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ABSTRACT
Rating data is ubiquitous on websites such as Amazon, Trip-
Advisor, or Yelp. Since ratings are not static but given at
various points in time, a temporal analysis of rating data
provides deeper insights into the evolution of a product’s
quality. In this work, we tackle the following question: Given
the time stamped rating data for a product or service, how
can we detect the general rating behavior of users as well as
time intervals where the ratings behave anomalous?

We propose a Bayesian model that represents the rating
data as sequence of categorical mixture models. In contrast
to existing methods, our method does not require any ag-
gregation of the input but it operates on the original time
stamped data. To capture the dynamic effects of the rat-
ings, the categorical mixtures are temporally constrained:
Anomalies can occur in specific time intervals only and the
general rating behavior should evolve smoothly over time.
Our method automatically determines the intervals where
anomalies occur, and it captures the temporal effects of the
general behavior by using a state space model on the natural
parameters of the categorical distributions. For learning our
model, we propose an efficient algorithm combining princi-
ples from variational inference and dynamic programming.
In our experimental study we show the effectiveness of our
method and we present interesting discoveries on multiple
real world datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
—Data mining ; I.2.6 [Artificial Intelligence]: Learning

Keywords
robust mining; anomaly detection; categorical mixtures

1. INTRODUCTION
Online rating data provides customers valuable informa-

tion about products and services and supports their deci-
sion making process. Exploiting and presenting this data is
a key feature of websites such as Amazon, Yelp, or Tripad-
visor. Besides the usefulness of rating data for customers,
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also companies and manufactures can benefit from it by,
e.g., using the data to detect functional weaknesses of their
products or changes in the customers’ satisfaction.

In this work, we propose a method for analyzing rating
data that incorporates the data’s temporal characteristics.
Given the time stamped rating data for a product or ser-
vice, we aim at detecting the general rating behavior of the
users (called the base behavior) as well as time intervals
in which these ratings deviate from the general population
(anomalous behavior). The base behavior describes the gen-
eral quality of a product or service accounting for tempo-
ral evolutions, e.g., resulting from decreasing quality due to
technical progress of competing products. The anomalies, in
contrast, deviate from the base behavior and might, e.g., oc-
cur due to spammers trying to push the success of a product
or due to changes in the service quality.
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Fig. 1: Left: Time-stamped rating data analyzed
by our method (here: a hotel from TripAdvisor).
Right: Extracted base behavior. Upper corner:
Anomalous behavior detected in summer 2005.

In Figure 1, we show a real world example for such an
effect. The data we analyzed here is a hotel from the Trip-
Advisor database. On the left, we show a subset of the
original time stamped data. The colors indicate the different
star ratings, and the height of each bar the number of these
ratings at the current time. Obviously, it is hard to analyze
such data by hand. In particular, keep in mind that the
ratings are not uniformly distributed over time.

On the right, we illustrate the detected base behavior of
our method. As one can see, the base behavior nicely shows
the general rating behavior of the users and evolves smoothly
over time with primarily medium to high ratings. Addi-
tionally, our method has found anomalous behavior in the
months of July and August 2005. As shown on the up-
per right, in these intervals, the fraction of low ratings (red
and yellow) is highly increased compared to the base behav-
ior (65% low ratings compared to around 30% in the base
behavior). As we will show in Section 5, these anomalies
occurred due to problems in the service of the hotel.
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In general, our method detects time intervals in dynamic
rating data which show anomalous behavior and – at the
same time – it detects the base behavior if the data would
not be polluted by anomalies. Besides using this princi-
ple to detect weaknesses in products and services, it can
generally be used to filter out rating information which be-
have anomalous. Thereby, prospective customers might be
provided with a cleaned history about the product; or, one
might specifically highlight these time intervals to the users
to provide the whole picture on a product (since otherwise
these anomalous ratings are hidden in the larger set of nor-
mal behavior). As an additional benefit, we can exploit our
method to predict the base behavior of future ratings. Ac-
cordingly, when new ratings arrive, we can estimate whether
they match or deviate from the predicted behavior – thus,
giving indication of new anomalies.

So far, there exists only a single method which analyzes
temporal rating data under the presence of anomalies [7]. A
potential drawback of [7], however, is the necessary aggrega-
tion/binning of the data. When using a coarse aggregation,
the temporal effects of the data are not well captured (in
the extreme, all data is a single bin). When using a fine ag-
gregation, the analyzed distributions might degenerate (in
the extreme, many bins are empty). In our model we avoid
this problem by directly operating on the time stamped data
which is modeled via a sequence of categorical mixture mod-
els. We explicitly keep into account that ratings might not
uniformly arrive over time. Furthermore, the work [7] as-
sumes that anomalies occur at individual points in time.
Our work captures the effects of real data much better by
accounting for multiple different types of anomalies appear-
ing across several time intervals. Our contributions are:
• Mining task: We present a technique for the analysis of

time stamped rating data. Our method detects the base
behavior of users as well as time intervals where potential
anomalies occurred. Additionally, our technique can be
used to predict the rating behavior at future time points.

• Theoretical soundness: Our method is based on a sound
Bayesian model that represents the rating data as a se-
quence of temporally constrained categorical mixture mod-
els. To capture the temporal effects of the base behavior
we use a state space model on the natural parameters of
the categorical distributions.

• Algorithm design: We propose an efficient algorithm for
learning our model which combines principles from vari-
ational inference and dynamic programming.

• Effectiveness: We evaluate our method on different real
world datasets and we show its effectiveness by presenting
interesting findings.

2. BAYESIAN FRAMEWORK
In this section, we introduce our model for detecting the

base rating behavior of users as well as time intervals in
which anomalies have been occurred. Following convention,
we do not distinguish between a random variable X and its
realization X = x if it is clear from the context. As an
abbreviation, we denote sets of random variables with the

index ∗, e.g. z
(t)
∗ is the set {z(t)

i } with i in the corresponding

domain, and z is an abbreviation for the set z
(∗)
∗ . Vectors

of (random) variables are written in bold font, e.g. b, while
the entries of the vectors are given in standard font, e.g. bi.
We write t ∈ T , as a shortcut for t ∈ {1, . . . , T}.

K = number of
anomaly intervals

T = number of
time stamps
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Fig. 2: Graphical model of our approach

Preliminaries. The data we consider is a time stamped

collection of ratings. Let x
(t)
i denote the i-th rating occurred

at time index t, and s(t) the time stamp at time index t.
At each time index we might observe multiple ratings (e.g.
if time stamps are only measured/provided on a daily ba-

sis). We denote with n(t) the number of ratings at time
index t. We assume the data to be ordered according to
time, i.e. s(t) occurs after s(t−1). We denote with ∆(t1,t2)

the elapsed time between time stamp s(t1) and s(t2) and
we set ∆(t) := ∆(t−1,t). Note that for each t a different
∆(t) might be observed since we do not require a fixed bin-
ning or aggregation of the rating data. We denote with
T the number of time indices (i.e. the number of distinct
time stamps) and we assume that users can choose ratings
based on a rating scale with S different ratings (e.g. stars
from 1 to S). As an abbreviation for later use, we define

n
(t)
s := |{i ∈ {1, . . . , n(t)} | x(t)

i = s}| to be the number of
ratings at time t which possess the evaluation s ∈ S.

