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ABSTRACT
Citation recommendation is an interesting but challenging
research problem. Most existing studies assume that all pa-
pers adopt the same criterion and follow the same behav-
ioral pattern in deciding relevance and authority of a paper.
However, in reality, papers have distinct citation behavioral
patterns when looking for different references, depending on
paper content, authors and target venues. In this study,
we investigate the problem in the context of heterogenous
bibliographic networks and propose a novel cluster-based ci-
tation recommendation framework, called ClusCite, which
explores the principle that citations tend to be softly clus-
tered into interest groups based on multiple types of rela-
tionships in the network. Therefore, we predict each query’s
citations based on related interest groups, each having its
own model for paper authority and relevance. Specifically,
we learn group memberships for objects and the significance
of relevance features for each interest group, while also prop-
agating relative authority between objects, by solving a joint
optimization problem. Experiments on both DBLP and
PubMed datasets demonstrate the power of the proposed ap-
proach, with 17.68% improvement in Recall@50 and 9.57%
growth in MRR over the best performing baseline.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Citation Recommendation; Heterogeneous Information Net-
work; Clustering; Citation Behavioral Pattern

1. INTRODUCTION
A research paper needs to cite relevant and important

previous work to help readers understand its background,
context and innovation. However, the already large, and
rapidly growing body of scientific literature makes it hard
for anyone to go through and digest all the papers. It is thus
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Figure 1: A toy example showing the diverse in-
formation needs of two query manuscripts and the
corresponding citation behavioral patterns.

desirable to design a system that could automatically gener-
ate quality citation recommendations. Traditional literature
search engines, such as Google Scholar, can retrieve a list of
relevant papers using keyword-based queries. But casting
one’s rich information needs into a few keywords may not
be feasible. Moreover, a user may be looking for papers that
are not only relevant to their work, but also important and of
high quality. To this end, citation recommendation aims to
suggest a small number of publications that can be used as
high quality references to satisfy such citation requirements.

There exist some interesting studies on citation recom-
mendation. Context-aware recommendation [10, 12] ana-
lyzes each citation’s local context to capture its specific in-
formation needs. However, local context can be ambiguous
or too short a query, causing inaccurate predictions. Top-
ical similarity-based methods [18, 24] find conceptually re-
lated papers by taking advantage of latent topic models.
But solely relying on topic distributions to measure rele-
vance is insufficient. A large number of papers may share
the same topic, making topical similarity weak in indicating
importance of a paper. Both methods primarily focus on
recommending relevant papers based on content, but ignore
critical information related to importance and quality.

Recent studies [16, 20] utilize citation links to derive struc-
tural similarity and authority, which serve as good comple-
ments to content-based relevance features. With paper text,
authors and target venues as queries, one can further gen-
erate a rich set of structural features [5, 27] based on mul-
tiple types of relations between different entities. However,
existing hybrid methods have difficulty in handling the di-
verse information needs since they impose the same citation
behavioral pattern on every query manuscript. Fig. 1 il-
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Figure 2: Schema for DBLP bibliographic network.

lustrates the diversity of these behavioral patterns using a
toy example. Paper I is on “citation recommendation” and
“link prediction”, which are studied by a relatively compact
group of researchers and venues, and one can find useful
papers through related researchers, venues and key terms
effectively. On the other hand, for “random walk”, relations
through authors and venues would be less informative on pa-
per relevance since this method is widely studied by authors
working on a variety of topics, and published at venues focus-
ing on a variety of fields. Previous hybrid methods learn and
apply the same recommendation model across all queries,
ignoring the variations in citation behaviors when seeking
quality references. Intuitively, paper citations should be or-
ganized into different groups and each group should have its
own behavior pattern to identify information of interest.

In this paper, we propose a novel citation recommenda-
tion framework to capture citation behaviors for each query
manuscript, based on both paper relevance and importance.
By softly clustering citations into different interest groups,
we aim to study the significance of different relevance fea-
tures for each interest group, and derive paper relative au-
thority within each group. In doing so, the challenge of sat-
isfying diverse information needs behind a paper’s citations
can be properly tackled by making a paper-specific recom-
mendation according to the query’s interest group member-
ship. Meanwhile, integration of paper importance can be
accurately accomplished using relative authority. This idea,
though interesting, leads to two critical problems: (1) how
to discover hidden interest groups for effective citation rec-
ommendation, and (2) how to derive behavioral patterns on
relevance and authority for each group.

To facilitate our study, a heterogenous bibliographic net-
work, encoding the multiple types of relations between dif-
ferent objects, is constructed (Fig. 2). A rich set of struc-
tural features is derived from the network, representing var-
ious relation semantics (Table 1) between two papers. We
then formulate a joint optimization problem to learn the pro-
posed model such that prediction error along with graph reg-
ularization is minimized over known citations, based on the
network. Specifically, the optimization problem conducts
graph-regularized co-clustering to learn group membership
for attribute objects and weights on relevance features for
each group. It also propagates relative authority between
different objects. An alternative minimization algorithm,
called ClusCite, is further designed to iterate between co-
clustering and authority propagation. Intuitively, feature
weights and relative authority can be better learned with
high quality interest groups, and in turn they assist in min-
ing higher quality interest groups.

Our experiments on the DBLP and PubMed datasets dem-
onstrate the power of the proposed model. ClusCite achieves
17.68% improvement in Recall@50 and 9.57% growth in MRR
over the best baseline on the DBLP dataset. Our perfor-
mance analysis shows that ClusCite can achieve even better
results with richer attribute objects, and our case studies
demonstrate the effectiveness of discovered interest groups
and object relative authority for citation recommendation.

The rest of the paper is organized as follows. Sec. 2 gives
background and the problem definition. Sec. 3 introduces

Table 1: Meta paths with different semantics.

Meta path Semantic meaning of the relation

P − A− P pi and pj share same author(s)
P − T − P pi and pj contain same term(s)
P − V − P pi and pj are in the same venue
P − T − P → P pi share term(s) with the paper(s) that cite pj
P − A− P ← P pi share the same author(s) with the paper(s)

cited by pj

our new model. The learning algorithm and its computa-
tional complexity analysis are in Sec. 4. We present and
analyze our experimental results in Sec. 5, discuss the re-
lated work in Sec. 6, and conclude this study in Sec. 7.

2. BACKGROUND
This section introduces concepts on heterogeneous biblio-

graphic networks and presents the formal problem definition.
A heterogeneous bibliographic network [27, 23] is a

directed graph G, that consists of multiple types of objects
and relationships, derived from a bibliographic dataset.

