PM ) for manufacturer M .

To solve the k-MMP problem, we need to tackle the fol-
lowing two issues: (1) Find the proper distance metrics for
the market. (2) Design an efficient algorithm to find the
solution to the k-MMP problem. Since there are various
potential distance metrics and manufacturers usually do not
know which distance metrics the consumers may adopt, we
present a learning approach to discover the proper set of
distance metrics for a given market from historical purchase
data. This is presented in Section 3. After deciding on the
proper distance metrics, we present the algorithmic design
in solving the k-MMP problem. In Section 4, we present an
efficient and exact algorithm for the 1-MMP problem and
prove that the k-MMP problem is NP-hard when k ≥ 2.
In Section 5, we present an efficient approximation algo-
rithm. By exploiting the monotonicity and submodularity
properties of the market share function MS(·), we prove that
our approximation algorithm can provide high performance
guarantee on the quality of the solutions.

3. DISTANCE METRIC LEARNING
As discussed in Section 2, there are various distance met-

rics one can use and the product selection results can vary
significantly depending on the distance metrics according to
the results shown in Section 6. Hence, it is important to
“learn” about the proper distance metrics (in other words,
consumers’ product adoption behavior) from the available
data. In this work, we propose a learning method based on
the market share of a set of products in the market so to
discover the appropriate distance metrics.

Note that in real life, some manufacturers may not release
full information about their market share. Therefore, we
assume that we only know the market share of a subset of
existing products. Formally, let P ′E be the n′ products that
we know the market share data, where P ′E ⊆PE . Let msj

be the market share of pj ∈P ′E .
Assume that we have a model set consisting of distance-

based product adoption models using m′ different potential
distance metrics, which are numbered from 1 to m′. Let
eji be the expected market share of product pj under the
product adoption model using the i-th potential distance
metric. Let θi be the probability that consumers use the
i-th distance metric, and Θ = (θ1, θ2, . . . , θm′)T . Then we
can forecast the market share for each product pj ∈P ′E as:

fj(Θ) = Θ · (ej1, ej2, . . . , ejm′)

= θ1ej1 + θ2ej2 + . . .+ θm′ejm′ ,
(4)

where fj(Θ) is the forecast market share of product pj .

We can find the best fit for Θ by minimizing the squared
difference between the forecast market share fj and the real-
world market share msj . Let ∆j be the difference between
fj and msj , or mathematically, ∆j(Θ) = |fj(Θ)−msj |. We
can formalize the model selection problem as follows.

Minimize
∑

pj∈P′
E

∆2
j (Θ),

subject to Θ ≥ 0, θ1 + θ2 + . . .+ θm′ = 1,

(5)

where Θ≥ 0 means that θi ≥ 0, ∀i∈ {1, . . . ,m′}. Thus, the
problem is reduced to a linear regression problem with con-
strained least squares approach, which can be solved using
the technique in [3]. Once we solve this linear regression
problem, we can forecast the market share fj(Θ) based on
the probability vector Θ.

Example 4. Consider a model set consisting of adoption
models using the norm metric (NM), the price metric (PM)
and the richman metric (RM). Assume we obtain the real-
world market share of three products p1, p2, and p3 and we
want to forecast the market share of p4. The real-world mar-
ket share and the expected market share under three different
models of these products are shown in Table 4.

NM PM RM real-world

p1 20% 1% 50% 5%
p2 30% 10% 10% 15%
p3 5% 30% 0% 20%
p4 10% 40% 5% unknown

Table 1: An example of model selection

Let θ1, θ2, and θ3 be the probability of consumers using
the norm metric, the price metric, and the richman metric,
respectively. Then we can formalize the problem as follows.

Minimize

∥∥∥∥∥∥
20% · θ1 1% · θ2 50% · θ3 −5%
30% · θ1 10% · θ2 10% · θ3 −15%
5% · θ1 30% · θ2 0% · θ3 −20%

∥∥∥∥∥∥
2

2

subject to Θ ≥ 0, θ1 + θ2 + θ3 = 1.

(6)

We obtain Θ=(0.3074, 0.6926, 0)T by solving the above opti-
mization problem. Thus, we can forecast that the real-world
market share of p4 as (10%, 40%, 5%)·Θ = 30.78%.

In Section 6, we will show that we can estimate the proba-
bility vector Θ with high accuracy if we know the model set
and the market share of a small number of products, based
on which, we can find products with higher market share.

