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ABSTRACT
Chronic diseases, such as Alzheimer’s Disease, Diabetes, and
Chronic Obstructive Pulmonary Disease, usually progress
slowly over a long period of time, causing increasing burden
to the patients, their families, and the healthcare system. A
better understanding of their progression is instrumental in
early diagnosis and personalized care. Modeling disease pro-
gression based on real-world evidence is a very challenging
task due to the incompleteness and irregularity of the ob-
servations, as well as the heterogeneity of the patient condi-
tions. In this paper, we propose a probabilistic disease pro-
gression model that address these challenges. As compared
to existing disease progression models, the advantage of our
model is three-fold: 1) it learns a continuous-time progres-
sion model from discrete-time observations with non-equal
intervals; 2) it learns the full progression trajectory from a
set of incomplete records that only cover short segments of
the progression; 3) it learns a compact set of medical con-
cepts as the bridge between the hidden progression process
and the observed medical evidence, which are usually ex-
tremely sparse and noisy. We demonstrate the capabilities
of our model by applying it to a real-world COPD patient
cohort and deriving some interesting clinical insights.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data mining

Keywords
Bayesian network, Markov jump process, disease progression
modeling, medical informatics

1. INTRODUCTION
Chronic diseases usually progress slowly over time. For

example, Chronic Obstructive Pulmonary Disease (COPD)
can take well over 10 years to evolve from (according to the
GOLD criteria [6]) Stage I (mild) to Stage IV (very severe).
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It may also take 10 years for Congestive Heart Failure (CHF)
to progress from Stage I (mild) to Stage IV (severe). Late
detection and intervention for such chronic diseases signif-
icantly increases the burden on both the patients and the
healthcare system. Being able to detect the development of
chronic diseases at an early stage is instrumental to preven-
tive care and personalized medicine.

Disease Progression Modeling (DPM) [11], the modeling of
the progression of a target disease with computational meth-
ods, is an important technique that can help with the early
detection and management of chronic diseases. By char-
acterizing the entire disease progression trajectory, DPM
also facilitates disease prognosis improvement, drug devel-
opment, and clinical trial design. There have been a few ex-
isting work on DPM that targets a specific domain. For ex-
ample, Jackson et al. [9] presented a general Hidden Markov
Model for simultaneously estimating the transition rates and
the probabilities of stage misclassification. Ito et al. [8] con-
ducted a meta analysis to model the longitudinal changes of
patients with mild to moderate Alzheimer’s disease. Zhou
et al. [17] proposed a fused group lasso approach for disease
progression modeling with known biomarkers. Exarchos et
al. [5] developed a dynamic Bayesian network based tech-
nique to model the progression of Coronary Atherosclero-
sis. Some difficulties of applying these existing methods to
general-purpose evidence-based disease progression model-
ing include:

• Multiple Covariates. The progression of disease usu-
ally involves the evolution of many different types of
hidden covariates. Identifying these covariates with
limited or no supervision is a very challenging task.

• Progression Heterogeneity. Different patients may
have different progression trajectories. For instance, a
COPD patient who had lung infection could progress
rapidly, whereas another COPD patient who quit smok-
ing could remain stable. There is no natural alignment
between different records with varied progression rates.

• Incomplete Records. The patient records are not
complete, meaning that in most of the cases it only
covers a segment of the entire progression trajectory.

• Discrete Observation. Although the disease progres-
sion is a continuous-time process, the patient condi-
tions are only observed at discrete timestamps with
varied intervals.

• Irregular Visits. The patients will only have medi-
cal records when they visit a medical facility. There-
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fore the time granularity of patient records vary sig-
nificantly across different patients, and for the same
patient over different time periods.

• Limited Supervision. For some diseases we have
very limited yet crucial domain knowledge available,
e.g. the known symptoms of a particular disease. In-
corporating the available domain knowledge into the
progression model is a nontrivial task.

To address these challenges, we propose an unsupervised
disease progression model. As show in Figure 1, our model is
composed of three layers: The top layer is a Markov Jump
Process which captures the continuous-time diseases state
transitions. The middle layer is a set of Markov chains
capturing the relationship between the hidden state tran-
sitions and the onset pattern of a set of comorbid conditions
(comorbidities). The third layer is a noisy-or network [14]
(Figure 2) capturing the relationship between those comor-
bidities and the observed clinical evidence. Note that in-
stead of linking the clinical observations directly to the dis-
ease progression states, we “group” them into comorbidities,
which tend to evolve coherently with the progression of dis-
ease. This abstraction also makes the learned DPM more ro-
bust and interpretable. An Expectation-Maximization (EM)
based algorithm is presented to estimate the parameters as
well as the hidden variables. We apply our model to a real-
world COPD patient cohort to demonstrate its capabilities.

It is worthwhile to highlight the following aspects of the
proposed model:

• Our model is unsupervised. We learn the entire dis-
ease progression trajectory from the observed patient
records without any training labels on the ground truth
stages that a patient was in.

• Our model learns the continuous-time disease progres-
sion trajectory even though the medical records were
only observed at discrete timestamps with irregular in-
tervals.

• Our model can “stitch together” partial disease tra-
jectories (i.e., incomplete records from individual pa-
tients) into a global path of disease progression.

• Our model can learn meaningful comorbidities associ-
ated with different disease stages. We allow the in-
jection of anchor findings, which are clinical features
that distinctly signifies the presence of a certain co-
morbidity, to improve the interpretability and medical
validity of our model.