Generative Process.
We model the rating data including potential anomalies

via a probabilistic generative process. An overview of our
generative process showing the used variables and their de-
pendencies is illustrated by the graphical model in Figure 2.
In the following we discuss the details of this process.

Given the observed rating data X, our aim is to extract
the base behavior of the users and intervals in time where
anomalies occur. Since the observed data might already be
polluted by anomalies, we cannot directly use it to estimate
the base behavior. Instead, we assume that the observed
data is obtained by mixing the (unkown) base user behavior
with the (unknown) anomaly behavior. Thus, both types
of behavior are represented as latent variables which are not
directly observed but inferred by our technique. Technically,
at each point in time we have a categorical mixture model as
illustrated in Figure 3. To incorporate the temporal prop-
erties of the data, we perform additional modeling:

Part 1: Mixing anomalies and base behavior. In
contrast to the base behavior, which is present over the
whole timespan, we assume that anomalies are rare events
(otherwise, they would correspond to the majority of the
data, making the term “anomaly” rather meaningless) and
occur only in a specific time interval like, e.g., during a short
attack of spam. Technically, instead of using an individual
anomaly at each point in time, we restrict the number of
anomalies to be small, i.e. smaller than a number K (we
discuss later how to choose this parameter), and we tempo-
rally constrain the “influence” of each anomaly to a small
time interval. For each anomaly, we define this interval by
the random variables Lk and Uk, denoting the lower and up-
per bound of time indices at which the kth anomaly occurs.
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In the following, we will use the function

k(t) =

{
k if ∃x : x = k ∧ Lx ≤ t ≤ Ux
0 else

(1)

which maps the time index t to the corresponding anomaly
(or to 0 if no anomaly exists at this point in time). Here,
we require disjointness of the different intervals.

Note that the use of anomaly intervals is a huge advantage
in contrast to [7], which models the anomalies at each time
point individually. The potential of this extension is best
shown for the case of very fine grained time stamps: In this
case, we usually expect only a single rating per time stamp,
i.e. n(t) = 1. To capture anomalies at multiple consecutive
points in time, the work of [7] has to use multiple anomalies,
while in our work a single interval suffices.

At this point we want to mention the difference between
outliers and anomalies [7]: While outliers are irregular be-
havior attributed to mostly random corruptions of the data
(like, e.g., measurement errors), anomalies are irregular be-
havior that follow a specific pattern (like, e.g., time points
with consistently low ratings due to a change in the prod-
uct’s quality). In our work, we consider anomalous behavior.

Giving the above information, the observed data at time
t is modeled as a categorical mixture model defined by

x
(t)
i ∼

{
Categorical(π(t)) if z

(t)
i = 0

Categorical(ok(t)) if z
(t)
i = 1

(2)

z
(t)
i ∼

{
0 if k(t) = 0

Bernoulli(rk(t)) else
(3)

Here, z
(t)
i is the indicator variable showing which ratings

are anomalies. π(t) ∈ [0...1]S is the vector describing the
base behavior at time t, ok ∈ [0...1]S is the kth anomaly
behavior, and rk is the mixing proportion. The higher the
value of rk, the higher the proportion of anomalies within
the corresponding interval. If no anomaly is present at time

t, all variables z
(t)
∗ are set to zero, corresponding of using

only the base behavior at this point in time. Thus, the
mixture model’s components referring to the anomalies are
constrained to specific intervals (cf. Figure 3).

For a Bayesian treatment, we equip the variables with
corresponding prior distributions. We use

ok ∼ Dir(α̂) rk ∼ Beta(α̂, β̂)

due to the properties of conjugacy. The vector α̂, for exam-
ple, can be used to specify prior knowledge about potential
anomalies (e.g. anomalies should represent primarily low rat-

ings). In all of our experiments we use α̂ = 1 and α̂ = β̂ = 1
corresponding to non-informative priors.

For the lower and upper bounds we exploit the idea that
anomalies should appear primarily in short time intervals.
That is, we assume that the probability to observe an ano-
maly over a very long time frame is lower than the proba-
bility to observe anomalies over only a few time points. We
capture this effect by drawing the lower and upper bounds
according to an exponential distribution controlled by the
duration ∆(Lk,Uk) of the anomaly interval. Formally

p(L∗, U∗) ∝

{∏K
k=1 e

−λ·∆(Lk,Uk)

if disjoint intervals

0 else
(4)

Please note that this is the joint distribution over all inter-
vals since we require their disjointness. The larger λ, the

t=0 T

1 Star
2 Stars

3 StarsL₁ U₁ L₂  U₂  

time

1 star
2 stars
3 starsL₁ U₁ L₂  U₂  

......

anomalies

evolving base 
behavior

observed
data

Fig. 3: Illustration of the generative process using
temporally constrained categorical mixture models

larger the bias to small anomaly intervals. Per default, if
no prior knowledge is given, one should select λ = 0. In
this case, any combination of L∗, U∗ is equally likely, corre-
sponding to a non-informative prior. Note also that λ = 0
is a valid prior since the domain of L∗, U∗ is finite.

Part 2: Smoothness of the base behavior. So far,
we have not specified any distribution on the base behavior
π(t). The core idea is that the base behavior should evolve
smoothly over time according to the general behavior of the
users. That is, we want to incorporate the temporal prop-
erties of the data.

As pointed out in [6], the (mean) parameters of the cate-
gorical distribution and their corresponding Dirichlet hyper-
parameters are not amenable to sequential modeling. There-
fore, we exploit a similar idea as proposed in [6, 17]: in-

stead of operating on the (mean) parameters π(t), we oper-
ate on the natural parameters (cf. exponential family [5]).
For the categorical distribution, the natural parameters are

simply given by the logs of the mean values, i.e. b
(t)
s =

log(π
(t)
s /π

(t)
S ). While the mean parameters are restricted to

lie on the simplex, the natural parameters are unconstrained,
leading to an elegant way of sequential modeling.

In the following, we only operate on the natural param-
eters b(t). If the mean parameters are required (e.g. as in
Equation 2), we can simply apply the transformation

π(t)
s =

exp(b
(t)
s )∑

j∈S exp(b
(t)
j )

=: π(b(t))s

Note that the term b
(t)
S is always 0. Therefore, we can ig-

nore it for the remainder of the discussion, thus, operating
effectively on an S − 1 dimensional space.