Suppose there are n papers P = {p1, . . . , pn}, |A| authors
A = {a1, . . . , a|A|}, |V| venues (conferences or journals) V =

{v1, . . . , v|V|}, and |T | terms T = {e1, . . . , e|T |} in the net-
work. Citations between papers form a directed subgraph
denoted by an adjacency matrix Y ∈ R

n×n with Yij = 1

if paper pi cites paper pj and Yij = 0 otherwise. For re-
lationships between papers and authors, we use an undi-
rected bipartite graph, denoted by a biadjacency matrix

R(A) ∈ R
n×|A|, where R

(A)
ij = 1 if paper pi has the author aj

and R
(A)
ij = 0 otherwise. Similarly, the relationships between

papers and venues can also be represented by a biadjacency

matrix R(V) ∈ R
n×|V|, R

(V)
ij = 1 if paper pi is published in

the venue vj and R
(V)
ij = 0 otherwise. We extract a set of

term objects T from the paper’s free-text and further con-
struct an undirected bipartite subgraph between these terms
and papers to represent paper content. We use the weight
matrix R(T ) ∈ R

n×|T | to denote the paper-term subgraph

where R
(T )
ij is the term frequency of term ej in paper pi.

We adopt the concept of network schema to describe
the heterogeneous bibliographic network at the meta level
[22, 23]. An example is shown in Fig. 2.

As shown in [22, 27], meta path-based features in hetero-
geneous information networks describe a rich set of relation
semantics that can capture textual similarity, conceptual
relevance and several kinds of social relatedness. A meta

path is defined over network schema, where nodes are ob-
ject types and edges are relation types. Table 1 shows some
examples that use meta paths to measure paper relevance
for the citation recommendation problem. Moreover, struc-
tural similarity measures can be defined on each meta path
to generate relevance features, as shown in [22, 27].

In general, we represent the meta path-based relevance
score between pi and pj as φ(pi, pj). Suppose we generate L
different meta path-based relevance features by combining
different meta paths with different structural similarity mea-
sures, we can define a relevance scores matrix S(i) ∈ R

n×L

for every paper pi ∈ P where S
(i)
jl = φ(l)(pi, pj) is the l-th

meta path-based relevance score between pi and pj
1.

In this work, we cast the citation recommendation prob-
lem into the problem of learning a recommendation score
function s(q, p) : Q × P 7→ R for a query manuscript q ∈ Q

and a target paper p ∈ P based on the heterogeneous bib-
liographic network. The learned function is later used to

1Details of the meta path-based similarity computation in
heterogeneous bibliographic network can be found in [22].
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compute scores between query and target papers to make a
recommendation. Formally, we define the citation recom-
mendation problem as follows.

Definition 1 (Problem Definition). Given a hetero-
geneous bibliographic network G, and the terms, authors and

target venues for a query manuscript q ∈ Q, we aim to build
a recommendation model specifically for q, and recommend a

small subset of target papers p ∈ P as high quality references
for q, by ranking the papers with the score function s(q, p).

3. THE PROPOSED FRAMEWORK
At a high level, the proposed cluster-based citation rec-

ommendation framework consists of two major steps:

1. Learning the model parameters based on known citations
by solving a joint optimization problem (Sec. 4).

2. Making paper-specific recommendations for each query
manuscript based on the learned ClusCite model, which
is introduced in detail in this section.

3.1 Model Overview
We first provide an overview of the proposed model by

defining the major components in the score function s(q, p).
Given a query manuscript q, its citations will focus on

several interest groups each having its own behavioral pat-
terns in finding relevant and high authority work (Fig. 1).
It is desirable to recommend papers that are highly ranked
in multiple interest groups of the query, since they best cap-
ture diverse information needs. We propose a cluster-based
score function to decide relative relevance and importance
of target papers in the context of each interest group. It
assigns a final recommendation score by integrating scores
computed with respect to different interest groups.

Mathematically, suppose paper citations can be softly clus-
tered into K interest groups, based on multiple types of rela-
tionships between objects in the heterogeneous bibliographic
network, then we define the score function s(q, p) as follows:

s(q, p) =

K
∑

k=1

θ(k)q ·
{

r(k)(q, p) + f
(k)
P (p)

}

. (1)

Function s(q, p) measures how likely a query manuscript
q ∈ Q is to cite a target paper p ∈ P . It is decomposed into
a set of cluster-based functions: the cluster-based relevance
function r(k)(q, p) : Q× P 7→ R measures the relatedness be-
tween q and p according to the k-th interest group, and pa-

per relative authority function f
(k)
P (p) : P 7→ R computes the

relative importance of p within the k-th interest group. The
weighted combination of these functions defines the final rec-
ommendation score with respect to the group membership

indicators of q, i.e., {θ(k)q : θ
(k)
q > 0}, which represent how

likely query q is to belong to the K different interest groups.

3.2 Feature Weights for Paper Relevance
As mentioned in Sec. 2, one can compute a rich set of meta

path-based features to describe paper relevance under vari-
ous relation semantics. Each meta path-based feature, could
play a distinct role in identifying relevant work in different
interest groups.

In Fig. 1, incorporating meta path P − V − P along with
textual similarity P−T−P can effectively suggest related pa-
pers under the interest “link prediction (problem)” because
only a compact set of venues (e.g., KDD, ICML and ICDM)

Table 2: Learned weights on seven different meta
paths for four mined interest groups (K = 40).

Meta path Group 1 Group 2 Group 3 Group 4

P − V − P 0.0024 0.0113 0.0158 0.3076∗

P − A− P 0.0054 0.0006 0.0192 0.1243
P − A− P → P 0.6133∗∗ 0.2159∗ 0.2254 0.0213

P − T − P 0.1227 0.0947 0.1579 0.1095
P − T − P → P 0.0442 0.5448∗∗ 0.3250∗ 0.0231
P − T − P ← P 0.1938∗ 0.0870 0.3578∗∗ 0.2409∗∗

study this problem. However, if the interest switches to “L-
BFGS (algorithm)”, using P − V − P probably will hurt the
results since a much broarder set of venues involve studying
this algorithm, and thus, sharing a venue with the query
provides very weak evidence for paper relevance.

In order to capture the biased significance of different rele-
vance features for different interest groups, we assign feature
weights for each interest group individually, leading to the
definition of a cluster-based relevance function as follows:

r(k)(q, p) =

L
∑

l=1

w
(l)
k · φ

(l)(q, p). (2)

For each interest group k, we use a set of weights {w(l)
k :

w
(l)
k > 0} to measure the significance of the L different meta

path-based features {φ(l)(q, p)} for the group.
These K feature weights are estimated through a joint

optimization problem (Sec. 4). We demonstrate in Table 2
the learned feature patterns over 7 meta paths for 4 example
interest groups (* and ** highlight first and second most
significant values), using the random walk-based similarity
measure on DBLP. All 4 groups show distinct weights on
the 7 meta paths, justifying the claim that different interest
groups hold different feature weights. In particular, we find
meta paths which impose textual similarity (e.g., P−T−P ←

P ) as well as references of co-author’s papers (P−A−P → P )

play critical roles in finding relevant papers in these 4 groups,
which matches human intuitions very well.