2. RELATED WORK
Disease progression modeling is an important topic in

medical informatics [11]. Existing work on disease progres-
sion models have been proved effective for drug develop-
ment and early intervention. For example, Post et al. [12]
proposed a family of models to describe the progression of
degenerative diseases (such as type 2 diabetes and Parkin-
son’s disease) as a function of disease process and treatment
effects. De Winter et al. [3] developed a mechanism based
technique for modeling the progression of diabetes mellitus
by tracking the interaction between several key indicators.
Ito et al. [8] presented a model based on literature meta-
analysis to describe the longitudinal changes of patients with
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Figure 1: The outline of our model: S are progres-
sion state variables, X are comorbidity variables,
and O are observed clinical findings.

X1 X2 XK-1 XK L……

LDZKD

K Comorbidities
(hidden)

Leak Term
(hidden)

O1 O2 OD-1 OD
……

D Clinical Findings
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Figure 2: The noisy-or Bayesian network (also
known as QMR-DT network). The clinical findings
can be activated by a present comorbidity, or by the
always-on leak term. The starred finding (O1) is an
anchor, which means it can only be activated by a
specific comorbidity (X1 in this case).

mild to moderate Alzheimer’s disease. These papers from
the medical field tend to be specific to a single target disease.
They require substantial domain knowledge on the progres-
sion, mechanism, and key indicators/measurements for the
target disease. This is not the case for our model because
we aim to learn a general-purpose model for any chronic dis-
ease based on a general input data type: Electronic Health
Records. We do not assume prior knowledge of either the
ground truth progression stages or the key indicators that
signify the stage transitions.

Another line of efforts, to which our approach belongs,
model the progression of disease using machine learning and
statistical techniques based on observational data, also re-
ferred to as evidence based modeling. For example, Jack-
son et al. [9] developed a multistage Hidden Markov Model
and applied it to an aneurysm screening study. Sukkar et
al. [15] applied Hidden Markov Model to Alzheimer’s dis-
ease. Cohen et al. [2] performed hierarchical clustering of
45 physiological, clinical, and treatment variables collected
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every minute in an intensive care unit to identify patient
states. They used these clusters to visualize individual pa-
tient states over time, with each state obtained by assigning
the corresponding data point to a cluster. Zhou et al. [17]
proposed a fused group lasso formulation for disease progres-
sion modeling with known biomarkers. Zhou et al. modeled
disease progression using a multi-task learning framework
[18]. As pointed out by Yang et al. [16], if we model patient
records as time sequences, disease progression stages can also
be captured by joint time sequence segmentation. The dif-
ference between these existing techniques and our approach
includes: 1) Unlike the discrete-time HMM based models,
our model is continuous-time, which is a more natural way
to handle the irregular time intervals between patient visits;
2) Some existing work were dealing with synchronous time
sequences, i.e. there are explicit or implicit correspondence
between the timestamps of different patients. This assump-
tion is not true for our model where a patient record could
start and end at any point of the progression path.

3. MODEL
We model the progression of a target disease based on the

longitudinal clinical findings of a cohort of patients who have
developed, or are at risk developing, such disease. First of
all, we use a Markov Jump Process to model the transition
of disease stages/states, which implies 1) the progression is
continuous-time; 2) the transition probability to the future
state only relies the current state and the time span.

Second, we use the onset pattern of comorbidities to drive
the transitions of the Markov Jump Process. Generally
speaking, a comorbidity is a disease or syndrome that co-
occurs with the target disease. For example, hypertension is
a common comorbidity of diabetes and osteoporosis is a com-
mon comorbidity of COPD. Since the onset of a new comor-
bidity often signifies the exacerbation of the target disease,
we use the onset pattern of multiple comorbidities to col-
lectively capture the state transitions of the target disease.
We assume the comorbidities are conditionally independent
given the state of the target disease. This is a mild assump-
tion in our case because medically meaningful comorbidities
are by definition mutually independent diseases.

Finally, in order to infer the presence of the comorbidities
from the observed clinical findings, we use a bipartite noisy-
or Bayesian network [7, 14] (Figure 2). Simply speaking,
given a set of comorbidities and a set of clinical findings, we
assume an observed clinical finding was “activated” by the
presence of any of the comorbidities with a certain activation
probability ; it is also possible that none of the comorbidities
is present and the finding was activated by an always-on hid-
den cause with a leak probability. Such structure is especially
well suited to our setting due to its flexibility in modeling
sparse and noisy observations.

Our overall model is illustrated in Figure 1. Some no-
tations that are used throughout the rest of the paper are
listed in Table 1.

3.1 Variables
We assume that there are K different comorbidities un-

derpinning the progression of the target disease, D different
clinical findings, and M different progression states. We
have N different patients and each patient n has Tn visits,
with timestamps τ1, . . . , τTn . We introduce the following

Table 1: Notations and Meanings
N Number of patients
M Number of progression states
K Number of comorbidities
D Number of clinical findings
t/τ Discrete/continuous timestamp
S Disease states
X Cormorbidities
O Clinical findings
π Initial state distribution
Q Transition generator matrix

A(∆) Transition probability matrix over time span ∆
B Onset probability for comorbidities
Z Activation probability for clinical findings
L Leak probability for clinical findings

variables for our model:

Disease States (hidden): Sn,t ∈ {1, . . . ,M}
Comorbidities (hidden): Xk,n,t ∈ {0, 1}

Clinical Findings (observable): Od,n,t ∈ {0, 1}

The underlying patient state is assumed to evolve ac-
cording to a continuous-time Markov process. However, we
only observe evidence about the patient at specific times
τ1, . . . , τTn when the patient interacts with the healthcare
system (e.g. visits a doctor or fills a prescription). The
random variables Sn,t and Xk,n,t for t = 1, . . . , Tn denote
the patient’s disease state and comorbidities, respectively,
at these discrete times. Xk,n,t = 1 means patient n has
comorbidity k at visit t, and is 0 otherwise. In our gen-
erative model, the presence or absence of comorbidity k at
time t, i.e. Xk,n,t, depends on whether the patient had the
comorbidity in the previous time step, Xk,n,t−1 as well as
the patient’s progression state. Associated with each visit is
a set of observed clinical findings, Od,n,t, which we assume
to be conditionally independent given the disease’s current
state of progression and the comorbidities. We model these
using a noisy-or bipartite network, shown in Figure 2 and
discussed further in Section 3.4.

