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ABSTRACT

Hashing has enjoyed a great success in large-scale similarity search.
Recently, researchers have studied the multi-modal hashing to meet
the need of similarity search across different types of media. How-
ever, most of the existing methods are applied to search across
multi-views among which explicit bridge information is provided.
Given a heterogeneous media search task, we observe that abundant
multi-view data can be found on the Web which can serve as an
auxiliary bridge. In this paper, we propose a Heterogeneous Trans-
lated Hashing (HTH) method with such auxiliary bridge incorpo-
rated not only to improve current multi-view search but also to en-
able similarity search across heterogeneous media which have no
direct correspondence. HTH simultaneously learns hash functions
embedding heterogeneous media into different Hamming spaces,
and translators aligning these spaces. Unlike almost all existing
methods that map heterogeneous data in a common Hamming space,
mapping to different spaces provides more flexible and discrimina-
tive ability. We empirically verify the effectiveness and efficiency
of our algorithm on two real world large datasets, one publicly
available dataset of Flickr and the other MIRFLICKR-Yahoo An-
swers dataset.

Categories and Subject Descriptors: H.3 [Information Storage
and Retrieval]: Information Search and Retrieval; H.4 [Information
Systems Applications]: Miscellaneous.

Keywords: Hash Function Learning; Heterogeneous Translated
Hashing; Scalability.

1. INTRODUCTION
With the explosive growth of data on and off the Web, hetero-

geneity arising from different data sources has become ubiquitous.
There exist numerous interactions among a diverse range of het-
erogeneous media: summarizing a piece of video with textual key-
words, displaying advertisements by understanding the content of
a mobile game, and recommending products based on social ac-
tivities including sending messages, checking in at places, adding
friends, and posting pictures. Figure 1 shows a simple example of
leveraging images to provide more accurate answers in Question-
Answering systems. All these applications boil down to a funda-

http://dx.doi.org/10.1145/2623330.2623688.

Question: Where can I buy Night

of Champions poster?

Description: The poster for the

Night of Champions has been

released, with John Cena in the front

cover with a yellow gold backround,

and you can see the WWE

Championship belt a little.

Figure 1: An example of using images to help better question-

answering. With a specific poster of “Night of Champions”, the

answer to where to buy can be more precise.

mental problem: similarity search across heterogeneous modali-

ties.
The challenges of similarity search across heterogeneous modal-

ities are two-fold: 1) how to efficiently perform the computation
to meet the large amount of data available; and 2) how to effec-
tively compare the similarity with the existence of heterogeneity.
A brute force similarity comparison between the examples from
different media is prohibitively expensive for large-scale datasets.
Traditional space partitioning methods which accelerate similar-
ity search, such as KD-trees [2] and Metric trees [24], have poor
performance in high dimensional spaces [26]. Due to their con-
stant or sub-linear query speed and low storage cost, hashing based
methods initiated by locality sensitive hashing (LSH) [1, 7], have
aroused more and more interest and become a main-stream tech-
nique for fast approximate nearest neighbour (ANN) search. The
key principle of hashing is to learn compact binary codes that can
preserve similarity. In other words, similar points in the original
feature space are projected to similar hash codes in the Hammming
space. However, these methods all work with homogeneous data
points.

To apply hashing across heterogeneous media is a non-trivial
task. First, data from different media sources have incommensu-
rable representation structures. Second, besides preserving homo-
geneous media similarity in the way as traditional hashing does,
heterogeneous media similarity should be preserved simultaneously.
Heterogeneous media similarity is defined as semantic relatedness
between a pair of entities in different modalities. For instance, a
query image and a document in database are similar if they derive
from the same topic, e.g., “sports”. Such heterogeneous correspon-
dence data that are labelled as similar or dissimilar are the “bridge”
to search across heterogeneous media. However, in the task of
illustrating questions with pictures as Figure 1 shows, questions
as queries do not have any correspondence with the pre-defined
database of images. Thus, the third challenge is that in most of
practical applications, the explicit relationships between query en-
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tities (in one domain) and the database entities (in another domain)
probably do not apparently exist.
So far limited attempts have been made towards hashing across