3.3 Object Relative Authority
A paper may have very different visibility or authority

among different interest groups even if it has many citations.
In the DBLP dataset [25], paper ObjectRank [3] (132 cita-
tions) got 47 citations from VLDB but only 12 from WWW,
while RankSVM [14] (250 citations) obtained only 27 cita-
tions from VLDB but 109 from WWW, implying the bias of
authority in different interest groups.

Instead of learning object’s group membership and de-
riving relative authority separately, we propose to estimate
them jointly using graph regularization, which preserves con-
sistency over each subgraph. By doing so, paper relative
authority serves as a feature for learning interest groups,
and better estimated groups can in turn help derive relative
authority more accurately (Fig. 3).

We adopt the semi-supervised learning framework [8] that
leads to iteratively updating rules as authority propagation
between different types of objects.

FP = GP

(

FP , FA, FV ;λA, λV

)

,

FA = GA

(

FP

)

and FV = GV

(

FP

)

. (3)

We denote relative authority score matrices for paper, au-
thor and venue objects by FP ∈ R

K×n, FA ∈ RK×|A| and
FV ∈ RK×|V|. Generally, in an interest group, relative im-
portance of one type of object could be a combination of the
relative importance from different types of objects [23].
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In our solution, the propagation function GP updates pa-
per relative authority scores for all groups, following the in-
tuition: High quality papers from an interest group are often
published in highly reputed venues, written by authoritative
authors and related to other high quality papers, from this
group. Trade-off parameters λA and λV control the relative
importance of paper-author and paper-venue relations. On
the other hand, propagation functions GA and GV capture
the rules: highly regarded authors often write good qual-
ity papers, and highly reputed venues often publish good
quality papers. We include detailed formulae for the three
propagation functions in Sec. 4.

3.4 Paper-Specif c Citation Recommendation
In practice, to derive interest group memberships for newly

emerged queries, one has to re-estimate the model using
these queries and training data, which is highly inefficient.
Moreover, as the number of papers grows rapidly, the size of
the model parameter space will increase a lot, making the
model learning even more unscalable.

To tackle these two challenges, we leverage group member-
ships of the query’s related attribute objects, i.e., authors,
terms and target venues, to approximately represent group
membership of the query manuscript.

Intuitively, terms of the query manuscript describe its in-
formation needs based on paper content, whereas its au-
thor(s) and venue complement the content with research in-
terests and other conceptual information. Specifically, we

represent the query’s group membership θ
(k)
q by weighted

integration of group memberships of its attribute objects.

θ(k)q =
∑

X∈{A,V,T }

∑

x∈NX (q)

θ
(k)
x

|NX (q)|
. (4)

We use NX (q) to denote type X neighbors for query q,
i.e., its attribute objects. How likely a type X object is to

belong to the k-th interest group is represented by θ
(k)
x .

Paper-specific citation recommendation can be efficiently
conducted for each query manuscript q by applying Eq. (1)
along with definitions in Eqs. (2), (3) and (4).

4. MODEL LEARNING
This section introduces the learning algorithm for the pro-

posed citation recommendation model in Eq. (1).
There are three sets of parameters in our model: group

memberships for attribute objects; feature weights for inter-
est groups; and object relative authority within each inter-
est group. A straightforward way is to first conduct hard-
clustering of attribute objects based on the network and
then derive feature weights and relative authority for each
cluster. Such a solution encounters several problems: (1)
one object may have multiple citation interests, (2) mined
object clusters may not properly capture distinct citation
interests as we want, and (3) model performance may not
be best optimized by the mined clusters.

In our solution, we formulate a joint optimization prob-
lem to estimate all model parameters simultaneously, which
minimizes prediction error as well as graph regularization.
By doing so, we can softly cluster attribute objects in terms
of their citation interests and guarantee the learned model
can yield good performance on training data.

We explain the joint optimization problem in Sec. 4.1 and
design an efficient algorithm to solve it in Sec. 4.2 along with
its computational complexity analysis in Sec. 4.3.

4.1 The Joint Optimization Problem
To learn model parameters, we use a citation network as

training data, where value 1 indicates observed citation re-
lationships while value 0 represents a mixture of negatives
(should not cite) or unobserved (unaware and may cite in
the future) examples. Traditional learning methods adopt
classification [27] or learning-to-rank [1] objective functions
and usually treat all 0s in training data as negative exam-
ples, which does not fit the real cases.

Without loss of generality, we adopts weighted square er-
ror [11] on the citation matrix as the loss function to measure
the prediction performance, which is defined as follows:

L =
n
∑

i,j=1

Mij

(

Yij −
K
∑

k=1

L
∑

l=1

θ
(k)
pi w

(l)
k S

(i)
jl −

K
∑

k=1

θ
(k)
pi FP,kj

)2

,

=
n
∑

i=1

∥

∥Mi ⊙
(

Yi −RiP(WS(i)T +FP)
)

∥

∥

2

2
.

(5)
We define the weight indicator matrix M ∈ R

n×n for the
citation matrix, where Mij takes value 1 if the citation rela-
tionship between pi and pj is observed and 0 in other cases.
By doing so, the model can focus on positive examples and
get rid of noise in the 0 values. One can also define other
loss functions to optimize with respect to precision or recall.

For ease of optimization, the loss can be further rewrit-
ten in a matrix form, where matrix P ∈ R

(|T |+|A|+|V|)×K is
group membership indicator for all attribute objects while
Ri ∈ R

n×((|T |+|A|+|V|)) is the corresponding neighbor indica-

tor matrix such thatRiP =
∑

X∈{A,V,T }

∑
x∈NX (pi)

θ
(k)
x

|NX (pi)|
.

Feature weights for each interest group are represented by

each row of the matrixW ∈ R
K×L, i.e., Wkl = w

(l)
k . Hadamard

product ⊙ is used for the matrix element-wise product.
As discussed in Sec. 3.3, to achieve authority learning

jointly, we adopt graph regularization to preserve consis-
tency over the paper-author and paper-venue subgraphs,
which takes the following form:

R = λA

2

n
∑

i=1

|A|
∑

j=1

R
(A)
ij

∥

∥

∥

FP,i

D
(PA)
ii

−
FA,j

D
(AP)
jj

∥

∥

∥

2

2

+ λV

2

n
∑

i=1

|V|
∑

j=1

R
(V)
ij

∥

∥

∥

FP,i

D
(PV)
ii

−
FV,j

D
(VP)
jj

∥

∥

∥

2

2
.