Given the natural parameters b(t) at each time index
t ∈ T , we model their smoothness by exploiting the idea
of linear state space systems [5] in combination with Brow-
nian motion [11, 17]. First, we assume an underlying state

space b̃(t) which temporally evolves over time via

b̃(t) ∼ N (b̃(t−1),∆(t) ·Q) (5)

b̃(1) ∼ N (b̃0,Q0)

We call this space the “smoothed” base behavior. Intu-
itively, the state of the smoothed base behavior at time t
corresponds to the old state plus a small deviation govern-
ment by the noise covariance matrix ∆(t) · Q. The larger
the time difference between two observed ratings, the larger
the corresponding covariance. That is, we effectively allow
a higher change in the base behavior if the elapsed time be-
tween two ratings is high. If time points are very close to
each other, we allow only small changes in the base behav-
ior. In the limit, this discrete-time Gaussian random walk
corresponds to Brownian motion [11, 17].

This process captures naturally the effects of rating data.
In the case of movies, for example, one might see many rat-

843



ings appearing in short time frames during the time the
movie has been released to the theaters and again many
ratings a few month later when the DVD has been released.
Both time frames potentially describe different base behav-
ior due to different audiences.

Given the smoothed base behavior, the actual base be-
havior is now obtained by the simple random process

b(t) ∼ N (b̃(t),R) (6)

which again allows a small deviation between the base be-
havior and its smoothed counterpart. Note that we do not
directly impose the temporal evolution between the variables

b(∗), but via the state space b̃(∗). This additional layer is in
particular beneficial if the number of ratings varies strongly

between the time points. If we would not use b̃(∗), a single
time point with a huge amount of ratings could dominate
most of the temporal behavior.

Finally, we add corresponding priors to the newly intro-
duced parameters. By exploiting the fact of conjugacy it
follows that Q is drawn from an Inverse-Wishart distribu-
tion, i.e. Q ∼ W−1(Ψ0

q, ν
0
q ). The parameters Ψ0

q and ν0
q can

be used to control the smoothness of the base behavior by
providing prior knowledge about the noise covariance. Simi-

larly, R follows an Inverse-Wishart distribution and (b̃0,Q0)
a Normal-Inverse-Wishart distribution.

Summary and Discussion.
Overall, our generative process captures the temporal prop-

erties of the data by modeling a smooth base behavior as well
as accounting for anomalies which are constrained to occur
at certain time intervals. We will show in Section 3 how we
perform efficient (approximate) inference for this model.

Model Selection. So far, we assumed the number K of
anomalies is given. If not apriori known, we can estimate
it via model selection. We choose the Bayesian information
criterion [5]. Any other criterion can be used as well.

As we will see in Sec. 3, we will integrate out all latent
variables except of Θ = {L∗, U∗,Q,R}. Thus, increasing the
value of K by one, increases the number of free parameters
in our model by about 2 (the lower and upper bound of the
new anomaly interval). This is a slight overestimate since
the intervals need to be disjoint and, thus, they are not
completely independently free variables. Given this result,
we can choose the K minimizing the BIC equation

BIC(K) = −2 · lnLK + (2 ·K + c) · ln(
∑
t

n(t))

Here, the constant c denotes the parameters of the model
which do not increase when increasing K. Since the value
of c does not affect the optimal choice for K, we can simply
set it to 0. The term LK denotes the likelihood of the data
when using K anomaly intervals. We can approximate it
with the technique shown in Section 3.

Prediction. Since the base behavior evolves via a linear
state space system, we are able to predict the behavior at
future points in time. Combining Eq. 5 and 6, it follows

b(T+1) ∼ N (b̃(T ),R + ∆(T+1) ·Q) (7)

Thus, given estimates for b̃(T ), R, and Q (cf. Section 3),
comparing the observed ratings at time T + 1 against the
predicted base behavior can be used as an indicator whether
new anomalies have been occurred.

3. ALGORITHM
While the previous section focused on the model’s gener-

ative process, we now present our learning technique. That
is, given a set of observations X we aim at inferring the val-
ues of the hidden variables which best describe the observed
data. There are multiple ways to formulate this objective.
In this work, we treat the variables Θ = {L∗, U∗,Q,R}
as parameters and we are interested in finding their max-
imum a posteriori estimate ΘMAP as well as the poste-
rior distribution p(V |X,ΘMAP ) of the latent variables V =

{o∗, r∗, z(∗)
∗ ,b(∗), b̃(∗)} (which can then, e.g., be used to pick

specific realizations of the latent variables).

3.1 Variational EM
Since exact inference in our model is intractable, we com-

pute an approximation using variational expectation-max-
imization [5]. The idea is to approximate p(V |X,Θ) by a
tractable family of parametrized distributions q(V |Ω). The
parameters Ω are the free variational parameters. These
parameters are optimized such that the best approximation
between q and p is obtained. This corresponds to the expec-
tation step of the variational EM method. Technically, we
minimize the Kullback-Leibler divergence between q and p
by optimizing over Ω. Using Jensen’s inequality, minimizing
the KL divergence is equivalent to maximizing the following
lower bound on the log marginal likelihood [5]:

L(X; Θ,Ω) = Eq[ln p(X,V,Θ)] +H(q) (8)

where Eq[.] denotes the expectation w.r.t. the q distribution
and H the entropy.

Given an approximation of p(V |X,Θ) via q(V |Ω), we then
determine updated parameter values for Θ by again maxi-
mizing Equation 8. This corresponds to the maximization
step of the EM method.1

In short, the general processing scheme of our method is
to alternatingly maximize L(X; Θ,Ω) w.r.t. Ω and Θ. As we
will later see, we actually interweave both steps by simulta-
neously optimizing parts of Θ and Ω.

3.1.1 Variational distribution
In contrast to the frequently used mean field approxima-

tion, which assumes a fully factorized distribution, we use

p(V | X,Θ) ≈ q(V |Ω) :=
∏
k

q1(ok)·
∏
k

q2(rk)·
∏
t

∏
i

q3(z
(t)
i )

·
∏
t

q4(b(t)) · q5(b̃(1)) ·
∏
t>1

q5(b̃(t) | b̃(t−1))

We retain the sequential structure of the smoothed base be-
havior in q5. Indeed, as described later, we determine q5
via a Kalman filter where it follows that q5(b̃(t)|b̃(t−1)) is a

Normal distribution given by N (b̃(t) | µ̃t|T ,Pt|T ). For the
remaining variational distributions we use

q1(ok) = Dir(ok|αk) q3(z
(t)
i ) = Bernoulli(z

(t)
i |φt,i)

q2(rk) = Beta(rk|αk, βk) q4(b(t)) = N (b(t)|µ(t), v(t) · I)

where Ω = {α∗, α∗, β∗, φ∗,∗,µ(∗), v(∗)} are the variational
parameters to be optimized.