4. EXACT ALGORITHM AND HARDNESS
Let us first present the exact algorithm for solving a spe-

cial case of the k-MMP problem when k = 1. This will
serve as the foundation of our approximation algorithm in
Section 5. Then we prove the NP-hardness of the k-MMP
problem when k≥2.

4.1 Exact Top-1 Algorithm
One way to find the exact solution of the 1-MMP prob-

lem is via exhaustive search: Calculate the expected market
share for all candidate products in PN and select the prod-
uct with the largest market share. To calculate the expected
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market share of a product, we need to check the requiremen-
t vectors of all l consumers and the quality vectors of their
satisfactory products with time complexity O(mld), where
m is the number of existing products and d is the dimension
of the attribute vector A. Assume that we consider a model
set S consisting of m′ potential product adoption model-
s. Since there are n candidate products, the computational
complexity of the exhaustive search is O(m′mnld).

In the following, we present an enhanced algorithm for
the 1-MMP problem based on precomputation. This en-
hanced algorithm has a lower computational complexity, or
O(m′(m+n)ld). The pseudo code of this algorithm is shown
in Algorithm 1.

Algorithm 1: Exact top-1 algorithm

Input: PE ,PM ,PN , C, S,Θ
Output: 1-MMP
for all model t in S do

dmaxt [i]← di,j where pj ∈ FP(ci|PE);
et[i]← |FP(ci|PE)|;
mt[i]← |FP(ci|PE) ∩ PM |;

end
max increase ← 0;
for all pj ∈ PN do

for all ci ∈ PC(pj) under each model t in S do
∆salest(pj)← 0;
if d(i, j) > dmaxt [i] then

∆salest(pj)← ∆salest(pj) + (1− mt[i]
et[i]

);

else if d(i, j) = dmaxt [i] then

∆salest(pj)← ∆salest(pj)+(mt[i]+1
et[i]+1

− mt[i]
et[i]

);

end
∆Sales(pj)← θ1∆sales1(pj)+ . . .+θm′∆salesm′(pj)
if ∆Sales(pj) > max increase then

res ← pj ;
max increase ← ∆Sales(pj);

end

end
return res

Lemma 1. The computational complexity of Algorithm 1
is O(m′(m + n)ld), where m′ = |S|, m = |PE |, n = |PN |,
l= |C|, d= |A|.

Proof. Firstly, it takes O(d) time to calculate the dis-
tance for each pair of consumer and product under each
adoption model, while there are l consumers, m existing
products, andm′ product adoption models, so it takesO(m′mld)
in total. Then, for each product pj ∈PN , we calculate the
increase of sales caused by adding pj , which takes O(m′ld)
time. Since there are n candidate new products, the com-
plexity of these steps is O(m′nld). Therefore, the total com-
putational complexity of Algorithm 1 is O(m′(m+n)ld).

4.2 Top-k Exact Algorithm
Similarly, exhaustive search is a direct approach to find

the exact solution of the k-MMP problem. By enumerating
all possible subsets of size k from PN , and calculating the
expected market share of each subset, one can find the set of
product with size k which achieves the largest market share.
However, the exhaustive approach is not scalable since there

exist exponentially many possible subsets. In the following
theorem, we formally show that finding the exact solution
of the k-MMP problem is NP-hard.

Theorem 1. Finding the exact solution for the k-MMP
selection problem is NP-hard when k ≥ 2 and the number of
attributes is d ≥ 3.

Proof. Please refer to the appendix.

5. APPROXIMATION ALGORITHM
In this section, we extend the top-1 algorithm for the

k-MMP problem using a greedy-based approximation algo-
rithm. The algorithm is not only computationally efficient,
but also provide at least (1−1/e)-approximation by exploit-
ing that the market share function is monotone and submod-
ular. In the following, let us first present our approximation
algorithm. Then we formally prove its performance guar-
antee, and finally prove that the market share function we
consider is indeed monotone and submodular.

5.1 Greedy-based Approximation Algorithm
Our approximation algorithm is based on the exact top-1

algorithm to solve the top-k problem. The main idea is as
follows. We select k products in k steps. In each step, we se-
lect the product which is the solution of the exact top-1 algo-
rithm. Furthermore, instead of building the farthest product
tables at each step, we only build them in the first step, and
then update the tables in the remaining steps. The pseudo
code of this algorithm is depicted in Algorithm 2.