(6)

The intuition behind the above two terms is natural: Linked
objects in the heterogeneous network are more likely to share
similar relative authority scores [13]. To reduce impact of
node popularity, we apply a normalization technique on au-
thority vectors, which helps suppress popular objects to keep
them from dominating the authority propagation. Each
element in the diagonal matrix D(PA) ∈ R

n×n is the de-
gree of paper pi in subgraph R(A) while each element in
D(AP) ∈ R

|A|×|A| is the degree of author aj in subgraph
R(A). Similarly, we can define the two diagonal matrices for
subgraph R(V).

Integrating the loss in Eq. (5) with graph regularization in
Eq. (6), we formulate a joint optimization problem following
the semi-supervised learning framework [8]:

min
P,W,FP ,FA,FV

1

2
L+R+

cp
2
‖P‖2F +

cw
2
‖W‖2F

s.t. P ≥ 0; W ≥ 0. (7)

To ensure stability of the obtained solution, Tikhonov reg-
ularizers are imposed on variables P and W [4], and we use
cp, cw > 0 to control the strength of regularization. In ad-
dition, we impose non-negativity constraints to make sure
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learned group membership indicators and feature weights
can provide semantic meaning as we want.

4.2 The ClusCite Algorithm
Directly solving Eq (7) is not easy because the objective

function is non-convex. We develop an alternative mini-
mization algorithm, called ClusCite, which alternatively
optimizes the problem with respect to each variable.

The learning algorithm essentially accomplishes two things
simultaneously and iteratively: Co-clustering of attribute
objects and relevance features with respect to interest groups,
and authority propagation between different objects. Dur-
ing an iteration, different learning components will mutually
enhance each other (Fig. 3): Feature weights and relative
authority can be more accurately derived with high quality
interest groups while in turn they serve a good feature for
learning high quality interest groups.

First, to learn group membership for attribute objects,
we take the derivative of the objective function in Eq. (7)
with respect to P while fixing other variables, and apply
the Karush-Kuhn-Tucker complementary condition to im-
pose the non-negativity constraint [7]. With some simple
algebraic operations, a multiplicative update formula for P
can be derived as follows:

Pjk ← Pjk

[ n
∑

i=1

RT
i ỸiS

(i)WT + L+
P1 + L−

P2

]

jk
[

LP0 + L−
P1 + L+

P2 + cpP
]

jk

, (8)

where matrices LP0, LP1 and LP2 are defined as follows:

LP0 =

n
∑

i=1

RT
i RiPWS̃(i)T S̃(i)WT ; LP1 =

n
∑

i=1

RT
i ỸiF

T
P ;

LP2 =
n
∑

i=1

RT
i RiPF̃

(i)
P F̃

(i)T
P +

n
∑

i=1

RT
i RiPWS̃(i)TFT

P

+
n
∑

i=1

RT
i RiPFP S̃

(i)WT .

In order to preserve non-negativity throughout the update,
LP1 is decomposed into L−

P1 and L+
P1 where A+

ij = (|Aij | +

Aij)/2 and A−
ij = (|Aij | − Aij)/2. Similarly, we decompose

LP2 into L−
P2 and L+

P2, but note that the decomposition is
applied to each of the three components of LP2, respectively.
We denote the masked Yi as Ỹi, which is the Hadamard

product of Mi and Yi. Similarly, S̃(i) and F̃
(i)
P denote row-

wise masked S(i) and FP by Mi.
Second, to learn feature weights for interest groups, the

multiplicative update formula for W can be derived follow-
ing a similar derivation as that of P, taking the form:

Wkl ←Wkl

[ n
∑

i=1

PTRT
i ỸiS

(i) + L−
W

]

kl
[ n
∑

i=1

PTRT
i RiPWS̃(i)T S̃(i) + L+

W
+ cwW

]

kl

,

(9)
where we have LW =

∑n
i=1 P

TRT
i RiPFP S̃(i).

Similarly, to preserve non-negativity of W, LW is decom-
posed into L+

W
and L−

W
, which can be computed same be-

fore.
Finally, we derive the authority propagation functions in

Eq. (3) by optimizing the objective function in Eq. (7) with
respect to the authority score matrices of papers, authors

0 0.2 0.4 0.6 0.8 10
2
4
6
8

10
12
14
16
18
20

Paper relative authority score

# 
ci

ta
tio

ns
 fr

om
 te

st
 s

et

Iteration 1

0 0.2 0.4 0.6 0.8 10
2
4
6
8

10
12
14
16
18
20

Paper relative authority score

# 
ci

ta
tio

ns
 fr

om
 te

st
 s

et

Iteration 5

0 0.2 0.4 0.6 0.8 10
2
4
6
8

10
12
14
16
18
20

Paper relative authority score

# 
ci

ta
tio

ns
 fr

om
 te

st
 s

et

Iteration 10

 

 

Figure 3: Correlation between paper relative au-
thority and # ground truth citations, during differ-
ent iterations.

and venues. Specifically, we take the derivative of the ob-
jective function with respect to FP , FA and FV , and follow
traditional semi-supervised learning frameworks [8] to derive
the update rules, which take the form:

FP = GP(FP ,FA,FV ;λA, λV)

=
1

λA + λV

(

λAFAST
A + λVFVS

T
V + LFP

)

(10)

FA = GA(FP) = FPSA; (11)

FV = GV(FP) = FPSV . (12)

where we have normalized adjacency matrices and the paper
authority guidance terms defined as follows:

SA = (D(PA))−1/2R(A)(D(AP))−1/2

SV = (D(PV))−1/2R(V)(D(VP))−1/2

LFP
=

n
∑

i=1

PTRT
i

{

Ỹi −RiP
(

WS̃(i) + F̃
(i)
P

)

}

Using normalized adjacency matrices SA and SV to prop-
agate relative authority can suppress popular objects in the
network. In this way, they will not dominate the author-
ity propagation. At each iteration, the guidance term LFP

adjusts paper relative authority such that the model can fit
known citations in a more accurate way.

Algorithm 1 summarizes the ClusCite algorithm. For con-
vergence analysis, ClusCite essentially applies block coordi-
nate descent on the optimization problem in Eq. (7). The
proof procedure in [26] can be adopted to prove convergence
for ClusCite (to the local minimum). For lack of space, we
do not include it here.