1The only actual difference between these steps is that Θ repre-
sents a point estimate of the random variables, while Ω represents
the hyperparameters of a full distribution.
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Note that the distributions q3(z
(t)
i ) and q3(z

(t)

i′ ) are iden-

tical when x
(t)
i = x

(t)

i′ , i.e. when both ratings have the same

value. Thus, in practice we do not need to keep track of n(t)

many different distributions at time t but it is sufficient to
record S many distributions; one for each possible evalua-
tion. We denote with φst the variational parameter of the
distribtion q3 for all ratings showing evaluation s at time t.

3.1.2 Optimization Procedures
As described above, our goal is to update the values of

Ω and Θ by maximizing (or more generally increasing) the
value of Equation 8. One crucial requirement of our tech-
nique was to ensure the efficiency of our method. In the
following, we want to highlight the most important results.

3.2 Optimizing the Lower/Upper Bounds
A first naive solution to update the lower/upper bounds of

the anomaly intervals would be to test any possible combi-
nation. Obviously, this solution is not efficient and requires
time O(T 2) already for a single anomaly. We provide a prin-
ciple which is linear in the number of time stamps.

We start with the case of a single anomaly and uniform
gaps between all time stamps, i.e. it holds K=1 and ∆(t)=1
for all t.

3.2.1 Simultaneous Optimization
Equation 3 shows the dependency between L1/U1 and z.

Intuitively, the bounds act as a switch on the distribution of
z: if z is outside of the interval, it is the trivial 0 distribu-
tion; if it is inside, it is a Bernoulli. Accordingly, assuming
the posterior distribution for z (or its approximation q3) is
given, an optimization of L1/U1 is rather meaningless since
one trivially has to capture all time points where the distri-
bution is not the constant 0. Therefore, we propose to simul-
taneously optimize L1/U1 and q3 to maximize Equation 8.

Observation: If we know that a time point t fulfills t ∈
[Lk, Uk], the optimal distribution of q3(z

(t)
i ) can be com-

puted independent from all other points in time. The opti-
mal distribution is obtained by setting its variational param-
eter φt,i/φ

s
t to the value as derived in Sec. 3.3. In particular,

this value is independent of the actual values of Lk and Uk
(knowing that t ∈ [Lk, Uk]). Based on this result we can
also compute the entropy

ht,s := H(q3(z
(t)
i )) = −φst lnφst − (1− φst ) ln(1− φst )

for all z
(t)
i fulfilling x

(t)
i =s. If t 6∈ [Lk, Uk], we have q3(z

(t)
i =

0) = 1 and we define the entropy H(q3) to be zero.
Using these results and the derivations of the appendix,

as well as removing all terms which are independent of L1,
U1 and q3, we can reformulate Equation 8 to:

ln p(L∗, U∗)+
∑
t∈T

∑
i∈n(t)

Eq [ln p(z(t)
i |...)+ln p(x

(t)
i |...)]+H(q3(z

(t)
i ))

= −λ·∆(L1,U1)+
∑

t6∈[L1,U1]

S∑
s=1

n
(t)
s ·Eq

[
lnπ(b(t))s

]
+

∑
t∈[L1,U1]

(
S∑
s=1

[n
(t)
s · ht,s + n

(t)
s · φst · (Eq [ln rk(t)] + Eq [ln ok(t),s])

+ n
(t)
s · [1− φst ] · (Eq [ln(1− rk(t))] + Eq [lnπ(b(t))s])]

)
= λ+

∑
t∈T

S∑
s=1

n
(t)
s · Eq

[
lnπ(b(t))s

]
+

∑
t∈[L1,U1]

f1(t) (9)

where we used the fact ∆(Lk,Uk) = Uk −Lk and we defined

fk(t) := −λ+

S∑
s=1

n
(t)
s ·φst ·[Eq [ln rk]+Eq [ln ok,s]−Eq

[
lnπ(b(t))s

]
]

+ n
(t)
s · [1− φst ] · Eq [ln(1− rk)] + n

(t)
s · ht,s

Intuitively, the function f1(t) measures the “gain” in the
log-likelihood when adding t to the anomaly interval.

The first two terms of Eq. 9 can be removed since they are
constant w.r.t. the bounds and q3 and thus do not affect the
optimal solution. Accordingly, maximizing Eq. 8/9 w.r.t.
L1, U1, and q3 is equivalent to solving

(L∗1, U
∗
1 ) = arg max

(L1,U1)

U1∑
t=L1

f1(t) with 1 ≤ L1 ≤ U1 ≤ T

Since the function f1 is independent of L1/U1, i.e. the
terms f1(t) are constant within the current optimization
step, we can record all values f1(t) in a finite array of length
T . Thus, the above problem corresponds to the Maximum
Subarray Problem. Using Kadane’s algorithm [4], this prob-
lem can be solved in time O(T ).

3.2.2 Non-uniform gaps between timestamps
So far, we assumed ∆(t) = 1 for all t ∈ T . We now

generalize the above result to handle varying values for ∆(t).

t-1 t

7 5

7

7

5

5

Δ(t)
=4

-λ -λ -λ 

-3λ 

f(x)

f' (y)

Fig. 4: Handling
non-uniformity

W.l.o.g., due to finite precision in
the measurement of time (e.g. UTC
timestamps are usually measured in
seconds), we can assume ∆(t) ∈ N+.
Thus, a naive approach to handle the
scenario of non-uniform gaps is to
“blow up” the actual data by “artifi-
cial” time points where no ratings oc-
cur. After including the artificial time
points, the ∆ values are again equal
to 1, and the previous technique can

be applied. Figure 4 top and middle show this principle.
Obviously, this principle is not suitable for huge time gaps
and the new size of the array can be arbitrarily large.

Considering f1(t), it becomes apparent that its value eval-
uates to −λ for each artificial time point. When searching
for the subarray with maximal sum, these negative entries
will never occur at the beginning/end of the anomaly inter-
val [3]. If they would be at the beginning/end, one could
easily shorten the interval to obtain a new one with higher
sum. Thus, artificial time points are either completely con-
tained in the interval or not included at all.