Algorithm 2: Approximation top-k algorithm

Input: PE ,PM ,PN , C, S,Θ, k
Output: k-MMP
Pres ← ∅;
while |Pres| < k do

pnew ← solution of the exact top-1 algorithm;
for ci ∈ PC(pnew) under each model t in S do

if d(i, new) > fd t[i] then
fd t[i]← d(i, new), et[i]← 1, mt[i]← 1;

else if d(i, new) = fd t[i] then
et[i]← et[i] + 1,mt[i]← mt[i] + 1;

end
Pres ← Pres ∩ {pnew};
PM ← PM ∪ {pnew};
PN ← PN \ {pnew};

end
return Pres

Theorem 2. (Computational complexity) The com-
putational complexity of Algorithm 2 is O(m′(m + kn)ld),
where m′ = |S|, m= |PE |, n= |PN |, l= |C|, d= |A|.

Proof. Based on Lemma 1, it takes O(m′mld) time to
build these farthest product tables and O(m′nld) time to
find the exact solution of 1-MMP . The complexity of up-
dating tables is only O(ld). Since we only build the tables
once and find the 1-MMP k times in Algorithm 2, the com-
putational complexity of Algorithm 2 is (m′(m+kn)ld).
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5.2 Guarantee on Solution Quality
To prove the performance guarantee of our approximation

algorithm, let us first introduce the notion of “submodular
set function” [11].

Definition 4. (Submodular set function) Given a fi-
nite ground set U , a function f that maps subsets of U to
real numbers is called submodular if

f(S ∪{u})−f(S)≥f(T ∪{u})−f(T ), ∀S⊆T⊆U, u∈U. (7)

Next, we show one interesting property of submodular set
functions [5], based on which we design our approximation
algorithm with theoretical performance guarantee.

Theorem 3. For a non-negative monotone submodular
function f : 2U→R, let S⊆U be the set of size k obtained by
selecting elements from U one at a time, each time choosing
the element that provides the largest marginal increase in
the function value. Let S∗⊆U be the set that maximizes the
value of f over all k-element sets. Then we have f(S) ≥
(1−1/e) · f(S∗). In other words, S provides a (1−1/e)-
approximation, or guarantees a lower bound on the quality
of solution as compared to the optimal solution.

Applying to the k-MMP problem, the ground set is PM∪
PN , the market share function MS(·) defined in Section 2
maps subsets of PM∪PN to real numbers, i.e., the expected
market share of products. According to Theorem 3, if we
can prove that MS(·) is a non-negative monotone submod-
ular set function, then our approximation Algorithm 2 can
provide a (1−1/e)-approximation. We leaves the proof of
these properties in the next subsection, and once we prove
them, we have the following theorem.

Theorem 4. (Performance guarantee) The approx-
imation algorithm stated in Algorithm 2 provides at least
(1−1/e)-approximate solutions compared with the optimal
ones, where e is the base of the natural logarithm.

Proof. According to Theorem 5, which will be proved in
the following sub-section, the market share function MS(·)
in Equation (3) is non-negative, monotone submodular. So,
according to Theorem 3, Algorithm 2 provides (1− 1/e)-
approximate solutions.

5.3 Submodular Market Share Function
Let us consider the market share function MS(·) defined

in Section 2. According to the definition of MS(·), it is
obviously non-negative, so we seek to prove the monotonicity
and submodularity properties. For the ease of presentation,
we define the following notations. For any set S ⊆ PM ∪PN

of products, let PS =PE∪ S and Sj =S∪{pj}, let pr i(S)=∑
pj∈S Pr(i, j|PS) denote the probability of the consumer ci

adopting products in S when a set PS of products is available
in the market. Furthermore, when a set P of products is
available in the market, we define FC(pj |P) as the set of
consumers that pj is their farthest product, and recall that
FP(ci|P) is the set of farthest products from ci.

One key fact we use in our proof is that by adding a new
product, say pu, only those consumers in FC(pu|Pu) will
change their product adoption decisions. Therefore, to cal-
culate the change of market share caused by adding pu, we
only need to consider the consumers in FC(pu|Pu). Mathe-
matically, we have the following proposition.

Proposition 1. Let PS be the set of products in the mar-
ket, by adding a new product pu into the market, pu∈PN\PS,
the increase of the market share of products in Su is

MS(Su)−MS(S) =
∑

ci∈FC(pu|Su)

1

l
[pr i(Su)− pr i(S)] . (8)

Based on Proposition 1, we now proceed to prove the
monotonicity and submodularity of the market share func-
tion MS(·). First, we prove two lemmas (Lemma 2 and 3).
Based on these two lemmas, we prove the monotonicity and
submodularity properties in Theorem 5.