3.2 Markov Model of Disease Progression
The continuous-time Markov process is parameterized by

an M ×M transition generator matrix Q that drives
the transition between M states. The transition probability
from state i to j with a time span ∆ is defined as:

Aij(∆) , P (St = j|St−1 = i, τt − τt−1 = ∆;Q)

= expm(∆Q)ij ,
(1)

where expm(·) is the matrix exponential.
The M × 1 initial state probability π is defined as:

πi , p(S0 = i), i = 1, . . . ,M. (2)

3.3 Model of Comorbidities
The disease progression is manifested through a number of

comorbidities, which we model as binary random variables.
The state of each comorbidity variable at time t, Xk,n,t, is
decided by the current disease state Sn,t as well as the state
of the same comorbidity variable at the previous time step,
Xk,n,t−1. We further constrain that a comorbidity onset can
only happen when there is a state transition from Sn,t−1 to
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Sn,t (which means the overall condition of the patient has
changed). This conditional distribution is parameterized by
a K ×M × 2 comorbidity onset probability B:

Bk,m,a , p(Xk,n,t = 1|Sn,t = m,Sn,t−1 6= m,Xk,n,t−1 = a),
(3)

a ∈ {0, 1}. We assume that B is homogeneous with time
t and independent of the particular patient n. For what
follows, we define the shorthand:

Ψ(Xk,n,t|Sn,t, Xk,n,t−1)

, B
Xk,n,t

k,Sn,t,Xk,n,t−1
(1−Bk,Sn,t,Xk,n,t−1)1−Xk,n,t .

(4)

At t = 0, the initial onset probability B0 is defined as:

B0
k,m , p(Xk,n,0 = 1|Sn,0 = m). (5)

3.4 Model of Clinical Findings
What remains is to describe how we generate the observed

findings (e.g., the diagnosis codes) given the disease and co-
morbidity states. For this part of the model we use a bipar-
tite noisy-or Bayesian network. Such networks have been
previously used for medical diagnosis, a prominent example
being the Quick Medical Reference (QMR-DT) [14]. How-
ever, rather than having a single diagnosis model per patient,
we use a new one for each visit, tying them together by hav-
ing the prior distribution for the comorbidities (the top-level
in Figure 2) depend on the state of the comorbidities in the
previous visit and on the overall disease state.

We have one parameter Zk,d for the activation proba-
bility of comorbidity k and finding d. The larger Zk,d is,
the more likely observation Od,n,t is to be 1 whenever Xk,n,t
is 1. If none of the comorbidity variables are active, an ob-
servation Od,n,t still has the chance to be activated by an
unknown cause, assumed to always be on, with the leak
probability Ld , p(Od,n,t = 1|

∑K
k=1 Xk,n,t = 0). Overall,

Od,n,t follows a noisy-or distribution. We define Φ(Od,n,t|X)
as a shorthand for:

Φ(Od,n,t|X) ,

(
1− (1− Ld)

K∏
k=1

(1−Xk,n,tZk,d)
)Od,n,t

(
(1− Ld)

K∏
k=1

(1−Xk,n,tZk,d)
)1−Od,n,t

Only O is observable. X and S are hidden, and π,Q,B,L,Z
are parameters to estimate.

4. INFERENCE
We give the progression model parameters B,L and Z

Beta priors and perform marginal inference over both the
latent variables and the model parameters using Gibbs sam-
pling. Estimation of the Markov Jump Process is challenging
in our setting due to incomplete observations nonequidistant
in time [10], and for computational reasons it is preferable to
perform Maximum Likelihood Estimation of the parameters
of the continuous-time Markov chain, i.e. maxπ,Q p(O;π,Q).
We use Expectation-Maximization to find a local optimum
of the likelihood. The overall learning algorithm is summa-
rized in Algorithm 1.

We omit details of the Gibbs sampling and EM algorithm
that are standard, instead focusing our description on esti-
mation of the continuous-time Markov model and on other
aspects that are special to our setting.