heterogeneous media. The existing works such as [4, 12, 32, 15] all
focus on the situation where explicit relationships are given. For ex-
ample, the method proposed in [12] assumes that the data is format-
ted in a multi-view fashion, i.e., each data instance in the database
should have a representation in each view. Therefore, explicit re-
lationship is clearly given for each data instance. Particularly, the
method proposed in [15] even relies on the explicit relationships
between queries and the database in the testing phase.
Moreover, most existing approaches embed multiple media data

into a common Hamming space, thus generating hash codes with
the same number of bits for all modalities. However, such an em-
bedding is unreasonable because different media types usually have
different dimensionality and distributions. In fact, researchers have
argued that in uni-modal hashing using the same number of bits for
all projected dimensions is unsound because dimensions of larger
variances carry more information [8, 13]. Analogously, heteroge-
neous media data with incommensurable representations and dis-
tributions also carry different amounts of information so that they
should not be collectively hashed into binary codes of the same
length. Otherwise, the equal treatment of different modalities can
deteriorate the hashing performance. To the best of our knowl-
edge, the work of [15] is among the first to adopt different bits for
different modalities and correlating these bits with mapping func-
tions. However, as mentioned above, it re-learns hash codes for out-
of-sample data highly reliant on the given relationships between
queries and the database, which is neither practical nor efficient.
In this paper, we propose a novel learning method to enable

translation-based hashing across heterogeneous media called Het-

erogeneous Translated Hashing (HTH) to address these limitations.
Given a heterogeneous media search task, we observe that some
multi-modal data are available on the Web which can serve as a
bridge to preserve heterogeneous media similarity, while massive
uncorrelated examples in each individual modality can be incor-
porated to enhance homogeneous media similarity preservation.
Learning from such auxiliary heterogeneous correspondence data
and homogeneous unlabelled data, HTH generates a set of hash
functions for each modality that can project entities of each me-
dia type onto an individual Hamming space. All of the Hamming
spaces are aligned with a learned translator. In practice, we for-
mulate the above learning procedure as a joint optimization model.
Despite the non-convex nature of the learning objective, we express
it as a difference of two convex functions to enable the application
of the concave-convex procedure (CCCP) [29] iteratively. Then we
employ the stochastic sub-gradient strategy [20] to efficiently find
the local optimum in each CCCP iteration. Finally, we conduct
extensive experiments on two real-world large scale datasets and
demonstrate our proposed method to be both effective and efficient.
The remainder of this paper is organized as follows. We review

the related work in Section 2. In Section 3, we present the formula-
tion and optimization details of the proposed method. Experimental
results and analysis on two real-world datasets are shown in Section
4. Finally, Section 5 concludes the paper.

2. RELATEDWORK
In this section, we briefly review the related work in two cate-

gories. We first introduce the recently developed learning to hash
methods, which is the background of our approach. Then we re-
view several current state-of-the-art hashing methods across het-
erogeneous modalities.

2.1 Learning to Hash
LSH [1, 7] and its variations [6, 10, 11, 17] , as the earliest ex-

ploration of hashing, generate hash functions from random projec-
tions or permutations. Nevertheless, these data-independent hash
functions may not confirm to every application, and hence require
very long hash codes, which increases costs of storage and on-
line query, to achieve acceptable performances. Recently, data-
dependent learning to hash methods attempt to alleviate the prob-
lem via learning hash functions from data. Unsupervised learning
(spectral hashing (SH) [27], self-taught hashing (STH) [31], anchor
graph hashing (AGH) [13]), supervised learning (Boosting [19],
semantic hashing [18], LDAHash [23]) and semi-supervised learn-
ing (semi-supervised hashing [25]) have been explored since then.
These approaches have significantly improved the hashing results
for many specific tasks.