Fig. 3 illustrates the quality change of estimated paper rel-
ative authority. Given an interest group, citations from test
set to training papers serve as our ground truth for the rel-
ative authority of this group. We study the change of corre-
lation between estimated relative authority and the ground
truth, during different iterations. The initialization (global
citation count) shows poor quality based on the correlation.
As the algorithm iterates, we observe significant enhance-
ment on the correlation, which justifies the effectiveness of
the proposed authority propagation approach.

4.3 Computational Complexity Analysis
In this section, we analyze the computational complex-

ity of the proposed ClusCite algorithm. Let d denote the
total number of attribute objects and |E| the total num-
ber of links in the heterogeneous network. First, it takes
O(K(n+ d)) time to initialize all the variables and O(|E|L)
time to pre-compute the constants in the update formula.
In addition, we apply the fact that:

∑
n AnXBn = C is

equivalent to (
∑

n BT
n

⊗
An) vec(X) = vec(C), in our imple-

mentation so that we can avoid summations over all papers
by pre-computing several matrix Kronecker products (

⊗
).

This step takes totally O(L2|E|2/n+ L|E|3/n2) time.
We then study the time complexity at each iteration of

ClusCite with pre-computed matrices. Learning the group
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Algorithm 1 Model Learning by ClusCite

Input: adjacency matrices {Y,SA,SV}, neighbor indicator

R, mask matrix M, meta path-based features {S(i)}, pa-
rameters {λA, λV , cw, cp}, number of interest groups K
Output: group membership P, feature weights W, relative
authority {FP ,FA,FV}

1: Initialize P, W with positive values, and {FP ,FA,FV}
with citation counts from training set

2: repeat
3: Update group membership P by Eq. (8)
4: Update feature weights W by Eq. (9)
5: Compute paper relative authority FP by Eq. (10)
6: Compute author relative authority FA by Eq. (11)
7: Compute venue relative authority FV by Eq. (12)
8: until objective in Eq. (7) converges

membership matrix P by Eq. (8) takesO(L|E|3/n3+L2|E|2/n2

+ Kdn) time. Learning the feature weights W by Eq. (9)
takes O(L|E|3/n3 + L2|E|2/n2 + Kdn) time. Updating all
three relative authority matrices takes O(L|E|3/n3 + |E|+
Kdn) time. Let the number of iterations to compute Clus-
Cite be T (T ≪ n). The total time complexity is O(L|E|3/n2+
L2|E|2/n + T |E| + TKdn). In our experiments, ClusCite
usually converges within 50 iterations.

5. EXPERIMENTS
In this section, we evaluate the recommendation perfor-

mance of the proposed method on real world data and con-
duct case studies to demonstrate its effectiveness.

5.1 Data Preparation
In the experiments, two different bibliographic datasets

are used: the DBLP dataset2 [25] and the PubMed dataset3.
Statistics of the two constructed heterogeneous bibliographic
networks are summarized in Table 3.

5.1.1 Heterogeneous Bibliographic Networks
Tang et al. [25] extracted citation information and built a

DBLP citation dataset. We generated a subset of the afore-
mentioned dataset by filtering out papers with incomplete
meta information or less than 5 citations. Keywords and key
phrases are extracted from paper titles and abstracts using
the TF-IDF measure and the TextBlob noun phrase extrac-
tor4. The PubMed Central dataset is processed by the same
method as described above to generate a subset5. We con-
verted both datasets into heterogeneous bibliographic net-
works according to the network schema in Fig. 2.

5.1.2 Training and Evaluation Sets
We split the network to generate training, validation and

testing subsets according to the paper publication year. We
considered three time intervals T0, T1 and T2. The sub-
network associated with papers in T0 was used for model
training. Papers in T1 were then used as the validation set
for parameter tuning and papers in T2 were used as the test
set for evaluations. Tables 4(a) and 4(b) summarize the
statistics of the subsets. During evaluation, we consider ci-
tations from the evaluation sets (T1 and T2) to the training

2http://arnetminer.org/DBLP_Citation
3http://www.ncbi.nlm.nih.gov/pmc/
4http://textblob.readthedocs.org/en/latest/
5https://github.com/shanzhenren2/PubMed_subset

Table 3: Statistics of two bibliographic networks.

Data sets DBLP PubMed

# papers 137,298 100,215
# authors 135,612 212,312
# venues 2,639 2,319
# terms 29,814 37,618
# relationships ∼2.3M ∼3.6M
Paper avg citations 5.16 17.55

Table 4: Training, validation and testing paper sub-
sets from the DBLP and PubMed datasets

(a) The DBLP dataset

Subsets Train Validation Test
Years T0=[1996, 2007] T1=[2008] T2=[2009, 2011]
# papers 62.23% 12.56% 25.21%

(b) The PubMed dataset

Subsets Train Validation Test
Years T0=[1966, 2008] T1=[2009] T2=[2010, 2013]
# papers 64.50% 7.81% 27.69%

set (T0) as the ground truth. Such an evaluation practice
is more realistic because a citation recommendation system
only knows the related attribute objects of a newly writ-
ten manuscript. Also, it predicts future citations based on
models which are learned from past citations.

5.1.3 Feature Generation
In the experiments, without loss of generality, we selected

15 different meta-paths between paper objects including (P−
X − P )y, P − X − P → P and P − X − P ← P where
X = {A, V, T} and y = {1, 2, 3}. Note that (P − X − P )2

denotes P−X−P−X−P . We used two different structural
similarity measures: PathSim [22] measure and the random-
walk based measure [27]. We applied the random-walk based
measure to all meta-paths and the PathSim measure to only
symmetric meta-paths due to its requirement. This provides
us with 24 meta-path based relevance features. Note that
all the “cited” and “citing” relations in the meta-paths were
only measured between papers in the training set.

5.2 Experimental Settings
We provide details on the experimental settings for con-

ducting evaluations on all the methods.

5.2.1 Compared Methods
We compared the proposed method (ClusCite) with its

variation which considered only relevance features (ClusCite-
Rel). Several widely deployed or state-of-the-art citation
recommendation approaches were also implemented, includ-
ing content-based methods, link-based methods and hybrid
methods. All compared methods were first tuned on valida-
tion set to pick the tuning parameters.

BM25: BM25 is a text-based method, which computes
similarity scores using only text information.

PopRank [19]: PopRank is a link-based method which
derives an object’s importance based on authority propaga-
tion in the heterogeneous bibliographic network.

TopicSim: We measure similarity between papers with
topic modeling technique (LDA) and return the papers with
the most similar topic distribution compared with the query.

Link-PLSA-LDA [18]: Link-PLSA-LDA6 is a hybrid
method that leverages both document text and citation links

6https://sites.google.com/site/rameshnallapati/
software
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Table 5: Recommendation performance comparisons on DBLP and PubMed datasets in terms of Precision,
Recall and MRR. We set the number of interest groups to be 200 (K = 200) for ClusCite and ClusCite-Rel.