Using this result, we can safely “merge” all adjacent ar-
tificial time points to a single one with the function value
−λ · u(t), where u(t) is the number of artificial time points
between time index t and t− 1. Clearly, u(t) = ∆(t)− 1 and
the number of merged artificial time points is bounded by
T − 1. Overall, we can define a new array f ′ of size 2 ·T − 1
where

f ′k(y) =

{
fk( y+1

2
) if y is odd

−λ · (∆( y
2

+1) − 1) if y is even

for y ∈ [1, 2 · T − 1]. And we now solve the problem

(a∗, b∗) = arg max
(a,b)

b∑
y=a

f ′1(y)

and set (L∗1, U
∗
1 ) = (a

∗+1
2
, b
∗+1
2

). Since the size of f ′ is
bounded by 2 · T − 1 the runtime complexity is O(T ).
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3.2.3 Extension to multiple intervals
We now extend our result to multiple different anoma-

lies/intervals. Using multiple anomalies affects the choice
of the optimal q3 distribution (cf. paragraph ’Observation’
in Section 3.2.1). It is no longer sufficient to know whether
t ∈ [Lk, Uk] but we also have to know which k we consider.2

Accordingly, for each anomaly k we have to use its individual
function fk/f

′
k to measure the gain of adding a time point

to the anomaly interval k. Overall, maximizing Eq. 8 using
multiple intervals corresponds to solving

arg max
(a1,b1),...,(aK ,bK)

∑
k∈K

bk∑
y=ak

f ′k(y) with ak ≤ bk < ak+1 (10)

We solve the above problem by a dynamic programming
technique. The necessary recursions are given by

g(1, 1) = f ′1(1) g(1, t) = max{g(1, t− 1) + f ′1(t), f ′1(t)}
g(k, k) = m(k − 1, k − 1) + f ′k(k)

g(k, t) = max{g(k, t− 1) + f ′k(t),m(k − 1, t− 1) + f ′k(t)}
m(k, k) = g(k, k) m(k, t) = max{g(k, t),m(k, t− 1)}

Here, m(k, t) (for t ≥ k) denotes the maximal value of Eq. 10
when using k intervals and data up to point t. In contrast,
g(k, t) denotes the maximal value of Eq. 10 when the kth
interval is forced to end at the t-th point in time (using k
intervals and data up to t). Obviously, g(k, t) ≤ m(k, t)
holds. The value of m(K,T ) is the optimal value of Eq. 10.

We only provide a brief idea of these recursions: Assume
we know the optimal intervals when using k − 1 anomalies
and data up to time point t − 1. Let these intervals be de-
noted (L1, U1), . . . , (Lk−1, Uk−1). Additionally, assume the
optimal intervals for k anomalies and data up to time point
t−1 are given, denoted with (L′1, U

′
1), . . . , (L′k, U

′
k). Finally,

assume the optimal intervals are given when the last interval
is forced to end at time t− 1 (we call these the g-intervals).

Denote these with (L̂′1, Û
′
1), . . . , (L̂′k, Û

′
k), here Û ′k = t− 1.

How will the solution for k intervals and data up to t
look like? We can distinguish the following cases: (1) The
time point t will be included in the optimal intervals. Obvi-
ously, since we are at the last point in time, it can only
be represented by the kth interval. We can distinguish
two subcases: (1a) The time point t is the beginning of
the kth interval. In this case, the optimal intervals are
(L1, U1), . . . , (Lk−1, Uk−1), (t, t) and m(k, t) = m(k − 1, t −
1) + f ′k(t). Since the last interval already ends at t, we also
have g(k, t) = m(k − 1, t − 1) + f ′k(t). (1b) The time point
t is not the beginning of the kth interval. Thus, the opti-
mal solution needs to be (L̂′1, Û

′
1), . . . , (L̂′k, t) and we obtain

m(k, t) = g(k, t) = g(k, t− 1) + f ′k(t).
(2) The time point t will not be included in the opti-

mal intervals. In this case, since we want to find k in-
tervals, the optimal solution is (L′1, U

′
1), . . . , (L′k, U

′
k) and

m(k, t) = m(k, t − 1). For the g-intervals we have to dis-
tinguish two cases: (2a) The time point t is the beginning
of the kth g-interval. In this case, the new g-intervals are
(L1, U1), . . . , (Lk−1, Uk−1), (t, t) and g(k, t) = m(k − 1, t −
1) + f ′k(t). (Note that we use the optimal intervals from
m(k−1, t−1), not the g-intervals!) (2b) The time point t is
not the beginning of the kth g-interval. Thus, leading to the
solution (L̂′1, Û

′
1), . . . , (L̂′k, t) with g(k, t) = g(k, t−1)+f ′k(t).

2Technically, we could write φst,k to denote the optimal hyperpa-

rameter of q3 assuming t ∈ [Lk, Uk]. We omitted k for brevity.

Exploiting the fact g(x, y) ≤ m(x, y) and that we want to
maximize m(x, y), leads to the recursion as defined above.
It is easy to add data structures to the method which record
the start/end positions of the optimal intervals. Solving the
above recursions via dynamic programming, we obtain:

Theorem 1. The optimal values for L∗, U∗ and the opti-
mal distributions q∗3 can be computed in time O(K · T ).

3.3 Optimization of q1, q2, q3

Following the principle of [5], the optimal distribution for
q3 can be determined by

ln q∗3(z
(t)
i ) = E

q\z(t)i

[ln p(X,V,Θ)] + const

Here, the constant const absorbs all terms which are inde-

pendent of z
(t)
i and, thus, do not affected the optimal dis-

tribution of q3. The term E
q\z(t)i

[.] denotes the expectation

with respect to the distribution q taken overall all variables

except of z
(t)
i . Assuming k(t) = k 6= 0, and using the results

from the appendix, it follows that

ln q∗3(z
(t)
i = 1) = Eq[ln rk] + Eq[ln ok,s] =: x

ln q∗3(z
(t)
i = 0) = Eq[ln(1− rk)] + Eq[lnπ(b(t))s] =: y

where s = xti. Therefore, the optimal value of the variational
parameter is φt,i = φst = ex

ex+ey
.

The same principle can be applied for the distributions q1
and q2, leading to

αk,s = (α̂)s +

Uk∑
t=Lk

n(t)
s · φst

αk = α̂+

Uk∑
t=Lk

S∑
s=1

n(t)
s ·φst βk = β̂+

Uk∑
t=Lk

S∑
s=1

n(t)
s ·(1−φst )

3.4 Remaining Optimizations
Optimizing the base behavior. The base behavior can

be updated for each b(t) independently. Removing all terms
from Equation 8 which are independent of b(t) leads to

Eq[
∑
i

ln p(x
(t)
i |...)] + Eq[ln p(b(t)|b̃(t−1),R)] +H(q4(b(t)))

(11)

The first term is given in the appendix, and H(q4(b(t))) =
S−1

2
ln(2πev(t)). For the second term we derive:

Eq
[
ln p(b(t) | ...)