Lemma 2. Let S ⊆ PM ∪ PN be a set of products, and
pu be another product in PN , pu ∈PN\S. For a consumer
ci∈C, if ci ∈ FC(pu|PSu), then we have

pr i(Su)− pr i(S) ≥ 0. (9)

Proof. Please refer to the appendix.

Lemma 3. Let S and T be two sets of products, S⊆T ⊆
PM∪PN , and pu be another product in PN , pu∈PN\T . For
a consumer ci∈C, if ci∈FC(pu|PTu), then we have

pr i(Su)− pr i(S) ≥ pr i(Tu)− pr i(T ). (10)

Proof. Please refer to the appendix.

Theorem 5. Suppose consumers adopt products follow-
ing the distance-based adoption model, then the market share
function MS(·) defined in Equation (3) is monotone submod-
ular for the k-MMP problem.

Proof. We prove the monotonicity property first. To
prove the monotonicity property, we need to show

MS(Su)−MS(S) ≥ 0 ∀S ⊆ PN ∪ PM , pu ∈ PN (11)

holds, which can be proved by combining the results of
Proposition 1 and Lemma 2.

To prove the submodularity property, according to Defi-
nition 4, we need to show

MS(Su)−MS(S) ≥ MS(Tu)−MS(T ) (12)

holds ∀S⊆T ⊆PN∪PM and pu∈PN .
In the case of pu∈S, Inequality (12) holds since both sides

are equal to 0. In the case of pu ∈ T \S, the right side of
the inequality equals 0, while according to the monotonicity,
which has been proved, the left side is non-negative. Hence
Inequality (12) also holds. In the case of pu ∈ PN \T , In-
equality (12) can be easily proved by combining the results
of Proposition 1 and Lemma 3. Thus, Inequality (12) holds
∀S⊆T ⊆PN∪PM and pu∈PN .

6. EXPERIMENTS
We perform experiments on both synthetic datasets and

real-world web datasets. We implement our approximation
algorithm and the exhaustive search algorithm in C++ and
perform experiments on a PC with a 16-core 2.4GHz CPU,
30 GB of main memory under the 64-bit Debian 6.0. First,
we use synthetic datasets to evaluate the computational effi-
ciency and accuracy of our approximation algorithm. Then
we apply our algorithm on the real-world web datasets to
show the impact of different distance metrics, and how to
learn distance metrics from some historical sales data and
to perform product selection.

856



6.1 Speedup and Accuracy
We generate the synthetic datasets using the generator

provide by [1]. In a real-world market, products usually do
not have high quality on all attributes. Instead, they have
high quality on some subset of attributes only. For example,
a smart phone with a large screen will have high quality on
display but low quality on portability. Furthermore, if a
product has high quality on most attributes, then the price
of this product will be high in general, which indicates low
quality on the price attribute. We generate the datasets of
products with negative correlation on attributes: Products
which have high quality in one attribute tends to have low
quality on at least one other attribute. On the other hand,
we generate the consumers’ requirement of each attribute
independently using a uniform distribution.

We compare the running time and the market share be-
tween our approximation algorithm (or greedy) and the ex-
haustive search algorithm (or exh). We examine the impact
of various factors, including the size of datasets (n, m, l, d),
the number of new products we need to select (k), and mod-
els using different distance metrics (four distance metrics as
introduced in Section 2). The default settings of these pa-
rameters are: m = 100, n = 20, l = 10, 000, d = 10, k = 2.
The computational efficiency and accuracy our experiments
are similar under all distance models, so we only show the
results for the norm distance metric.

Note that both the running time of our approximation al-
gorithm and the exhaustive algorithm increases linearly with
m, l, and d, due to the page limit, we only show the results
of varying k and n while keeping other parameters as default
values. Table 2 shows the speedup of our approximation al-
gorithm over the exhaustive algorithm. Figure 2 shows the
running time of these two algorithms, where the horizon-
tal axis depicts the variation on parameters n (number of
candidate products we need to consider) and k (number of
products we need to select), while the vertical axis depicts
the log scale of the running time, in seconds.