Method DBLP PubMed

P@10 P@20 R@20 R@50 MRR P@10 P@20 R@20 R@50 MRR
BM25 0.1260 0.0902 0.1431 0.2146 0.4107 0.1847 0.1349 0.1754 0.2470 0.4971

PopRank 0.0112 0.0098 0.0155 0.0308 0.0451 0.0438 0.0314 0.0402 0.0814 0.2012
TopicSim 0.0328 0.0273 0.0432 0.0825 0.1161 0.0761 0.0685 0.0855 0.1516 0.3254

Link-PLSA-LDA 0.1023 0.0893 0.1295 0.1823 0.3748 0.1439 0.1002 0.1589 0.2015 0.4079
L2-LR 0.2274 0.1677 0.2471 0.3547 0.4866 0.2527 0.1959 0.2504 0.3981 0.5308

RankSVM 0.2372 0.1799 0.2733 0.3621 0.4989 0.2534 0.1954 0.2499 0.382 0.5187
MixFea 0.2261 0.1689 0.2473 0.3636 0.5002 0.2699 0.2025 0.2519 0.4021 0.5041

ClusCite-Rel 0.2402 0.1872 0.2856 0.4015 0.5156 0.2786 0.2221 0.2753 0.4305 0.5524
ClusCite 0.2429 0.1958 0.2993 0.4279 0.5481 0.3019 0.2434 0.3129 0.4587 0.5787
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Figure 4: Performance comparisons measured by
Recall and Precision at different positions.

when modeling topics. The candidates were ranked in terms
of the conditional probability of citations from the query
manuscript to the candidate papers.

L2-LR [27]: This technique changes the problem into
classification with a linearly weighted combination of meta
path-based relevance features. Positive examples are ob-
served citations and negative examples are randomly sam-
pled paper pairs.

RankSVM [14]: RankSVM considers the preference be-
tween paper-paper relationships, instead of assuming all un-
observed relationships are negative examples.

MixFea: the candidates were ranked by a linear com-
bination of meta path-based relevance features, topic dis-
tributions and PopRank’s features. We used RankSVM to
estimate feature weights.

ClusCite: candidates were ranked based on the scores
computed by Eq. (1). We set the number of interest groups
K = 200, cp = 10−6, cw = 10−7, λA = λV = 0.3 after
tuning them on validation sets (Fig. 5 and Sec. 5.6).

ClusCite-Rel: candidates were ranked based on the pro-
posed model with only meta path-based relevance features,
i.e., by dropping FP in Eq. (1). It used the same settings
on K, cp and cw as those of ClusCite.

5.2.2 Evaluation Metrics
We employed Precision and Recall at position M (P@M

and R@M) as the evaluation metrics. Recall@M is de-
fined as the percentage of original citing papers that ap-
pear in the top-M recommended list. A high recall with a
lower M indicates a better citation recommendation system.
Precision@M was also used to measure the effectiveness of
the recommendation system by checking whether the origi-
nal citing papers were ranked high for the query manuscript.

Furthermore, it is desirable that ground truth papers should
appear earlier in the top-M recommended list. Therefore,
Mean Reciprocal Rank (MRR) was also employed over the
target papers, which is defined as MRR = 1

|QT |

∑

q∈QT

1
rank(q)

,

where QT is the testing set and rank(q) denotes the rank of
its first ground truth paper (positive example).

5.3 Performance Comparison
We now compare the proposed recommendation model

(ClusCite) with its variation (ClusCite-Rel) and other base-
lines in terms of the citation recommendation performance.

First, we compare the proposed methods with seven dif-
ferent baselines using Precision@10, 20, Recall@20, 50 and
MRR. Table 5 summarizes the comparison results on both
DBLP and PubMed datasets. Overall, the proposed Clus-
Cite method and its variation ClusCite-Rel outperform other
methods on all metrics. In particular, ClusCite obtains a
17.68% improvement in Recall@50 and 9.57% improvement
in MRR compared to the best baseline on the DBLP dataset.
On the PubMed dataset, it improves Recall@20 by 20.19%
and MRR by 14.79% compared to MixFea. Even though
MixFea has incorporated a rich set of features, ClusCite ob-
tained superior performance because it not only explores
citation behaviors by learning group-based feature weights
over different relation semantics, but also integrates relative
paper authority to augment the recommendation process.

The ClusCite-Rel method outperforms all other baselines
and improves Recall@50 by 10.42% compared to the best
baseline, MixFea, on the DBLP dataset. Comparing ClusCite-
Rel with methods such as RankSVM and L2-LR, one can
clearly notice the performance gain from distinguishing rel-
evance feature weights for different interest groups. Clus-
Cite always outperforms ClusCite-Rel, improving MRR by
12.21% and Recall@50 by 6.57% on the DBLP dataset. The
enhancement mainly comes from utilizing paper relative au-
thority with respect to different interest groups. Also, the
derived relative authority can assist recommendation since
it is jointly learned through the unified optimization.

MixFea is another method that incorporates paper au-
thority information, but it does not distinguish paper au-
thority in different interest groups. However, it still obtained
better results than RankSVM and L2-LR did in most cases.
This demonstrates the effectiveness of paper authority in-
formation in the citation recommendation process. Further-
more, poor performance of PopRank shows that using only
global authority is not sufficient to conduct good citation
recommendation. Different from the conclusions in [10], We
found that Link-PLSA-LDA and TopicSim can only achieve
0.0893 and 0.0273 for Precision@20 (compared to 0.1677
with L2-LR), respectively. Also, BM25 outperformed both
of the topic-based methods in all cases. This shows that
topic-based features are not good enough for finding rele-
vant papers, since the features may be of coarse granularity.

For more comprehensive comparisons, we computed the
precision and recall at different positions (5 to 100) to study
the trends in performance changes. Due to space limits,
Fig. 4 only shows the comparison results of Recall on DBLP
and comparison results of Precision on PubMed, respec-

827



0 100 200 300 400 500
0.36
0.37
0.38
0.39
0.4

0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48

Number of interest groups (K)

R
ec

al
l@

50

 

 

MixFea
ClusCite−Rel
ClusCite

(a) DBLP

0 100 200 300 400 500
0.36
0.37
0.38
0.39
0.4

0.41
0.42
0.43
0.44
0.45
0.46

Number of interest groups (K)

R
ec

al
l@

50

 

 

MixFea
ClusCite−Rel
ClusCite

(b) PubMed

Figure 5: Performance change (Recall@50) on val-
idation sets, with respect to number of interest
groups (K) (MixFea as baseline).

tively. For both precision and recall, the performance gap
between ClusCite and ClusCite-Rel gets slightly larger as
more candidates are returned. This indicates that authority
information played a critical role in identifying papers with
moderate relevance to the query (people may cite relevant
papers even though they are new and less reputed, but they
prefer authoritative ones among the less relevant papers).