2.2 Hash acorss Heterogeneous Modalities
To the best of our knowledge, only a few research attempts to-

wards multi-modal hashing have been made to speed up similarity
search across different feature spaces or modalities.

Bronstein et al. [4] first explored the cross-modality similar-
ity search problem and proposed cross-modal similarity sensitive
hashing (CMSSH). It embeds multi-modal data into a common
Hamming space. Later, several works [12, 28, 30, 32, 33, 34] were
proposed. Both cross-view hashing (CVH) [12] and inter-media
hashing (IMH) [22] extend spectral hashing to preserve intra-media
and inter-media similarity simultaneously. Nevertheless, CVH en-
ables cross-view similarity search given multi-view data whereas
IMH adds a linear regression term to learn hash functions for effi-
cient code generation of out-of-sample data. Zhen et al. [32] ex-
tended label-regularized max-margin partition (LAMP) [14] to the
multi-modal case. Multimodal latent binary embedding (MLBE)
[33] presents a probabilistic model to learn binary latent factors
which are regarded as hash codes in the common Hamming space.
Parametric local multimodal hashing (PLMH) [30] extends MLBE
and learns a set of local hash functions for each modality. Recently,
Zhu et al. [34] and Wu et al. [28] presented two new techniques
for obtaining hash codes in multi-modal hashing. [34] obtains k-bit
hash codes of a specific data point via thresholding its distances to k
cluster centres while [28] thresholds the learned sparse coefficients
for each modality as binary codes.

All these methods assume that the hashed data reside in a com-
mon Hamming space. However, this may be inappropriate espe-
cially when the modalities are quite different. Relational-aware het-
erogeneous hashing (RaHH) [15] addresses this problem by gener-
ating hash codes with different lengths (one for each modality) to-
gether with a mapping function. Unfortunately, RaHH has to adopt
a fold-in scheme to generate hash codes for out-of-sample data,
which is time-consuming, because it learns codes directly instead
of explicit hash functions. In the next section, we elaborate our
approach to eliminate these restrictions.

3. HETEROGENEOUS TRANSLATED

HASHING
In this section, we present our approach in detail. We first in-

troduce the general framework which consists of an offline training
phase and an online querying phase. After introducing the nota-
tions and problem definitions, we show that HTH can be achieved
by solving a novel optimization problem, and we develop an effec-
tive and efficient algorithm accordingly. The whole algorithm and
the complexity analysis are given at the end of this section.
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Figure 2: The flowchart of the proposed Heterogeneous Translated Hashing framework. The left corresponds to the offline training

of hash functions and the translator, and the right summarizes the process of online querying.

3.1 Overview
We illustrate the HTH framework in Figure 2. HTH involves

two phases: an offline training phase (left) and an online querying
phase (right). For the simplicity of presentation, we focus on two
heterogeneous media types, namely, images and text documents.
Nevertheless, it is straightforward to extend HTH to more general
cases with three or more types of media. During the offline train-
ing phase, HTH learns: 1) the hash functions for each media type
to map the data to their individual Hamming space, which has di-
mensions of the number equalling the code length; and 2) a trans-
lator to align the two Hamming spaces. Since effective hash codes
should simultaneously preserve homogeneous and heterogeneous
media similarity, the correspondence between different domains is
needed. In this work, we use auxiliary tagged images crawled from
Flickr as the “bridge” shown in the central pink bounding box in
Figure 2 which encloses images, documents and their relationships.
Meanwhile, a proportion of queries, e.g., images, are incorporated
to enhance intra-similarity preservation together with auxiliary im-
ages as the left blue bounding box which encloses all images shows.
The same applies to text documents. With hash functions, simi-
lar homogeneous instances of each media type should be hashed
into the same or close bucket in its Hamming space as displayed
in Figure 2. Moreover, hash codes of one media type can be trans-
lated into the other Hamming space so that mutually correlated data
points across different domains are expected to have small Ham-
ming distances.
In the online querying phase, the database, e.g., a pile of text doc-

uments, is pre-encoded into a hash table via applying correspond-
ing learned hash functions. When a new query instance comes, we
first generate its hash codes using the domain specific hash func-
tions. Subsequently, the hash codes are translated to the Hamming
space of the database via the learned translator. Using existing
hardware techniques such as bit operations, we can compute the
Hamming distances between the query and all database instances,
and retrieve its nearest neighbours efficiently.