From the table and the figure, one can observe that our
approximation algorithm is significantly faster than the ex-
haustive algorithm: O(nk) times faster when selecting k
products from n candidate products. The speedup is around
285,000 even for a small dataset (i.e., select k= 5 product-
s from n = 20 candidates). In this case, the running time
of exhaustive algorithm is around 40 hours. In the case of
selecting five products from n= 80 candidates, our conser-
vative estimate on the running time of the exhaustive al-
gorithm is about 10 years. In contrast, the running time
of our approximation algorithm for all cases remain in less
than one second. We also test our approximation algorithm
on a larger dataset where m=1, 000, n=100, l=1, 000, 000.
We select k=8 new products from the 100 candidates. Our
approximation algorithm still only takes about 7 minutes.

Figure 3 depicts the expected market share of the two
algorithms. One can observe that our approximation algo-
rithm provides high accuracy: about 0.96 approximation on
average as compared with the optimal solution obtained us-
ing the exhaustive algorithm. This shows that our algorithm
generates results which is much better than the theoretical
lower bound guarantee. In fact, the results of the two al-
gorithms are exactly the same for over 80% of all experi-
ments we performed and our approximation algorithm still
provides a 0.82 approximation even under the worst case
scenario among all experiments.

k = 2 k = 3 k = 4 k = 5

n=20 65.89 1160.37 18799.17 285804.08

n=40 256.62 8111.76 287626.53 ≈ 1×107

n=60 535.29 26511.67 ≈ 1×106 ≈ 5×107

n=80 915.38 57812.33 ≈ 4×106 ≈ 2×108

Table 2: Speedup: varying k and n
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Figure 2: Running time: greedy vs. exh
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Figure 3: Market share (%): greedy vs. exh
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6.2 Impact of Distance Metrics
In this subsection, we perform experiments on a real-world

web dataset, and we aim to show the influence of using dif-
ferent distance metrics.

We extract the TripAdvisor dataset from [15]. Hotels and
reviewers of these hotels are considered as products and con-
sumers respectively in this dataset. The reviewers rated ho-
tels on seven attributes: value, room, location, cleanliness,
front desk, service, and business service. We use the aver-
age rating of an attribute as the quality of that attribute for
each hotel. We also add the inverse of the average price of
the hotel as the eighth attribute, which is normalized in the
range of (1, 5). For each consumer, we extract requirement
vector as follows. Let r̄ be the average rating of a hotel’s
attribute and ri be the rating from the consumer ci. If ri
is lower than r̄, it means that ci has a higher requirement
than average, and if ri is higher than r̄, ci may have a lower
requirement than the average. Thus, we set the requirement
of ci as r̄+(r̄−ri). For example, if r̄= 3.5 and ri = 4, then
the requirement of ci will be 3.5+(3.5−4)=3. Table 3 shows
the overall statistics of the dataset.

# of products # of consumers # of attributes

1,605 186,249 8

Table 3: Parameters of our web datasets

We select the first 605 hotels as the candidate products
and set the remaining 1000 hotels as the existing products.
We apply our approximation algorithm to solve the 2-MMP
problem using the four distance metrics introduced in Sec-
tion 2: discrete metric (DM), norm metric (NM), price met-
ric (PM), and richman metric (RM). The results are shown
in the first four rows of the second column in Table 4. One
can observe that the results vary greatly when we use d-
ifferent distance metrics. This implies the importance of
inferring and understanding consumers’ adoption behavior.

distance ID of selected market share of
metrics products selected products

DM 214, 566 32.33%
NM 284, 214 11.20%
PM 566, 350 35.43%
RM 284, 214 11.20%

Θ̂ 566, 284 38.09%

Table 4: Results of the 2-MMP problem

6.3 Learning Distance Metrics
In the following, we evaluate the accuracy of our learning

method using the same dataset in the last subsection. Since
we do not have the information about products’ real-world
market share and consumers’ adoption models, we manually
set the probability Θ̂ that consumers use the above four
distance metrics. Then we randomly set the distance metric
for each consumer according to Θ̂ and estimate the “real-
world market share”by enumerating each consumer’s choice.
We estimate the probability as Θ using the learning method
in Section 3 and compare the normalized root-mean-square
error (NRMSE) between Θ and Θ̂ to evaluate the accuracy
of our learning method. Note that NRMSE ranges in (0, 1)
and lower value implies higher accuracy.

We present the experimental results in the case that Θ̂=
(0.1, 0.2, 0.6, 0.1)T and the“real-world market share”of a set
P ′E of five products are known. Firstly, we calculate the
expected market share of these products under all the four
potential models. The results are shown in Table 5 along
with the “real-world market share”.