Algorithm 1: Our Algorithm

Input: Clinical findings O
Output: Transition generator matrix Q, initial state

probability π, activation probability Z, leak
probability L, onset probability B

1 Initialize S,X, Q, π,B, Z, L;
2 repeat

// E-step

3 repeat
4 Gibbs sampling from p(S,X, B, L, Z|O;π,Q);
5 until Convergence;
6 Use samples to estimate p(Sn,0 = i|O;π,Q) and

p(Sn,t−1 = i, Sn,t = j|O;π,Q);

7 Compute Cij(∆) =
∑N
n=1

∑Tn
t=1 p(Sn,t−1 = i, Sn,t =

j|O;π,Q)1τt−τt−1=∆,∀∆;
// M-step

8 Update πi ←
∑N

n=1 p(Sn,0=i|O;π,Q)∑N
n=1

∑M
i=1 p(Sn,0=i|O;π,Q)

;

9 repeat
10 Compute E[Nij(∆)|k, l, Q] and E[Ri(∆)|k, l, Q]

(see Section 4);

11 Update Q←
∑

∆

∑
k,l∈[M] E[Nij(∆)|k,l,Q]Ck,l(∆)∑

∆

∑
k,l∈[M] E[Ri(∆)|k,l,Q]Ck,l(∆)

;

12 until Convergence;

13 until Convergence;

4.1 E-Step
The complete log-likelihood is log p(O,S, S(τ);π,Q). Both

the discrete states S and the continuous process S(τ) are
hidden, so in the E-step we take their expectation with re-
spect to the posterior distribution over S and S(τ) using the
current parameter setting π′, Q′:

Ep(S,S(τ)|O;π′,Q′)[log p(O,S, S(τ);π,Q)]

= Ep(S|O;π′,Q′)[log π + log p(O|S)]

+ Ep(S,S(τ)|O;π′,Q′)[log p(S, S(τ);π,Q)].

(6)

The second term in Eq. (6) can be written as (see [10] for
detailed derivation):

Ep(S,S(τ)|O;π′,Q′)[log p(S, S(τ);π,Q)] =
∑
∆

∑
i,j∈[M ]

Cij(∆)

( ∑
k,l∈[M ],k 6=l

(logQkl)E[Nkl(∆)|S;Q′]−QklE[Rk(∆)|S;Q′]

)

where we define

Cij(∆) ,
N∑
n=1

Tn∑
t=1

p(O, Sn,t−1 = i, Sn,t = j;π′, Q′)1τt−τt−1=∆

and for which we need to compute

p(O, Sn,t−1 = i, Sn,t = j;π′, Q′),∀n, t, i, j. (7)

Nkl(∆) is defined as the number of transitions from state
k to l during the time interval ∆. Rk(∆) is the amount of
time spent in state k during the time interval ∆. Note that
these are auxiliary latent variables that we introduce to help
us learn the continuous-time Markov process. We will later
describe how to estimate their expectations.
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Gibbs Sampling
The posterior distribution for B, Z, and L can be obtained
in closed-form since the Beta distribution is conjugate for the
Bernoulli. To perform Gibbs sampling of these continuous
parameters (with range [0,1]), we use a fixed set of discrete
values. For instance, we can sample from 0.01 to 0.99 with
0.01 increment; finer sampling granularity can be chosen at
the cost of longer runtime (the complexity is linear to the
number of values).

We perform block sampling of both X and S, substan-
tially improving the mixing time of Gibbs sampling at the
cost of only double the running time per iteration. For fixed
n and k, we sample Xk,n,t, t = 1, . . . , Tn from the joint dis-
tribution:

p(Xk,n,0, . . . , Xk,n,Tn |Θ,O)

= p(Xk,n,0|Θ,O)

Tn∏
t=1

p(Xk,n,t|Θ,O, Xk,n,t−1)

= p(Xk,n,0|Θ,O)

Tn∏
t=1

p(Xk,n,t, Xk,n,t−1|Θ,O)

p(Xk,n,t−1|Θ,O)
,

(8)

in which p(Xk,n,t = i|Θ,O) and p(Xk,n,t = j,Xk,n,t−1 =
i|Θ,O), i, j ∈ {0, 1}, ∀t need to be estimated. Here Θ =
(X−k,S, B, Z, L).

Define αi(t) , p(Od,n,0, . . . , Od,n,t, Xk,n,t = i|Θ). It can
be updated sequentially as

αi(0)← Ψ(Xk,n,0 = i|Sn,0)

D∏
d=1

Φ(Od,n,0|{Xk′,n,0}k′ 6=k, Xk,n,0 = i)

αi(t+ 1)←( ∑
j=0,1

αj(t)Ψ(Xk,n,t+1 = i|Sn,t+1, Xk,n,t = j)

)
D∏
d=1

Φ(Od,n,t+1|{Xk′,n,t+1}k′ 6=k, Xk,n,t+1 = i)

(9)

Also define βi(t) , p(Od,n,t+1, . . . , Od,n,Tn |Xk,n,t = i,Θ).
It can be updated sequentially as βi(Tn)← 1 and

βi(t− 1)←
∑
j=0,1

(βj(t)Ψ(Xk,n,t = j|Sn,t, Xk,n,t−1 = i)

D∏
d=1

Φ(Od,n,t|{Xk′,n,t}k′ 6=k, Xk,n,t = j))

Then it is easy to show [13] that:

p(Xk,n,t = i|Θ,O) ∝ αi(t)βi(t),
p(Xk,n,t+1 = j,Xk,n,t = i|Θ,O)

∝ αi(t)βj(t+ 1)Ψ(Xk,n,t+1 = j|Sn,t+1, Xk,n,t = i)

D∏
d=1

Φ(Od,n,t+1|{Xk′,n,t+1}k′ 6=k, Xk,n,t+1 = j)).

Therefore the forward sampling probability for Xk,n,t is:

p(Xk,n,t+1 = j|Xk,n,t = i,Θ,O)

∝ βj(t+ 1)

βi(t)
Ψ(Xk,n,t+1 = j|Sn,t+1, Xk,n,t = i)

D∏
d=1

Φ(Od,n,t+1|{Xk′,n,t+1}k′ 6=k, Xk,n,t+1 = j)).