3.2 Notations and Problem Definition
Suppose we are given a few query data instances X̃q = {x̃i}

N
i=1

and a large database Ỹp = {ỹ j}
M
j=1, where x̃i ∈ R

dq is a dq dimen-

sional feature vector in the query domain and ỹ j ∈ R
dp represents

a dp-dimensional vector in the feature space of the database. In
addition, we are given a set of auxiliary data points from both
modalities and their relationships which are expressed as a triple
set Axy = ∪

N1

i=1
∪

N2

j=1
{x∗i , y

∗
j , si j}, in which si j = 1 indicates that the

instances x∗i and y
∗
j are correlated while si j = 0 otherwise. We con-

Table 1: Definition of Notations

Notation Description Number Set Notation

Input

x̃i ith query instance N X̃q = {x̃i}
N
i=1

ỹ j jth database instance M Ỹp = {ỹ j}
M
j=1

{x∗
i
, y∗

j
, si j}

a triple set of
auxiliary pairs

Nxy = N1 × N2

Axy

= ∪
N1
i=1
∪
N2
j=1
{x∗

i
, y∗

j
, si j}

xi
ith training instance
in query domain

Nx Tx = {xi}
Nx
i=1

y j
jth training instance
in database domain

Ny Ty = {y j}
Ny

j=1

Output

f
q

k
(x)

kth hash function
in query domain

kq F q(x) = { f
q

k
(x)}

kq

k=1

f
p

l
(y)

lth hash function
in database domain

kp F p(y) = { f
p

l
(y)}

kp

l=1

Ckq×kp the kq × kp translator

h
q

k

kth hash code
in query domain

kq Hq = {h
q

k
}
kq

k=1

h
p

l

lth hash code
in database domain

kp Hp = {h
p

l
}
kp

l=1

struct the training set Tx = {xi}
Nx

i=1
of the query domain as follows:

randomly sample n instances from X̃q and select all auxiliary data
points corresponding to the query domain, i.e., Nx = n + N1. Sim-

ilarly, Ty = {y j}
Ny

j=1
with Ny = m + N2. Our goal is to learn two

sets of hash functions and a translator from the training setAxy, Tx

and Ty. The two sets of hash functions, F q(x) = { f
q

k
(x)}

kq

k=1
and

F p(y) = { f
p

l
(y)}

kp

l=1
, project the query and database domain into a
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kq dimensional and a kp dimensional Hamming space respectively.
The translator Ckq×kp aligns the two Hamming spaces in a bitwise
manner. Based on the hashing functions and the translator, we can

generate hash codes Hq = {h
q

k
}
kq

k=1
∈ {−1,+1}N×kq in the query do-

main and Hp = {h
p

l
}
kp

l=1
∈ {−1,+1}M×kp in the database domain and

perform accurate nearest neighbour retrieval across different media
types. For brevity, we summarize these notations in Table 1.

3.3 Learning Hash Functions and Translators
In this section, we introduce the objective function of our pro-

posed HTH integrating both the homogeneous similarity preserva-
tion term and the heterogeneous similarity preservation term.