ID DM NM PM RM real-world

91 0.21 0.13 4.81 0.13 2.93
500 0.40 0.14 0.33 0.07 0.27
517 1.30 49.83 2.10 25.38 13.75
746 1.07 0.79 0.81 11.40 1.87
350 0.68 1.09 3.80 1.09 2.64

Table 5: Market share (%)

Then, by solving the following optimization problem, we
can estimate Θ=(0.1084, 0.1979, 0.5953, 0.0984)T . One can

observe that Θ is very close to Θ̂ (NRMSE≈0.0099), which
indicates a high accuracy of the estimation.

Minimize∥∥∥∥∥∥∥∥∥
0.21%θ1 0.13%θ2 4.81%θ3 0.13%θ4 −2.93%
0.40%θ1 0.14%θ2 0.33%θ3 0.07%θ4 −0.27%
1.30%θ1 49.83%θ2 2.10%θ3 25.38%θ4 −13.75%
1.07%θ1 0.79%θ2 0.81%θ3 11.40%θ4 −1.87%
0.70%θ1 0.15%θ2 1.68%θ3 0.15%θ4 −2.64%

∥∥∥∥∥∥∥∥∥

2

2

subject to Θ ≥ 0, θ1 + θ2 + θ3 + θ4 = 1.

Based on the derived probability Θ, one can forecast the
market share of products and make a better product selec-
tion decision. The result of the 2-MMP problem in this
scenario is shown in the last row of Table 4. For the selected
products under each adoption model in Table 4, we estimate
the “real-world market share” and list the result in the last
column. One can observe that, the product selection result
based on learning the proper weighting of distance metrics
achieves a better market share than other distance metrics.

We also select different sets P ′E of products that we know
the market share and examine the NRMSE. The results are
shown in Figure 4, where the vertical axis is the NRMSE
of the estimation, the horizontal axis of (a) is n′ which is
the size of P ′E , and the horizontal axis of (b) is the average
variance σ2 of the expected market share of products in P ′E
under different models when n′=5 and n′=20.

One can observe that our estimation maintains a high ac-
curacy in general. The average accuracy is about 0.035 even
in the case that we only know the market share of five prod-
ucts. Furthermore, the accuracy increases exponentially fast
when the size of P ′E increases. On the other hand, product
sets with larger σ2 have higher accuracy, which is realistic
since if the market share varies slightly under different mod-
els, it may be difficult to estimate.

Due to the page limit, we only present the above example.
We like to note that our results and conclusions are consis-
tent when we vary Θ̂, model set, or any other parameters.

7. RELATED WORK
Product selection: Let us provide some related work on
product selection. In [6], authors formulated a number of mi-
croeconomic applications as optimization problems via data
mining perspective. Inspired by [6], Li et al. [7] extended
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Figure 4: Accuracy of distance metric learning

the concept of dominance, which is used as skyline operators
[1] to analyze various forms of relationships between prod-
ucts and consumers. A manufacturer can position popular
products effectively while remaining profitable by analyz-
ing the dominance relationships. The works in [16, 14, 13,
12] considered the situation that there exist multiple man-
ufacturers. The authors of [16] derived the Nash Equilibri-
um when each manufacturer modifies its product in a round
robin manner to maximize the market share. Wan et al. [14]
aimed to find the most competitive products which are not
dominated by any competitors without taking into accoun-
t the consumers. They extended their work in [13, 12] by
considering the consumers’ preferences. However, the above
papers all aimed to maximize the number of potential con-
sumers, which is not equivalent to the market share derived
in this paper. In fact, potential consumers may not lead to
higher market share because different consumers have differ-
ent probability to adopt new products. Authors in [8] aimed
to find the products with the maximum expected number of
total adopters, which is similar with the market share in our
paper. But their algorithm could not provide any theoret-
ical performance guarantee. Furthermore, none of the pre-
vious works consider the complicated product adoption be-
havior of consumers. Instead, they assumed that consumers
will make randomly product adoption decisions, which cor-
responds to a special case of our product adoption model
using the discrete norm.
Maximization of submodular functions: Submodular
functions have properties which are very similar to the con-
vex and concave functions. The authors of [2, 11] showed
that a natural greedy hill-climbing strategy can achieve a
provable performance guarantee for a problem of maximiz-
ing a non-negative monotone submodular function: at least
63% of optimal. Due to the generality of this performance

guarantee, this results has found applications in a number
of areas, e.g., discrete optimization [10], materialized view
[4], and influence maximization [5].