(10)

The α’s cancel out in Eq. (10), so we do not actually need to
compute them (other than αi(0)). A similar forward sam-
pling procedure can be derived for Sn,t, t = 0, . . . , Tn. The
details are omitted due to space limitations.

4.2 M-Step
In the M-step we update two parameters: π and Q. Up-

dating πi is straightforward:

πi ←
∑N
n=1 p(O, Sn,0 = i;π′, Q′)∑N

n=1

∑M
i=1 p(O, Sn,0 = i;π′, Q′)

. (11)

We update Q using the closed-form solution based on
eigendecomposition introduced in [10]:

Qij ←
∑

∆

∑
k,l∈[M ] E[Nij(∆)|S(∆) = l, S(0) = k;Q′]Ck,l(∆)∑

∆

∑
k,l∈[M ] E[Ri(∆)|S(∆) = l, S(0) = k;Q′]Ck,l(∆)

UΛU−1 ← Q (eigendecomposition)

χpq(∆)←

{
∆ exp(∆Λp) Λp = Λq
exp(∆Λp)−exp(∆Λq)

Λp−Λq
Λp 6= Λq

E[Ri(∆)|S(∆) = l, S(0) = k;Q′]

← 1

Akl(∆)

M∑
p=1

UkpU
−1
pi

M∑
q=1

UiqU
−1
ql χpq(∆)

E[Nij(∆)|S(∆) = l, S(0) = k;Q′]

← Qij
Akl(∆)

M∑
p=1

UkpU
−1
pi

M∑
q=1

UjqU
−1
ql χpq(∆)

Recall that Akl(∆) is the transition probability from state
k to l given the time span ∆ (Eq. 1).

In our implementation, instead of returning to Gibbs sam-
pling over S immediately after Q is updated, we first repeat
the above procedure until Q converges (i.e., only recomput-
ing expectations of S(τ) with respect to the new parame-
ters), and then go back to the Gibbs sampling step. This
is an approximation based on the assumption that a small
change in Q will not lead to a significant change in the
marginal distribution of S.

4.3 Fast Evaluation of the Noisy-Or Network
In the Gibbs sampling step, we need to repeatedly evalu-

ate the likelihood of the noisy-or network given the current
parameter and variable assignments:

D∏
d=1

Φ(Od,n,t|{Xk′,n,t}k′ 6=k, Xk,n,t = i)),

i ∈ {0, 1}, for a given n and t.
To compute this likelihood in its original form, the com-

plexity is proportional to D, the total number of findings,
which is typically very large (tens of thousands for EHR
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data). However, notice that we do not need to evaluate this
over all possible findings:

D∏
d=1

Φ(Od,n,t|{Xk′,n,t}k′ 6=k, Xk,n,t = i))

=

D∏
d=1

(
1− (1− Ld)

K∏
k=1

(1−Xk,n,tZk,d)
)Od,n,t

(
(1− Ld)

K∏
k=1

(1−Xk,n,tZk,d)
)1−Od,n,t

=
∏

d:Od,n,t=1

(
1− (1− Ld)

K∏
k=1

(1−Xk,n,tZk,d)
)

∏
d:Od,n,t=0

(
(1− Ld)

K∏
k=1

(1−Xk,n,tZk,d)
)

(12)

When we sample a specific Xk,n,t, most terms in the last
line of the above equation, corresponding to the negative
findings, cancel out. Consequently the ratio between the
two likelihoods can be simplified to:∏D

d=1 Φ(Od,n,t|{Xk′,n,t}k′ 6=k, Xk,n,t = 1))∏D
d=1 Φ(Od,n,t|{Xk′,n,t}k′ 6=k, Xk,n,t = 0))

=
∏

d:Od,n,t=0

(1− Zk,d)

∏
d:Od,n,t=1

(
1− (1− Ld)(1− Zk,d)

∏
k′ 6=k(1−Xk′,n,tZk′,d)

)
∏
d:Od,n,t=1

(
1− (1− Ld)

∏
k′ 6=k(1−Xk′,n,tZk′,d)

)
(13)

With this improvement, the complexity of evaluating Φ
is only proportional to the number of positive findings,
which is far smaller than the total number of findings. More
specifically, let N be the number of patients, M the num-
ber of progression states, T the number of visits (assuming
each patient has the same number of visits), K the num-
ber of Comorbidities, and D the number of clinical find-
ings. The cost of sampling X is reduced from O(NTK2D)
to O(NTK2D+), where D+ � D is the number of pos-
itive findings for an individual patient. The cost of sam-
pling L, which benefits from the same optimization, is re-
duced fromO(NTKD+NTMD) toO(NTKD++NTMD);
the cost of sampling Z is reduced from O(K2D2NT ) to
O(K2D+DNT ). The cost of samplingB remainsO(KMNT ).

5. EMPIRICAL STUDY
In this section we apply our model to COPD, one of most

prevalent chronic diseases worldwide. It is a particularly in-
teresting target for a disease progression study because it
has a prolonged progression path and is associated with a
range of well-studied comorbidities [1,4]. Understanding the
progression trajectory of COPD is crucial for early interven-
tion and personalized care plan management.

We tested our model on a real COPD cohort to demon-
strate that our model can automatically discover medically
meaningful comorbidities among COPD patients. We present
the COPD progression stages as identified by our model,
which help explain the medical characteristics of COPD at

different stages and the key medical events that trigger ex-
acerbation. We showcase a typical application of the learned
model, which is to infer the progression trajectories of indi-
vidual patients based on their clinical observations. We also
demonstrate the convergence behavior of our model and the
importance of incorporating anchor findings.