3.3.1 Homogeneous media similarity preservation

A core criterion to preserve homogeneous media similarity is
that similar data points in the original space should share similar
hash codes within each single media type. To meet this criterion, in
this work we first define the kth (lth) bit hash function of the query
domain (the database domain) f

q

k
(x) ( f

p

l
(y)) as a linear projection

which has been widely adopted in existing related works [22, 31,
32]:

f
q

k
(x) = sgn((w

q

k
)Tx) and f

p

l
(y) = sgn((w

p

l
)Ty), (1)

where sgn(·) is the sign function, and w
q

k
and w

p

l
denote projection

vectors for the kth and lth bit hash codes in the query and database
domain respectively.
In each domain, we can treat each hash function above as a bi-

nary classifier and each bit h
q(i)

k
∈ {−1,+1} of the ith query data

point as a binary class label. The goal is to learn binary classi-
fiers f

q

1
, · · · , f

q

kq
to predict kq labels (bits) h

q

1
, · · · , h

q

kq
for any query

item x. Moreover, we train binary classifiers for all the bits inde-
pendently because different bits h

q

1
, · · · , h

q

kq
should be uncorrelated.

We propose to learn the hash function for the kth bit by solving the
following optimization problem:

Jho

w
q

k

=
1

Nx

Nx
∑

i=1

ℓ((w
q

k
)Txi) + γqΩ(‖w

q

k
‖H ), (2)

where ℓ(·) denotes the loss function on one data point and Ω is a
regularization term about functional norm ‖w

q

k
‖H in Hilbert spaces.

Inspired by the large-margin criterion adopted by Support Vector
Machine (SVM), we define ℓ using the hinge loss function ℓ((w

q

k
)Txi) =

[1 − h
q(i)

k
(w

q

k
)Txi]+, where [a]+ returns a if a >= 0 and 0 other-

wise. Ω is commonly defined as the L2-norm
1
2
‖w

q

k
‖2. Note that

h
q(i)

k
= f

q

k
(xi) = sgn((w

q

k
)Txi), the optimization objective (2) can be

rewritten as:

Jho

w
q

k

=
1

Nx

Nx
∑

i=1

[1 − |(w
q

k
)Txi|]+ +

γq

2
‖w

q

k
‖2 + [

1

Nx

|

Nx
∑

i=1

(w
q

k
)Txi| − δ]+,

(3)
where γq is a balancing parameter controlling the impact of the
regularization, and the last term is to avoid a trivially optimal solu-
tion which assigns all Nx data points to the same bit. Without the
last constraint, the data points may be classified into the same side
with large |(w

q

k
)Txi| value so that [1 − |(w

q

k
)Txi|]+ equals to 0 for all

Nx data points which is meaningless in hashing. Thus we enforce
−δ ≤ 1

Nx
|
∑Nx

i=1
(w

q

k
)Txi| ≤ δ with a pre-defined constant δ.

Similarly, we can learn the hash functions for the database do-
main by minimizing the following objective function:

Jho

w
p

l

=
1

Ny

Ny
∑

j=1

[1 − |(w
p

l
)Ty j|]+ +

γp

2
‖w

p

l
‖2 + [

1

Ny

|

Ny
∑

j=1

(w
p

l
)Ty j| − δ]+,

(4)

where γp controls the impact of regularization. To learn hash func-
tions from both query and database domains that preserve the ho-
mogeneous similarity, we combine (3) and (4) and derive the fol-
lowing objective function:

Jho(Wq,Wp)

=

kq
∑

k=1















1

Nx

Nx
∑

i=1

[1 − |(w
q

k
)Txi|]+ + [

1

Nx

|

Nx
∑

i=1

(w
q

k
)Txi| − δ]+















+

kp
∑

l=1



















1

Ny

Ny
∑

j=1

[1 − |(w
p

l
)Ty j|]+ + [

1

Ny

|

Ny
∑

j=1

(w
p

l
)Ty j| − δ]+



















+
γq

2
‖Wq‖2F +

γp

2
‖Wp‖2F , (5)

where Wq = {w
q

1
, · · · ,w

q

kq
}, Wp = {w

p

1
, · · · ,w

p

kp
} and ‖ · ‖2F denotes

the Frobenius norm.