8. CONCLUSIONS
In this work, we present the problem of finding the k

most marketable products (k-MMP) under a distance-based
adoption model. Our adoption model is general in that we
can use different distance metrics to describe various con-
sumers’ adoption behaviors. Given some historical data sets
on market share, we propose a learning method to selec-
t the appropriate distance metrics to describe consumers’
production adoption behavior. We prove that the k-MMP
problem is NP-hard when k≥2 and the number of products’
attributes, d, is three or more. We propose a polynomial
time approximation algorithm to solve the k-MMP prob-
lem. Using the submodularity analysis, we formally prove
that our approximation algorithm can guarantee a (1−1/e)-
approximation as compared to the optimal solution. We
compared our approximation algorithm with the exhaus-
tive search algorithm on the synthetic datasets. The results
showed that our approximation algorithm can achieve O(nk)
times speedup when selecting k products from n candidates.
Furthermore, the solution quality of our algorithm is about
96% on average, which is much higher than the theoretical
lower bound. We also perform experiments on the real-world
web datasets to show the crucial impact of different distance
metrics and how we can improve the accuracy of product s-
election using our distance metric selection method.

9. ACKNOWLEDGMENTS
The work of John C.S. Lui is supported in part by the

GRF Grant 415112.

10. REFERENCES
[1] S. Borzsony, D. Kossmann, and K. Stocker. The

skyline operator. In ICDE, pages 421–430, 2001.

[2] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser.
Location of bank accounts to optimize float.
Management science, 23(8):789–810, 1977.

[3] P. E. Gill, W. Murray, and M. H. Wright. Practical
optimization. 1981.

[4] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In ACM SIGMOD
Record, volume 25, pages 205–216. ACM, 1996.

[5] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing
the spread of influence through a social network. In
KDD, pages 137–146, 2003.

[6] J. Kleinberg, C. Papadimitriou, and P. Raghavan. A
microeconomic view of data mining. Data mining and
knowledge discovery, pages 311–324, 1998.

[7] C. Li, B. C. Ooi, A. K. Tung, and S. Wang. Dada: a
data cube for dominant relationship analysis. In
SIGMOD, pages 659–670, 2006.

[8] C.-Y. Lin, J.-L. Koh, and A. L. Chen. Determining
k-most demanding products with maximum expected
number of total customers. In TKDE, pages
1732–1747, 2012.

[9] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting
stars: the k most representative skyline operator. In
ICDE, pages 86–95, 2007.

859



[10] G. L. Nemhauser and L. A. Wolsey. Integer and
combinatorial optimization, volume 18. Wiley New
York, 1988.

[11] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions - I. Mathematical Programming, pages
265–294, 1978.

[12] Y. Peng, R. C.-W. Wong, and Q. Wan. Finding top-k
preferable products. In TKDE, pages 1774–1788, 2012.

[13] Q. Wan, R. Wong, and Y. Peng. Finding top-k
profitable products. In ICDE, pages 1055–1066, 2011.

[14] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and
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APPENDIX
• Proof of Theorem 1:

Proof. The NP-hardness proof can be achieved by trans-
forming an NP-hard problem, called the top-k Representa-
tive Skyline Product (top-k RSP) [9], to a special case of the
k-MMP problem.

Let us state the top-k RSP [9]. Given a set U of points
and a positive integer k, compute a set S of k skyline points
such that the number of points dominated by these k points
is maximized. A point p = (p[1], p[2], . . . , p[d]) dominates
another point q = (q[1], q[2], . . . , q[d]) iff p[i] ≥ q[i] ∀1 ≤
i ≤ d and there exists at least one dimension k such that
p[k] > q[k], and we denote this as p� q. Consequently, the
skyline point is defined as follows. Given a set U of points,
the skyline points of U are the set of S ⊆ U points which
are not dominated by any points in U .

Given an instance of top-k RSP problem, we construct an
instance of k-MMP problem, which can be carried out as
follows. Set PE = ∅, i.e., m = 0. Let PN be the set of
skyline points in U , and C be the rest, i.e., C = U\PN . Note
that in general, the concept of dominance is different from
product satisfiability as stated in Definition 1. Formally, we
have pj � ci ⇒ pj % ci, but pj % ci ; pj � ci. However, if
pj % ci but pj � ci, then the quality vector of pj is exactly
the same with the requirement vector of ci, i.e., pj and ci
have the same location in the d-dimensional space. But in
our construction, the product points are skyline points while
the consumer points are not, so there does not exist such kind
of ci and pj pairing in our construct. Therefore, we can treat
dominance and product satisfiability to be the same in this
instance.