Note that there are some existing clinical evaluation cri-
teria for the progression/severity of COPD, such as GOLD
and BODE index [6]. The progression trajectories defined
by these criteria, which are mainly focused on the deteriora-
tion of respiratory function, are fundamentally different from
the progression trajectories defined by our model, which are
the onset patterns of various comorbidities. In practice our
model is complementary to these existing standards in of-
fering the medical practitioners a comprehensive character-
ization of the patients’ condition.

5.1 Data Description
Our data came from a real-world longitudinal Electronic

Medical Record (EMR) database of over 300,000 patients
over the course of 4 years. For each patient encounter, a set
of International Classification of Diseases - Version 9 (ICD-
9) codes were recorded to indicate what medical conditions
that patient had at that time point. Other information, such
as drug prescription, lab test results, were also recorded.
Note that in our database we did not have the lab measure-
ments needed by either the GOLD or BODE criteria.

We first consulted our medical experts to identify the pa-
tients who were confirmed of having COPD at any time
point during the record. The criteria we developed were
the occurrence of at least one ICD-9 code that is related to
COPD and the prescription of at least one COPD-related
medication. Based on this selection criteria, we were able to
identify 3,705 confirmed COPD patients from the database.
For these patients, we extract their records in terms of ICD-
9 codes. In total we had 5,263 unique ICD-9 codes asso-
ciated with these patients. We removed infrequent ICD-9
codes that appeared for fewer than 200 patients, leaving us
with 264 distinct codes (our findings). Considering the rela-
tive slow progression of COPD, we further decrease the time
granularity of the original record. We segmented the time
dimension into disjoint 90-day windows and combined all
the observations within each window, viewing it as one en-
counter. In the end we had 34,976 encounters with 189,815
positive observations. Notice that the observations were
very sparse: on average each patient had 10 encounters and
5.4 positive observations (ICD-9 code assignment) per en-
counter. The average record span of a patient was 816 days
and the largest span was 1,094 days. Notice that this time
span is significantly shorter than the span of regular COPD
progression, which makes our setting very challenging.

5.2 Model Customization
Setting Anchors for Comorbidities: Our model in-

fers the disease progression through the onsets of the co-
morbidities. Therefore the validity and relevance of the
comorbidities have a great impact on the interpretability
of our model. On the one hand, our model can be fully
unsupervised and learn the comorbidities from the clinical
findings. On the other hand, if we already have some do-
main knowledge on the important comorbidities, our model
can incorporate such knowledge via setting anchor findings
and produce comorbidities in alignment with the domain
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Table 2: COPD comorbidities, associated medical conditions, and anchor ICD-9 diagnosis codes used.
Comorbidity Representative Conditions (Anchor ICD-9 Codes)
COPD Chronic Bronchitis (491), Emphysema (492, 518), Chronic Airway Obstruction (496)
Asthma Asthma (493)
Cardiovascular Hypertension (401), Congestive Heart Failure (428), Arrhythmia (427), Ischemic Heart Disease (414)
Lung Infection Pneumonia (481, 485, 486)
Lung Cancer Malignant Neoplasm of Upper/Lower Lobe, Bronchus or Lung (162)
Diabetes Diabetes with Different Types and Complications (250)
Musculoskeletal Spinal Disorders (724), Soft Tissue Disorders (729), Osteoporosis (733)
Kidney Acute Kidney Failure (584), Chronic Kidney Disease (585), Renal Failure (586)
Psychological Anxiety (300), Depression (296, 311)
Obesity Morbid Obesity (278)

Table 3: Top-5 ICD-9 codes with highest activation probability of each comorbidity group as identified by
our model. * means anchor findings.

COPD Asthma
.45 Chronic Airway Obstruction* .40 Asthma*
.05 Chronic Bronchitis with Exacerbation* .07 Allergic Rhinitis
.04 Emphysema* .05 Cough
.04 Chronic Bronchitis without Exacerbation* .04 Acute Bronchitis
.03 Respiratory Abnormalities .03 Acute Upper Respiratory Infections

Cardiovascular Lung Infection
.30 Benign Essential Hypertension* .30 Pneumonia*
.25 Unspecified Essential Hypertension* .10 Shortness of Breath
.15 Atrial Fibrillation* .10 Respiratory Abnormalities
.10 Congestive Heart Failure* .10 Cough
.10 Hyperlipidemia .06 Abnormal Findings of Lung

Lung Cancer Diabetes
.60 Cancer of Bronchus and Lung, Unspecified* .60 Type II Diabetes without Complication*
.15 Other Diseases of Lung .15 Type II Diabetes without Complication, Uncontrolled*
.15 Cancer of Other Parts of Bronchus or Lung* .10 Hyperlipidemia
.15 Cancer of Upper Lobe, Bronchus or Lung* .06 Pure Hypercholesterolemia
.15 Swelling, Mass, or Lump in Chest .06 Type II Diabetes with Renal Manifestations*

Musculoskeletal Kidney
.15 Lumbago* .20 Chronic Kidney Disease, Moderate*
.15 Pain in Limb* .15 Anemia
.10 Osteoporosis* .10 Chronic Kidney Disease, Unspecified*
.06 Myalgia and Myositis* .08 Urinary Tract Infection
.04 Acquired Hypothyroidism .08 Chronic Kidney Disease, Severe*

Psychological Obesity
.15 Depression, Unspecified* .25 Obesity, Unspecified*
.15 Anxiety* .10 Morbid Obesity*
.04 Other Malaise and Fatigue .03 Pure Hypercholesterolemia
.04 Major Depression, Recurrent Episode* .02 Edema
.03 Major Depression, Single Episode* .02 Sleep Apnea