3.3.2 Heterogeneous media similarity preservation

In the last subsection, we learn the hash codes that can preserve
homogeneous media similarity for each media type. For the sake
of flexibility and discrimination between two modalities, we adopt
hash codes with different numbers of bits for different domains.
To perform similarity search across different Hamming spaces, in
this subsection, we introduce a translator Ckq×kp to map the hash
codes from a kq-dimensional Hamming space to a kp-dimensional
Hamming space or vice versa. We also show that C can be learned
from auxiliary heterogeneous pairsAxy = ∪

N1

i=1
∪

N2

j=1
{x∗i , y

∗
j , si j}.

A good translator should have the following three properties: 1)
semantically related points across different domains should have
similar hash codes after translation; 2) semantically uncorrelated
points across different domains should be far away from each other
in the translated Hamming space; 3) it should have good gener-
alization power. To obtain such a good translator, we propose to
minimize the following heterogeneous loss function:

Jhe =

Nxy
∑

i, j

[si jd
2
i j + (1 − si j)τ(di j)] +

γC

2
‖C‖2F , (6)

where di j =
∑kp

l=1
[
∑kq

k=1
Ckl(w

q

k
)Tx∗i − (w

p

l
)Ty∗j]

2 represents the dis-
tance in the Hamming space of the database between the ith trans-
lated hash code from the query domain and the jth code string from
the database domain. τ(·) is the SCISD [16] function specified by
two parameters a and λ:

τ(di j) =



























− 1
2
d2i j +

aλ2

2
if 0 ≤ |di j| ≤ λ

d2
i j
−2aλ|di j |+a

2λ2

2
if λ < |di j| ≤ aλ

0 if |di j| > aλ

. (7)

Note that if two data points are semantically similar, that is, si j = 1,
we require that they have small di j; if they are semantically dissim-
ilar, we require that they have small SCISD value which implies
that they are far apart in the Hamming space.

3.3.3 Overall optimization problem

Combining the objective functions introduced in the previous
two subsections, the overall optimization problem of HTH can be
written as follows:

min
Wq ,Wp ,C

Jho + βJhe (8)

where β is a trade-off parameter between homogeneous and hetero-
geneous loss functions.
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3.4 Optimization
Problem (8) is non-trivial to solve because it is discrete and non-

convex w.r.t.Wq,Wp and C. In the following, we develop an alter-
nating algorithm to solve this problem which converges to a local
minimum very quickly.
We first describe how to learn the projection vectorw

q

k
for the kth

bit while fixing other variables. Note that projection vectors for dif-
ferent bits can be learned independently using the same algorithm.
The objective function w.r.t. w

q

k
is:

Jw
q

k
=

1

Nx

Nx
∑

i=1

[1 − |(w
q

k
)Txi|]+ + [

1

Nx

|

Nx
∑

i=1

(w
q

k
)Txi| − δ]+

+β

Nxy
∑

i, j

[si jd
2
i j + (1 − si j)τ(di j)] +

γq

2
‖w

q

k
‖2. (9)

Although (9) is not convex, it can be expressed as the differences
of two convex functions, and hence can be minimized efficiently
using constrained concave-convex-procedure (CCCP) [29].
We briefly introduce the idea of CCCP here. Given an optimiza-

tion problem in the form of minx f (x) − g(x) where f and g are
real-valued convex functions, the key idea of CCCP is to iteratively
evaluate an upper bound of the objective function by replacing g

with its first-order Taylor expansion around the current solution, xt,
i.e., R(g(xt)) = g(xt)+∂xg(xt)(x−xt). Then the relaxed sub-problem
f (x)−R(g(xt)) is in convex form and can be solved by off-the-shelf
convex solvers. The solution sequence {xt} obtained by CCCP is
guaranteed to reach a local optimum.
Specifically, the upper bound of (9) in the tth CCCP iteration is:

J
(t)

w
q

k

= (10)