Let P be the set of k products we select from PN . In this
case, since there is no existing product, so if a consumer has
any satisfactory product in P , the consumer will adopt one
unit of products in P , otherwise, 0. As a result, the expected
number of adopters is equal to the number of consumers who
have satisfactory products in P . In another word, MS(P ) is
equal to the total number of points dominated by the skyline
points in P divide by the total number of non-skyline points.
Since the total number of non-skyline points is fixed, the

result of the corresponding top-k RSP problem is also the
result of this instance of the k-MMP problem.

Therefore, any instance of the top-k RSP problem can be
transformed to an instance of the k-MMP problem. Since
the top-k RSP problem has been proved to be an NP-hard
problem, the k-MMP problem is also NP-hard.

• Proof of Lemma 2:

Proof. To simplify the proof, we define the following
notations. Let σ= |FP(ci|PSu)| and s= |FP(ci|PSu)|∩Su|,
where σ≥s≥1. Let d=di,j where pj ∈FC(ci|PS). Since ci∈
FC(pu|PSu), we have di,u≥d. If di,u>d, then ci will adopt
pu with probability 1, i.e., pr i(Su) = 1. While pr i(S) ≤
1, so Inequality (9) holds. If di,u = d, then FP(ci|PSu) =
FP(ci|PS)∪{pu}, so |FP(ci|PS)|=σ−1. Similarly, we have
|FP(ci|PS) ∩ S|=s−1. When σ=1, FP(ci|PS) is an empty
set, which means pu is ci’s only choice, the situation is the
same with the case of di,u =d. So we only need to consider
the case when σ>1. Bring the notations into Inequality (9),
we have

pr i(Su)− pr i(S) =
s

σ
− s− 1

σ − 1
=

σ − s
σ(σ − 1)

≥ 0, (13)

which can be proved by observing that σ≥s and σ>1.

• Proof of Lemma 3:

Proof. Because Su⊆Tu, pu has more competitors when
a set Tu of products is available in the market. As a re-
sult, FC(pu|Tu) ⊆ FC(pu|Su). Since ci∈FC(pu|Tu), we have
ci ∈ FC(pu|Su). Follow the same notations in the proof of
Lemma 2, let us consider the case of σ=1 first. In this case,
pr i(Su) = 1, pr i(S) = 0, so the left side of Inequality (10)
equals to 1. While the right side of the inequality is obvi-
ously no larger than 1, so the Inequality (10) holds. Now let
us consider the case when σ> 1. According to the proof of
Lemma 2, we have

pr i(Su)− pr i(S) =
s

σ
− s− 1

σ − 1
. (14)

Let dT and dS denote the distance between ci and the prod-
ucts in FP(ci|PT ) and FP(ci|PS), respectively, where di,u≥
dT ≥ dS . In the case of di,u > dS , then the left side of
Inequality 10 equals to 1, so the inequality holds. Thus,
the remaining thing is to prove the inequality holds when
di,u =dT =dS . In this case, FP(ci|PSu)=FP(ci|PS)∪{pu},
FP(ci|PTu)=FP(ci|PT )∪{pu}, and FP(ci|PS)⊆FP(ci|PT ).
Let δ= |FP(ci|PTu)|−|FP(ci|PSu)|, then it follows that δ≥0,
σ+δ = |FP(ci|PTu)|, s+δ= |FP(ci|PTu)∪Tu|. Thus we have

pr i(Tu)− pr i(T ) =
s+ δ

σ + δ
− s+ δ + 1

σ + δ + 1
. (15)

According to Equation (14) and (15), we can derive Inequal-
ity (10) as follows.

Inequality (10) holds

⇔ s

σ
− s− 1

σ − 1
≥ s+ δ

σ + δ
− s+ δ − 1

σ + δ − 1

⇔ σ − s
σ(σ − 1)

≥ σ − s
(σ + δ)(σ + δ − 1)

(16)

Hence, we only need to show that Inequality (16) holds,
which can be proved by observing that σ > 1, δ ≥ 0 and
σ≥s.
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