5.4 Performance Analysis
In this section, we analyze the performance of ClusCite,

ClusCite-Rel and MixFea in different recommendation sce-
narios. We ran the following experiments on both datasets
and observed similar performance changes in both. How-
ever, in the interest of brevity, we only present results from
the PubMed dataset for some analyses.

First, we studied performance change with respect to the
number of interest groups for ClusCite and ClusCite-Rel.
As presented in Fig. 5(a) and 5(b), although not very sensi-
tive to K, these two methods did perform differently when
the number of groups were varied. Also, the performance
changes were more notable at smaller K, i.e.K < 100. This
indicates that the proposed methods cannot determine cita-
tion behavior well when the number of groups is small. On
the other hand, a large K (e.g.K > 300) caused a perfor-
mance drop due to the insufficiency of training data in de-
riving interest groups. We found that ClusCite achieved the
best performance when the number of groups was K = 200
while ClusCite-Rel obtained the best performance with a
large number K = 300. This shows that biomedical domain
has more diverse citation behavior patterns.

In ClusCite and ClusCite-Rel, the paper-specific recom-
mendation makes a prediction for a query based on its at-
tribute objects. Therefore, we want to examine their perfor-
mance change by studying the correlation between recom-
mendations of the two proposed methods and the number of
attribute objects in the query manuscript. We divided the
test set into 6 groups with respect to the number of attribute
objects. The resulting query groups had an average num-
ber of attribute objects ranging from 6.46 (group 1) to 18.98
(group 6). The results by MRR are summarized in Fig. 6(a).
Overall, ClusCite outperformed ClusCite-Rel, and both out-
performed MixFea. The proposed methods achieved a larger
performance improvement when the number of attribute ob-
jects increased (e.g.from 0.02 in group 1 to 0.08 in group 6)
while the performance of MixFea seemed less sensitive be-
tween different query groups. This demonstrates that with
more attribute objects provided by the query manuscript,
the proposed method can make better paper-specific recom-
mendations because richer attribute objects provide better
estimation on group membership of the query manuscript.

Finally, we tested the model generalization by evaluat-
ing performance on test papers from different time periods.
We generated four test subsets using papers in T2 of the
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Figure 6: Performance change with number of at-
tribute objects and time periods of query papers.

PubMed dataset where each subset consists of papers from
one specific year. By applying the methods on each subset,
we want to study how the model, learned from papers in
T0, can predict citations for future papers. The study re-
sults are shown in Fig. 6(b). Overall, the performance of
both methods dropped when recommending for newer pa-
pers but ClusCite always outperformed MixFea. Recall@50
of MixFea decreased by 16.42% from year 2010 to 2013 while
Recall@50 of ClusCite dropped only about 7.72%, which in-
dicates the better generalization of the proposed method.

5.5 Case Studies
To demonstrate the effectiveness of mining hidden interest

groups, we conduct two sets of case studies on the DBLP
dataset to show citation behavioral patterns (Fig. 7) and
relative authority ranking of authors and venues, (Table 6)
within an example of mined interest groups.

First, we show that the learned interest groups have dis-
tinct citation behavioral patterns and can satisfy different
information needs. We apply K-means clustering on all ob-
jects’ group membership indicators and derive their most
likely groups (we set K = 40). Two representative groups
were picked where group A contained 8,345 papers and 208
venues and group B contained 10,922 papers and 291 venues.
We found that major venues in group A were database venues
(e.g., “SIGMOD” and “VLDB”) and those in group B were
computer vision venues (e.g., “TPAMI” and “IJCV”). To
study how the four venues were cited by papers in the two
interest groups, we calculated the average number of cita-
tions from papers in group A and B to the four venues,
respectively. The results are in Fig. 7(a). One can see that
papers in group A prefer to cite database papers while those
in group B cite computer vision papers more frequently.

Following a similar procedure, we selected two more repre-
sentative groups and studied their papers’ citations on four
different authors: data mining researchers “Pillip S. Yu”and
“Rakesh Agrawal” from group A and programming language
researchers “Thomas W. Reps” and “Ken Kenndedy” from
group B. The average number of citations for these four au-
thors are summarized in Fig. 7(b). Similar behavioral pat-
terns were observed that papers in group A cite data mining
researchers more frequently while papers in group B pre-
fer programming language researchers. The derived interest
groups show two different behavioral patterns on citations,
and justify that they can capture different citation interests.

Second, we study the effectiveness of the relative authority
propagation process in the proposed ClusCite algorithm. By
setting the number of interest groups as K = 40, we apply
ClusCite on the training data and obtain relative authority
scores for authors (FA) and venues (FV). We can list the
top ranked objects based on their relative authority scores
within different interest groups. Table 6 shows the ranked
lists for two example interest groups. One can easily identify

828



Group A Group B
0

0.5

1

1.5

2

2.5

Interest groups

Av
er

ag
ed

 n
um

be
r o

f c
ita

tio
ns

 

 

SIGMOD
VLDB
TPAMI
IJCV

(a) Citations on venues

Group A Group B
0

0.02

0.04

0.06

0.08

0.1

Interest groups

Av
er

ag
ed

 n
um

be
r o

f c
ita

tio
ns

 

 
Philip S. Yu
Rakesh Agrawal
Thomas W. Reps
Ken Kennedy

(b) Citations on authors

Figure 7: Case studies on citation behavioral pat-
terns among different interest groups. We show the
averaged number of citations on four venues and
four authors, for two groups of papers.

the research areas that these two interest groups belong to:
Group I is on database and information system while Group
II is on computer vision and multimedia. There is a high
degree of consensus between the ranking list generated by
ClusCite and the top venues and reputed authors in each
research area. This demonstrates that the relative authority
propagation can generate meaningful authority scores with
respect to different interest groups.

Table 6: Top-5 authority venues and authors from
two example interest groups derived by ClusCite.