1

Nx

Nx
∑

i=1

[ f1(w
q

k
) − R(g1(w

q(t)

k
))] + [

1

Nx

|

Nx
∑

i=1

(w
q

k
)Txi| − δ]+

+ β

Nxy
∑

i, j

si jd
2
i j + β

Nxy
∑

i, j

(1 − si j)[τ1(di j) − R(τ2(d
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The Taylor expansion of g1(·) and τ2(·) around the value ofw
q

k
in the

tth iteration are R(g1(w
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k
)) = |(w
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Note that
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[
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q(t)

k
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l
)Ty∗j]

2. (12)

However, minimizing (10) is time-consuming if the data dimen-
sionality is high. As a result, we employ Pegasos [21] which is
a sub-gradient based solver and reported to be one of the fastest
gradient-based solvers, to solve the problem. In each Pegasos iter-
ation, the key step is to evaluate the sub-gradient of J (t)

w
q

k

w.r.t. w
q

k

from l1 random homogeneous data points and l2 random heteroge-
neous pairs:

Algorithm 1 Heterogeneous Translated Hashing (HTH)

Input:

Tx = {xi}
Nx

i=1
– query training set

Ty = {y j}
Ny

j=1
– database training set

Axy = ∪
N1

i=1
∪

N2

j=1
{x∗i , y

∗
j , si j} – auxiliary heterogeneous data

β, γq, γp, γC – regularization parameters
δ – partition balance parameter
a, λ – SCISD function parameter
kq; kp – length of hash codes

Output:

Wq,Wp, C
1: Initialize Wq, Wp with CVH and C = I;
2: while Wq,Wp and C are not converged do
3: FixWp and C, optimizeWq:
4: for k = 1 · · · kq do
5: for t = 1 · · · tmax do
6: w

q(t+1)

k
= argminJ (t)

w
q

k

;

7: end for

8: end for

9: FixWq and C, optimizeWp

10: for k = 1 · · · kp do
11: for t = 1 · · · tmax do
12: w

p(t+1)

l
= argminJ (t)

w
p

l

;

13: end for

14: end for

15: FixWq andWp, optimize C:
16: for t = 1 · · · tmax do
17: solve C(t+1) = argminJ (t)

C
;

18: end for

19: end while
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Similarly, the objective function and sub-gradient w.r.t. w
p

l
at the

tth CCCP iteration are :
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Note that both
∂d

(t)
i j

w
p

l

and
∂τ1(di j)

w
p

l

can easily be derived and we omit

them here due to space limitations.
To update the translator C, we also use CCCP. The objective

function and sub-gradient w.r.t. every element Ckl in the tth CCCP
iteration:
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The overall procedure of the HTHmethod, alternating learningWq,
Wp and the translator C with CCCP and Pegasos, is presented in
Algorithm 1.

3.5 Complexity Analysis
The computational cost of the proposed algorithm comprises three

parts: updatingWq,Wp andC. Hence, the total time complexity of
training HTH is O(kqdq(l1+ l3)+ kpdp(l2+ l3)+ l3kpkq) where l1 and
l2 are the numbers of stochastically selected training data points in
the query domain and database domain by the Pegasos solver. l3
is the number of randomly sampled auxiliary data pairs from Nxy

auxiliary heterogeneous co-occurrence data pairs. Clearly, the time
complexity for our algorithm scales linearly with the number of
training data points and quadratic with the length of hash codes.
In practice, the code length is short, otherwise, the technique of
“hashing” will be meaningless. Hence our algorithm is very com-
putationally efficient.
During the online query phase, given a query instance x̃i ∈ X̃q,

we apply our learned hash functions for the query domain to it by
performing two dot-product operations,H

q

i
= xi·W

q and translation

H
q

i
· C, which are quite efficient. The translated query hash codes

are then compared with the hash codes of the database by quick
XOR and bit count operations. These operations enjoy the sub-
linear time-complexity w.r.t. the database size.