Leak Terms: Hyperlipidemia .07, Need for Flu Vaccine .05, Acute Bronchitis .04, Routine Medical Examination .04,
Acquired Hypothyroidism .04, Mammogram Screening .03, Actinic Keratosis .03, Urinary Tract Infection .03, Cough .03,
Pure Hypercholesterolemia .03

knowledge. The study of COPD belongs to the latter case
since COPD has some well-studied comorbidities, and dis-
covering the progression of these designated comorbidities
in terms of the progression of COPD is of great practical
significance. We reviewed the literature with our medical
experts and identified nine important COPD comorbidities
(or comorbidity groups): asthma, cardiovascular diseases,
lung infection, lung cancer, diabetes, musculoskeletal disor-
ders, kidney diseases, psychological disorders, and obesity.
In Table 2 we list these comorbidities along with the ICD-9

codes we used to anchor them. We also created an addi-
tional comorbidity to track the target disease itself, which
was anchored by the ICD-9 codes we used to confirm COPD.
Following the notions introduced in [7], if feature d is anchor
of comorbidity k, we set Zk′,d to 1e − 6 for any k′ 6= k (we
chose this small value instead of 0 to avoid numerical under-
flow).

Constraining Progression Trajectory: For the re-
sults in the next section, we add a constraint to the transi-
tion generator matrix Q enforcing that we learn a linear pro-

91



Table 4: An example comorbidity identified without
anchors. Although important conditions were iden-
tified, they were mixed together with no coherent
medical interpretation (comparing to Table 3).
.35 Benign Essential Hypertension
.30 Type II Diabetes without Complication
.25 Mixed Hyperlipidemia
.20 Coronary Atherosclerosis Of Native Coronary Artery
.20 Pure Hypercholesterolemia
.15 Type II Diabetes without Complication, Uncontrolled
.08 Coronary Atherosclerosis Of Unspecified Type
.08 Chest Pain
.06 Anemia
.06 Chronic Ischemic Heart Disease, Unspecified

gression trajectory: we disallowed transitions from a later
state to an earlier state by setting Qij = 0, ∀j < i. This
constraint could be relaxed in many different ways, allowing
us to learn a non-linear progression trajectory and/or multi-
ple progression trajectories simultaneously. Such extensions
will be discussed at the end of the paper.

Setting the Parameters: In order to learn a more
sparse noisy-or network (thus better interpretability), we set
the priors for Z to Beta(0.1, 1). Thus our model will sup-
press the influence of findings that are loosely connected to
the underlying comorbidities. We did not impose any such
preference on L and B and set their priors to Beta(1, 1). We
sample Z from 0.01 to 0.1 with 0.01 increment and from 0.1
to 0.95 with 0.05 increment; we sample B and L from 0.01 to
0.99 with 0.01 increment. Since most of our model’s comor-
bidities are chronic and their presence is expected to be per-
sistent, we fix Bk,m,1 , p(Xk,n,t = 1|Sn,t = m,Xk,n,t−1 =
1) = 1. This implies that once a comorbidity is turned on,
it cannot be turned off in the future. We also introduce
a monotonicity constraint on B0 enforcing that the initial
probability of comorbidity onset is higher for patients who at
t = 0 are at a later progression stage than those at an earlier
progression stage. After introducing this constraint, we up-
date B0 in the outer EM loop (together with π and Q) using
a standard convex optimization procedure to maximize the
likelihood subject to the monotonicity constraint. Finally,
we set the number of states to M = 6 and the number of
comorbidities to K = 10.

5.3 Results and Analysis

5.3.1 Comorbidities Identified
First we present the comorbidities as well as the leak term

learned by our model (Table 3). For each comorbidity we
list the top-5 ICD-9 codes in terms of activation/leak prob-
ability (Zk,d and Ld). All the comorbidities have clear and
coherent clinical interpretations: the top findings either de-
scribe the main conditions corresponding to the comorbidity
(e.g. Diabetes and Kidney), or are the common symptoms
caused by those conditions (e.g., Lung Infection).

We contribute such interpretability to the anchor findings
(starred entries in Table 3). As a comparison, we trained
our model using the exact same settings but without the
anchors. As a result, conditions from different comorbidities
were mixed into one (see Table 4). This is natural from the
model’s perspective because these conditions frequently co-

occur (thus the name comorbid) and no extra knowledge
indicates they should be separated into different groups.

It is important to point out that our model was guided,
but not fixed, by the anchor findings. For instance, there
were anchor ICD-9 codes that did not appear in the top
findings because the model did not consider them indicative
enough; there were also some ICD-9 codes that were not
anchored but ranked highly in relevant comorbidities (e.g.
‘Lump in Chest’ for Lung Cancer and ‘Urinary Tract In-
fection’ for Kidney). Rhinitis and Acute Bronchitis showed
up in the Asthma group because they are among the top
burdens of asthma patients.

5.3.2 Progression Trajectories Identified
Next we characterize the progression trajectories learned

by our model from the COPD patient cohort. Given the gen-
erative nature of our model, we used it to generate 10,000
“virtual patients”. We chose virtual patients over real pa-
tients because the patient records we had were only 4 years
long and cannot cover the entire progression path of COPD.
To generate a virtual patient, we assume the patient comes
in at timestamp 0 in State 1. Then we used the learned
model to generate the patient’s subsequent states and the
comorbidity onsets corresponding to those states until the
patient reached State 6 (the last state). We averaged over
the 10,000 records we generated and computed the average
holding time for each state as well as the prevalence of differ-
ent comorbidities at each state, as summarized in Figure 3.