]
=−

1

2
·Eq
[
(b(t)−b̃(t))T ·R−1 ·(b(t)−b̃(t))

]
+c1

= −
1

2
Eq
[
b(t)T ·R−1 · b(t)

]
+ Eq

[
b(t)T ·R−1 · b̃(t)

]
+ c2

= −
1

2

[
Tr(R−1 · v(t)) + µ(t)T ·R−1 · µ(t)

]
+ µ̃Tt|T ·R

−1µ(t) +c3

We absorbed all terms which are independent of b(t) into
the constants ci. Overall, Eq. 11 can be written as a function
of µ(t) and v(t), which we optimize using gradient ascent.

Optimizing the smoothed base behavior. Since our
model corresponds to a linear system, we can use a Kalman
filter/smoother to determine the distribution of q5. We use
the Rauch-Tung-Striebel smoother. Thus, the distribution
of q5 can be computed efficiently by a forward and backward
pass, leading to an update with runtime complexity O(T ).

Since the outputs b(t) of the dynamic system are not ob-
servations but distributions, we slightly adapt the Kalman
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update/innovation equations. Following the standard cal-
culus of Kalman filters, the predicted mean and covariance
matrix for time t (given data up to time t− 1) are given by

µ̃t|t−1 = µ̃t−1|t−1 and Pt|t−1 = Pt−1|t−1 + ∆(t) ·Q. Given
the measurement at time t, the measurement residual can be
computed as et = Eq[b(t)]−µ̃t|t−1. Accordingly, the residual

covariance is given by St = Pt|t−1 +R+v(t) ·I. Note the in-
creased variance due to the uncertainty of the base behavior.
Letting the Kalman gain be defined by Kt = Pt|t−1 ·S−1

t , we
see that the Kalman gain is smaller for time points showing
a high variance, i.e. high uncertainty, in the base behavior.
These points affect the smoothed base behavior less strongly.

Continuing with the standard calculus, the updated mean
and covariance are µ̃t|t = µ̃t|t−1+Kt ·et and Pt|t = (I−Kt)·
Pt|t−1 · (I −Kt)

T + Kt ·R ·KT
t . Here, we used the Joseph

form of the covariance update equation since it holds for
any value of Kt. For the backward pass, the RTS smoother
leads to µ̃t|T = µ̃t|t + Ct · (µ̃t+1|T − µ̃t+1|t) and Pt|T =

Pt|t+Ct ·(Pt+1|T −Pt+1|t) ·CTt , with Ct = Pt|t ·P−1
t+1|t. Due

to space limitations, we kindly refer to the rich literature on
Kalman filter/smoother, for details about the derivations.

Optimization of Q and R. Updating Q and R follows
from the properties of the conjugate prior. Note that Eq. 5

can also be written in the form b̃(t)−b̃(t−1) ∼ N (0,∆(t) ·Q).
Also, by the definition of the normal distribution it holds
that N (x|0,∆ ·Σ) = ∆−d/2 · N (x/

√
∆|0,Σ), where d is the

dimensionality of the distribution. Since the terms ∆−d/2

are constant when optimizing the log-likelihood, they can
be ignored. Thus, Q can be seen as the covariance matrix
of a Normal distribution with known mean of zero. Corre-
spondingly, we can use the Inverse-Wishart distribution as
its (conjugate) prior. Following the results of conjugacy, the
posterior distribution of Q is an Inverse-Wishart distribu-
tion W−1(Ψq, νq) with νq = ν0

q + T − 1 and scale matrix

Ψq = Ψ0
q +

T∑
t=2

Eq
[

1

∆(t)

(
b̃(t) − b̃(t−1)

)T
·
(
b̃(t) − b̃(t−1)

)]
which can easily be computed by plugging in the known
expectations. Given this distribution, the MAP estimate
for Q can efficiently determined by selecting the mode of
the Inverse-Wishart distribution, i.e. Q∗ = 1

(S−1)+1+νq
·Ψq.

The same principle can be applied for R.

3.5 Overall Processing and Complexity
Using the above optimizations and update equations, our

method iteratively recomputes the values for Θ and Ω. If
the change in Equation 8 is less than 0.1% we assume con-
vergence and terminate. Based on the previous results, and
assuming that K,S << T , each iteration is linear in the
number of time stamps, i.e. we have a complexity of O(T ).

4. RELATED WORK
Spotting anomalies in rating data: So far, only [7]

considers the temporal analysis of rating data incorporat-
ing potentially anomalous behavior. The work models the
rating data as distributions over time. As mentioned in the
introduction, it requires an aggregation/binning of the data
and it cannot handle intervals of anomalies. We compare
our technique against [7] in the experimental analysis.

Modeling of temporal continuous data: Similar to
the work [7], traditional time series modeling methods such
as vector autoregression [14, 13] or Kalman filter/smoother

[5], analyze continuous data. They are not directly suited
for our scenario of categorical data (or require a problem-
atic binning). Furthermore, traditional approaches for time
series modeling are sensitive to outliers. Thus, these models
fail to find good approximations of the data corrupted by
anomalies. Therefore, robust techniques to handle outliers
have been proposed [16]. These methods are designed to
handle outliers which are attributed to mostly independent,
random corruptions of the data, while our work is designed
to handle anomalies following a specific pattern.

Since in our work the Kalman filter operates on the (clean)
base behavior, i.e. the anomalies have been ’removed’ by the
other mixture model components, the problem of anoma-
lies is circumvented. We compare our technique against a
Kalman filter in the experimental analysis.

Modeling of temporal documents: One might repre-
sent the ratings at a certain point in time as a document
with the words corresponding to the ratings’ evaluations.
Modeling temporal document collections is handled by dy-
namic topic mining [6, 17, 2]. Applying these methods on
the ’documents’ generated via the ratings is questionable
since each document most likely would contain only a single
’word’. Ignoring this issue, further problems for our scenario
are: First, [6, 2] require a binning of the documents in fixed
time slots. Second, [6, 17] require that topics exist over the
whole lifetime. In our work, however, anomalies exist only in
specific time intervals. While [2] allows topics to appear and
disappear, they prefer smooth evolutions. In our case, how-
ever, anomalies abruptly appear/disappear in time. Also,
all of these techniques are (of course) designed to detect
multiple topics. In our scenario, however, we want to find
a single base behavior which captures the general temporal
evolution, enriched by a few number of anomalies.

Related applications: Multiple techniques have been
proposed in the area of outlier detection [1]. While the ma-
jority of techniques tackles the case of independently dis-
tributed data, time-series outlier detection and outlier de-
tection for streaming data are also an active field of research
[1]. Both areas differ from our work since they are designed
for continuous data. Also, most existing techniques con-
sider outlier in the sense of independent, random errors in
the data. Change detection techniques detect points in time
where the state of the underlying system has changed [15].
A change might not generally indicate anomalous behavior.
Indeed, even the base behavior might change over time.