Rank Venue Author
Group I (database and information system)

1 VLDB 0.0763 Hector Garcia-Molina 0.0202
2 SIGMOD 0.0653 Christos Faloutsos 0.0187
3 TKDE 0.0651 Elisa Bertino 0.0180
4 CIKM 0.0590 Dan Suciu 0.0179
5 SIGKDD 0.0488 H. V. Jagadish 0.0178

Group II (computer vision and multimedia)
1 TPAMI 0.0733 Richard Szeliski 0.0139
2 ACM MM 0.0533 Jitendra Malik 0.0122
3 ICCV 0.0403 Luc Van Gool 0.0121
4 CVPR 0.0401 Andrew Blake 0.0117
5 ECCV 0.0393 Alex Pentland 0.0114

5.6 Parameter Study
In this section, we study the impact of four parameters:

cp and cw in ClusCite and ClusCite-Rel, and λA and λV in
ClusCite, on validation sets. The number of interest groups
are set as K = 200. MixFea, the best baseline, is the only
one used here. For conciseness, only DBLP dataset results
are presented in Fig. 8, where the x-axes are in log scale.

In the joint optimization problem in Eq. (7), cp and cw
control the strength of Tikhonov regularizers on group mem-
bership indicators and relevance feature weights. A larger
value imposes a higher penalty on the magnitude of variable
values. We vary one of these two parameters while fixing the
other as zero. For ClusCite, we set λA = λV = 0.1. Both
ClusCite and ClusCite-Rel show robust performance over a
large range of cw (Fig. 8(a)) and achieve significant improve-
ment compared to MixFea. We observe a similar trend when
varying cw (Fig. 8(b)) but ClusCite performs slightly better
when cw = 10−7. Such changes are because W plays a role
in balancing relevance and authority scores for the ClusCite
model while scaling of P will not affect the ranking results.

ClusCite has two more parameters λA and λV , which
control relative importance of authority information from
authors and venues, respectively. By setting one to zero
and varying the other, we aim to see a performance change
when only one information source is utilized in the author-
ity propagation process. Using ClusCite-Rel and MixFea as
baselines, one can see that both information sources help

improve the performance of ClusCite significantly. ClusCite
achieves the best performance when λA = 0.3 (Fig. 8(c))
and λV = 0.3 (Fig. 8(d)). In particular, we found that ap-
plying venue information to authority propagation led to
better results.

6. RELATED WORK
6.1 Citation Recommendation

Existing work leverages different kinds of information to
recommend citations for a query manuscript, from paper
content, known citations to authors and venues of a paper.

Traditional keyword-based approaches have difficulty in
finding conceptually similar work due to the ambiguity of
short-text queries [20, 5]. One can notice that the perfor-
mance of BM25 in our experiments is much worse than those
of the hybrid methods like L2-LR. Using citation local con-
texts, i.e., text surrounding the citation positions, context-
based methods can capture diverse information needs more
precisely [24, 10, 12]. However, the local context might be
irrelevant to the ideas of cited paper. Moreover, picking the
size of each context window is non-trivial. Also, it will be
interesting to study different intents and purposes behind
the citation contexts to leverage them more accurately.

On the other hand, known citations can be used to mea-
sure paper structural similarity. Traditional link prediction
techniques [16, 2] and collaborative filtering techniques [11]
encounter cold-start issue since in practice little or no ci-
tations are provided for query manuscript. Heterogenous
link prediction techniques [17, 6] tackle this issue by taking
advantages of multiple types of relationships between pa-
pers, authors and venues. However, these link-based meth-
ods cannot achieve satisfactory results without considering
content-based features. Therefore, recent studies start inte-
grating both content and structure information to augment
the performance [20]. Latent topic models are used to pre-
dict citations for new documents by modeling citation links
jointly[18, 24]. However, topical similarity may be too coarse
to serve as good evidence for citation prediction and ex-
perimental results on TopicSim and Link-PLSA-LDA show
their limited performance. Yu et al. [27] derive a rich set of
meta-path based features from heterogeneous bibliographic
networks in modeling citation recommendation, which can
capture text-based similarity, conceptual relevance as well
as several types of social relatedness.

Aforementioned methods consider only paper relevance
but ignore another critical information for citation recom-
mendation, namely the importance and quality of target pa-
pers [20]. Bethard and Jurafsky [5] built a literature search
system by learning a linearly weighted model over both rel-
evance and authority features.

Our work considers diverse citation interests by imposing
different feature patternsaccording to the interest groups of
each query (see comparisons between ClusCite-Rel and L2-
LR [27]). Yu et al. [28] study personalized entity recommen-
dation, which shares the similar idea of building local re-
trieval model for each cluster specifically. Our work is also
related to [5] in terms of incorporating paper authority, but
we derive paper relative authority within each group specif-
ically (see comparisons between ClusCite and MixFea).

6.2 Authority Ranking on Graphs
Ranking objects on graphs by their importance and pop-

ularity has been extensively studied [15, 19] and combined
with keyword search system [3]. In particular, Sun and
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Figure 8: Performance change (Recall@50) of ClusCite-Rel and ClusCite on DBLP validation set when varying
parameters cp and cw for both methods, and λA and λV for ClusCite. MixFea is used as a baseline.

Giles [21] consider both citation impacts as well as venue
influence when propagating paper authority scores in bibli-
ographic networks. With ranking supervision, graph-based
semi-supervised ranking frameworks can be further applied[1,
8]. However, these methods do not capture the bias of au-
thority when topics or interests of the query change. (see
comparison between PopRank [19] and ClusCite)

Haveliwala [9] personalizes the PageRank algorithm by
considering query topics to derive query-specific authority
score. Similar ideas were explored when performing cluster-
ing [23] and classification [13] in heterogeneous information
networks, where object relative authority served as features
for representing classes. To our best knowledge, the pro-
posed method is the first to learn object relative author-
ity through optimizing the citation recommendation model,
based on multiple types of relationships in heterogeneous
bibliographic networks.

7. CONCLUSION AND FUTURE WORK
In this paper, we study citation recommendation in the

context of heterogeneous bibliographic networks and pro-
pose a novel cluster-based citation recommendation frame-
work to satisfy a user’s diverse citation intents. By orga-
nizing paper citations into interest groups, the proposed
method is able to determine the significance of different
structural relevance features for each group, and derive pa-
per’s relative authority within each group. In this way, we
can make paper-specific recommendations to capture each
query’s diverse information needs. We formulate a joint
optimization problem to learn model parameters by taking
advantage of multiple relationships in the network, and de-
velop an efficient algorithm to solve it. Performance eval-
uation results show a significant improvement compared to
state-of-the-art methods and the case studies demonstrate
the effectiveness of the proposed method.

Interesting future work includes extending the proposed
clustering-based recommendation framework for Web search
tasks or entity recommendation so that one can capture local
relevance and authority jointly. In addition, there is poten-
tial to adjust the network structure for each interest group so
that relative authority can more accurately propagate within
the corresponding sub-networks. Finally, one can integrate
object authority information with each meta path instance
to design novel features for citation recommendation.
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