Figure 3 gives us an intuitive view of how our trained
model depicts the average progression trajectories of con-
firmed COPD patients. First, comparing different comor-
bidity groups across all progression stages, COPD has the
highest prevalence (this is expected because we had a COPD
case cohort); other highly prevalent comorbidities include
cardiovascular diseases and musculoskeletal disorders; lung
cancer is the rarest comorbidity. Next, we can observe that
State 1 is the “healthy” state where the prevalence of all
comorbidities are low. The transition from State 1 to 2 is
driven by the onset of COPD, cardiovascular diseases, and
musculoskeletal disorders. Starting from State 3, the preva-
lence of COPD is already 100% while the prevalence of other
comorbidities rise steadily. The sudden increase in the onset
rate of diabetes, kidney diseases, and lung infections at later
stages of COPD conform well to previous studies in the med-
ical literature. The onset rates of lung cancer, asthma, psy-
chological disorders, and obesity are relatively stable across
all progression stages.

5.3.3 Evidence Based Inference of Progression Tra-
jectories

Next we showcase how to use our model to infer the pro-
gression trajectory of an individual patient based on the
existing medical evidence. We picked two representative
patients from our cohort and used MAP inference to in-
fer their most likely progression stages and comorbidity on-
sets at each timestamp, respectively. Specifically, given the
trained model, we repeatedly sample X and S conditioned
on the observations from the query patient 1,000 times ini-
tialized by 10 different random seeds. We illustrated the
results with maximum posterior probability in Figure 4.

We can see that patient (a) was correctly diagnosed by
our model with musculoskeletal disorder and psychological
disorder at the beginning and was assigned to the least se-
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Figure 3: The change in comorbidity prevalence vs. the progression state transitions averaged over 10,000
virtual patients generated by our model.

(a) A Stable Trajectory

(b) A Progressive Trajectory

Figure 4: Inference of the progression trajectory and
comorbidity onset of individual patients. Predicted
stages are at the top of each plot; gray bars indi-
cate predicted comorbidity onset; and stars denote
the occurrence of relevant ICD-9 codes in the data
(descriptions are on top of the timeline).

vere stage. After 6 months, our model diagnosed this pa-
tient with cardiovascular disease. The patient was subse-
quently moved into Stage 2 and stayed there throughout the
record span. Note that the patient had a single occurrence
of COPD related diagnosis code in the record. However,
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Figure 5: The convergence of our algorithm.

our model decided this was not enough evidence to turn
on the COPD comorbidity; as a result, it was explained by
the leak term (for all anchor findings we assigned a fixed
leak probability of 10−6). In contrast to patient (a), patient
(b) exhibited a quick exacerbation of COPD. The patient
started with cardiovascular disease and musculoskeletal dis-
order (Stage 1), followed by COPD and diabetes onset soon
afterward (Stages 2 and 3), then eventually developed psy-
chological disorder and obesity (Stage 4). We use these two
representative patients to demonstrate the potential of in-
corporating our model into clinical decision support systems
to provide medical practitioners with evidence based predic-
tion and recommendation.

5.3.4 Model Convergence and Runtime
In Figure 5 we show the convergence behavior of the learn-

ing algorithm in terms of the relative change in Q as well as
the complete data log-likelihood. We did 10 Gibbs sampling
updates before first updating Q and π. We repeated the
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outer EM iterations 100 times. Despite the small number
of Gibbs sampling updates, our model converged quickly
thanks to the use of anchors. We implemented our algo-
rithm in Python. With parallelization and aforementioned
optimizations, each full Gibbs sampling update took about
3 minutes on a 24-core 2.6 GHz machine.

6. DISCUSSION
The techniques presented in this paper open the door

to many new applications of disease progression modeling.
When paired with visualization tools, clinicians could use
these models to better understand the evolution of chronic
illnesses, optimize treatments, and design clinical guidelines.

Our empirical study focused on the problem of discov-
ering a single disease progression model for COPD. Thus,
we constrained the continuous-time Markov model to allow
only forward transitions. However, for many diseases it is
unlikely that there is a single disease trajectory that most
patients follow, but rather a set of common trajectories. We
can modify our algorithm to learn a mixture of disease tra-
jectories simply by partitioning the state space and enforcing
forward transitions within each partition.

Our proposed approach for learning disease progression
models is flexible and can easily accommodate new sources
of data and/or domain knowledge. For example, we could
include lists of medications prescribed or procedures per-
formed in the set of clinical findings to complement diagno-
sis codes. Because we use a generative model, it is trivial to
marginalize over clinical findings that are unobserved on a
specific visit. We could also introduce patient-specific global
variables, either latent or observed. For example, the distri-
bution over the initial disease state could be parameterized
to be a function of age, gender, and family history. The rate
matrix for the continuous-time Markov process could depend
on factors such as whether the patient has stopped smok-
ing, which might decrease the rate of progression. Going
a step further, each specialist (e.g., endocrinologist versus
a gynecologist) is likely to have a different distribution of
diagnosis codes that they are likely to assign. Thus, if the
specialist is provided in the data, the model could make the
activation probabilities for clinical findings be different for
each specialist.

An interesting question for follow-up work is whether it is
possible to use non-case patients to learn disease progression
models. In our experimental results we used only patients
that were diagnosed with COPD. However, this limits the
amount of training data. At a minimum, it may be possible
to use the non-case patients to initialize the distribution of
clinical findings for each comorbidity.
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