Studying product ratings has been done in multiple re-
search areas, all following different goals and objectives.
Recommender Systems incorporate ratings and their tem-
poral information [9, 10] to improve the prediction perfor-
mance. Opinion mining aims at extracting the sentiment
of users regarding specific products or features of a product
[18]. Modeling of social rating networks, e.g., to compactly
describe the underlying mechanism driving the network or
to generate synthetic data, has been studied, e.g, in [12].

None of the existing methods is designed to detect anoma-
lies and the underlying evolving base behavior in rating data.

5. EXPERIMENTAL ANALYSIS
We applied our method (called SpotRate due to its po-

tential to spot anomalies in rating data) on over six mil-
lion product ratings representing varies categories: an ex-
tract of the Amazon website [8] evaluating multiple different
products, another subset of the Amazon website evaluating
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Fig. 7: Likelihood and BIC vs. K
(real world data)

food products3, ratings of restaurants in the area of Phoenix
based on Yelp, and an extract of the TripAdvisor website4

for hotel ratings. The data consists of tuples representing
the ID of a product/service to be rated, the user who evalu-
ated the product, the time stamp when the rating occurred,
and a star rating in the range from 1 up to 5. Addition-
ally, these datasets contain textual reviews, which we used
to understand and describe the results of our method.

Besides these real world datasets we used synthetic data
generated based on the presented process to analyze the scal-
ability and robustness of our method.

5.1 Runtime Analysis
We briefly analyze the runtime of SpotRate. The runtime

is primarily affected by the number of time stamps T and
the rating scale S. The actual number of ratings does not
affect the runtime (cf. Sec. 3.1.1). For the runtime analy-
sis, we selected the product B00003TL7P from the Amazon
dataset and we extended it to different length (from 1,000 to
100,000) by concatenation. Besides the original rating scale
of S = 5, we used a rating scale of S = 3 by merging 1/2 and
4/5 ratings. All experiments were conducted on commodity
hardware with 3 GHz CPU’s and 4 GB main memory.

The results are shown in Fig. 5. Confirming our study of
Sec. 3.5, the runtime increases linearly, showing the method’s
high scalability (note the slope of 1 in the log-log plot). The
overall runtime for 100,000 time stamps (which would cor-
responds to 273 years when measured on a daily basis) is
only about 158 minutes on commodity hardware. A brief
study shows that the currently most rated products have
around 20,000 (Amazon: Kindle Fire) or 8,000 (Yelp: Bot-
tega Louie) ratings. Thus, even when considering the finest
granularity, we highly exceed this number.

Additionally, we measured the runtime of our method
when ignoring the time required for the Kalman smoother
(dashed lines). As shown, the Kalman smoother contributs
to around 90% of the absolute runtime. The remaining parts
of our method are highly efficient.

We also studied the effect of the number of anomalies K
on the runtime. According to Sec. 3.2.3, K linearly affects
the runtime of the dynamic programming technique. Since
the Kalman smoother (whose runtime is independent of K)
accounts for most of the absolute runtime, we only observed
a very small change of only a few seconds. Thus, overall,
only T and S influence our method’s practical applicability.

5.2 Effectiveness
In the following, we analyze the effectiveness of SpotRate

considering different aspects. We start with the model se-

3
http://snap.stanford.edu/data/

4
http://sifaka.cs.uiuc.edu/~wang296/Data/

lection principle. For this experiment, we generated syn-
thetic data according to our model. We used 4000 ratings
with 5 anomaly intervals. Figure 6 shows on the (first) y-
axis the obtained log-likelihood of our method when varying
the number K of potential anomalies. Obviously, the gen-
eral trend shows that increasing K also increases the log-
likelihood: more flexibility to describe the data is given. A
very high increases is obtained until the value of 5, which
corresponds to the true number of anomalies. After this
point, the benefit of allowing further anomalies decreases.

This effect is well captured by the BIC score, which is
shown on the second y-axis of the figure. The minimal BIC
value is obtained for the value of 5. Thus, the model se-
lection principle introduced before can be used as a good
indicator how to select the number of anomalies.

The same behavior can be observed for real world data as,
e.g., shown in Fig. 7. Here we plotted the log-likelihood and
BIC score for a coconut-water sold on Amazon (cf. Sec. 5.4).
Again, one sees a clear minimum of the BIC value, indicating
that three anomaly intervals describe the data very well.

Next, we analyze our iterative optimization. In Fig. 8 we
analyze how the log-likelihood increases when we increase
the number of iterations until convergence. That is, on
the x-axis we count how often the variables have been up-
dated, while the y-axis shows the log-likelihood. We plotted
the curves for different values of K, again for the product
B00003TL7P. As expected, the first iterations lead to the
highest improvement in the log-likelihood. Still, we see an
improvement in the later iterations, showing the effective-
ness of the optimization step. As also shown in the previous
experiment, a higher value of K leads to a better likelihood.
Additionally, for this product, we observed that a smaller
number of intervals can lead to a lower number of required
iterations. In general, however, the difference in the number
of iterations was not as significant as shown for this product.

Finally, we analyze the effect of λ. Per default, a value
of 0 can be selected to realize a non-informative prior. In
Figure 9, we varied the value of λ between 1 and 0. We
selected K = 10. As shown, for larger values of λ, shorter
intervals are preferred. In particular, for λ = 1 the average
interval length is close to the shortest possible length of 1.
For λ = 0 larger intervals are captured. Note that λ = 0 does
not mean that the whole set of time stamps is represented
as an anomaly interval. Even in the case of λ = 0, we only
report time intervals where the behavior is anomalous.

5.3 Comparison with related techniques
We compare SpotRate against the related technique RLA

[7] and a Kalman smoother. Doing a fair comparison be-
tween these approaches is challenging since the data they
analyze and goals they follow are different. In particular, the
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work [7] requires an aggregation of the data since it operates
on the rating distributions. Thus, e.g., measuring the like-
lihood on the categorical data is questionable. Since RLA,
however, is the only existing technique which also analyzes
dynamic rating data, we try to study some effects.

For comparing the methods, we use two principles: In the
first experiment, we compare the base behavior detected by
the methods against the known base behavior for synthet-
ically generated data. The base behavior is continuous in
our model as well as in RLA, and for the Kalman smoother.
Thus, it is fair to, e.g., measure the Frobenius norm between
the ground truth base behavior and the detected ones. We
generated data with 1000 time points and added a vary-
ing number of anomaly intervals to it, each covering 10
time points. We ensured that the anomaly intervals exactly
match the aggregation required for RLA. Thus, this method
gets a huge advantage since this assumption does not nec-
essarily hold for real data. Fig. 10 (left) shows the results:
Our method obtains the lowest error, it is able to detect the
hidden base behavior. The Kalman smoother cannot handle
anomalies and shows a high deviation to the ground truth.

In a second experiment, we evaluated whether the meth-
ods are able to detect the anomalous points in time (this is
only possible for SpotRate and RLA). As shown in Figure 10
(right), our method almost perfectly detects all anomalous
points in time. RLA in contrast is not able to spot all points,
which also explains the previously observed higher error to
the base behavior. Overall, our method outperforms the
competing techniques in detecting the correct base behavior
as well as spotting the anomalous points in time.

5.4 Discoveries
In the following, we will demonstrate the application of

SpotRate by illustrating some of our interesting discoveries.
(1) We start with the example illustrated in Fig. 1. It

represents a hotel in the Caribbean evaluated on TripAd-
visor. While understanding the original time-stamped data
is difficult, the extracted base behavior allows an easy un-
derstanding: clearly, the hotel is evaluated with mostly 4
and 5 stars. Our method found anomalous behavior in July
and August 2005. In this time frame, the negative ratings
highly increased. Analyzing the reviews at the detected time
points, the reviewers criticized “the restaurants with ridicu-
lous reservation rules’ ’ often showing overbooking and “the
nonfunctional air-conditions”. These reviews indicate that
in the given months the service of the hotel has dropped,
potentially due to a highly increased number of guests. Our
method was able to spot these anomalies, and it successfully
smoothed out these points from the base behavior.

(2) Next, we show the result for a coconut-water sold
on Amazon (http://www.amazon.com/dp/B000CNB4LE).
Applying our method leads to the base behavior as shown

in Figure 11. The three detected anomaly intervals appear
at the end of 2010. As shown next to the figure, the de-
tected anomalies are described by distributions ok repre-
senting primarily low ratings. They clearly deviate to the
base behavior. Inspecting the product’s reviews during these
times, most customers are not satisfied with the “new plas-
tic bottles” the manufacturer has introduced, leading to a
bad taste. Later time points do not show this anomalous
behavior, indicating that the manufacturer has solved this
problem (“I can understand a lot of the initial bad reviews
as I thought the new plastic bottle had a bad after taste. . . .
I can say that the taste is much improved . . .”).

(3) Next, we want to show the benefit of extracting an
evolving base behavior. Figure 12 shows the base behavior
of a baby bouncer (B00005QI1G) from the Amazon data.
Looking at its evaluation, it is recognizable that the majority
of reviewers evaluated this product with 5 stars. At the
later time points, however, the number of low and medium
ratings increases. Note that these intervals are not classified
as anomalies but they represent the general evolution of the
product. A closer look at the product’s reviews at these time
points explains that over time the customers were more and
more unsatisfied by the product since it is “nice to play but
not long lasting” and the “battery simply does not last very
long with the vibrating feature”.

Discoveries via prediction. Finally, we want to show
the potential of our method to detect anomalies via predic-
tion. According to Eq. 7, we can predict the base behavior
at future points in time. By comparing it against newly ar-
riving ratings, anomalies can be spotted. We removed from
all restaurants of the Yelp dataset the last 10 points in time.
We applied our method on the remaining data. Figure 13
shows three restaurants whose predicted base behavior (left
bar [a] of each diagram) highly deviates to the observed rat-
ings (right bar [b]), thus, potentially indicating anomalies.

Inspecting the reviews of the first restaurant, we see com-
ments like “I’ve been eating at Stacy’s for over a year so
it pains me to kill them but the service [...] was pathetic.
[...] I don’t know if its a new employee or something going
wrong but I’m probably not going back...”. Thus, indicating
that the service quality of the (previously very highly rated)
restaurant has suddenly dropped.

For the second restaurant, we observed comments like“All
the prices have went up” and “The picture of the menu and
prices is out dated”, which again indicates a recent deviation
to the previous behavior, potentially due to increased prices.

Finally, the reason for the abruptly appearing low rat-
ings of the third restaurant seems to be caused by expand-
ing/remodeling the old building. The old atmosphere of the
restaurant seems not to be preserved and the larger capac-
ity could not be handled by the service staff: “the expanded
building is nice [...] but something was lost. we didn’t have
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via prediction (Yelp)

that hometown feel. we miss all the signatures and pictures.”
and “I think its rad that you expanded, but if you cant handle
the customer load then whats the point?”.

Overall, by modeling the temporal evolution of the base
behavior, our method is able to detect these newly occur-
ring anomalies, which can then, e.g., be used to inform the
corresponding companies.

6. CONCLUSION
We developed the method SpotRate for analyzing time

stamped rating data. Our method detects the users’ base
behavior as well as time intervals representing anomalies.
We proposed a sound Bayesian framework which represents
the rating data via temporally constrained categorical mix-
ture models. It accounts for the temporal evolution of the
base behavior and enables us to predict the rating behavior
for newly occurring ratings. We developed an efficient algo-
rithm which exploits principles of variational inference and
dynamic programming. Our experimental study has shown
the potential of our method to spot anomalies and to use
the base behavior for studying the evolution of a product.
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APPENDIX
Let [[.]] denote the Iverson bracket, it holds: Eq[[[z(t)

i =1]]]=φt,i

Eq[[[z(t)
i =0]]]=1− φt,i Eq[ln ok,s]=ψ(αk,s)− ψ(

∑
j αk,j)

Eq[ln rk]=ψ(αk)−ψ(αk+βk) Eq[ln(1−rk)]=ψ(βk)−ψ(αk+βk)

Given the definition of the distribution p, it follows:

• For k(t) = k 6= 0 it holds:

• Eq[ln p(z(t)
i | . . .)] = Eq[ln r

[[z
(t)
i =1]]

k · (1− rk)[[z
(t)
i =1]]]

• = Eq[[[z(t)
i = 1]]] · Eq[ln rk] + Eq[[[z(t)

i = 0]]] · Eq[ln(1− rk)]

• Eq[ln p(x(t)
i |...)] = Eq[[[z(t)

i = 1]]] · Eq[ln ok(t),s]+

• Eq[[[z(t)
i = 0]]] · Eq[lnπ(b(t))s] for x

(t)
i = s

• Eq[
∑
i ln p(x

(t)
i |...)] = Eq

[∑S
s=1 n

(t)
s · ln p(x = s | . . .)

]
• =

∑S
s=1 n

(t)
s ·φst ·Eq[ln ok(t),s]+n

(t)
s · [1− φst ] ·Eq [lnπ(bt)s]

• Eq
[
lnπ(b(t))s

]
= Eq

[
ln eb

(t)
s

1+
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s=1 e
b
(t)
s

]
= Eq
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(t)
s

]
−

• Eq
[
ln(1 +
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s=1 e
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]
> µ
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(t)
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]
)
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s − ln(1 +

∑S−1
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