4. EXPERIMENTS
In this section, we evaluate the performance of HTH on two real

world datasets and compare it with the state-of-the-art multi-modal
hashing algorithms.

4.1 Experimental Settings

4.1.1 Datasets

In this work, we use two real world datasets, NUS-WIDE1 and
MIRFLICKR-Yahoo Answers.

NUS-WIDE is a Flickr dataset containing 269,648 tagged im-
ages [5]. The annotation for 81 semantic concepts is provided for
evaluation. We prune this dataset via keeping the image-tag pairs
that belong to the ten largest concepts. For image features, 500
dimensional SIFT vectors are used. On the other side, a group of
tags for an image composes a single text document. For each text
document, we use the probability distribution of 100 Latent Dirich-
let Allocation (LDA) [3] topics as the feature vector. Therefore,
NUS-WIDE is a multi-view dataset. Each data instance has an im-
age view and a text view. When searching images using text query
or searching text documents using image query, the groundtruth is
derived by checking whether an image and a text document share
at least one of the ten selected largest concepts.

MIRFLICKR-Yahoo Answers is a heterogeneous media dataset
consisting of images from MIRFLICKR-25000 [9] and QAs from
Yahoo Answers. MIRFLICKR-25000 is another Flickr collection
consisting of 25,000 images. We utilize 5,018 tags provided by
NUS-WIDE to filter irrelevant pictures in MIRFLICKR-25000 by
cross-checking tags of each image with these 5,018 tags. The 500
dimensional sift feature vector is also applied. Yahoo Answers are
crawled from a public API of Yahoo Query Language (YQL)2. The
5,018 tags are taken as keywords to search relevant QAs on Yahoo
Answers. For each keyword, we extract top 100 results returned
by YQL. Finally, we obtain a pool of about 300,000 QAs, each of
which is regarded as a text document in the experiment. Each QA
is represented in a 100 dimensional LDA based feature vector. For
the task using image query to retrieve QAs in the database, those
QAs which share at least two words with tags corresponding to the
image query (images in MIRFLICKR-25000 are also tagged) are
labelled as the groundtruth. The groundtruth for the task using QA
as query to retrieve the image database is obtained similarly. More
importantly, we randomly select a number of multi-view instances,
e.g., 2,000, in the NUS-WIDE dataset as the “bridge”. As a result,
we obtain 2, 0002 = 4 × 106 auxiliary heterogeneous pairs.

4.1.2 Baselines

We compare our method with the following four baseline algo-
rithms.

Cross-modality similarity-sensitive hashing (CMSSH) [4], to
the best of our knowledge, is the first approach that tackles hash-
ing across multimodal data. CMSSH uses Adaboost to construct a
group of hash functions sequentially for each modality while only
preserving inter-modality similarity.

Cross-view hashing (CVH) [12] extends spectral hashing to the
multi-view case via a CCA (canonical correlation analysis) alike

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2http://developer.yahoo.com/yql/
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(a) kq = kp = 8
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(b) kq = kp = 16
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(c) kq = kp = 24
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(d) kq = kp = 8
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(e) kq = kp = 16
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(f) kq = kp = 24

Figure 3: Precision-recall curves on NUS-WIDE dataset.

procedure. In our implementation, CVH learns two hash functions
which can directly be applied to out-of-sample data.
Co-regularized hashing (CRH) [32] proposes a boosted co-

regularization framework to learn two sets of hash functions for
both the query and database domain.
Relation-aware heterogeneous hashing (RaHH) [15] adopts

uneven bits for different modalities and a mapping function be-
tween them. During testing we add no heterogeneous relationship
between queries and the database in our setting. In [15], however,
they used the explicit relationship and attained higher accuracies.

4.1.3 Evaluation metric

In this paper, Mean Average Precision (MAP), precision and re-
call are adopted as our evaluation metrics of effectiveness.
MAP stands out among performance measures in virtue of its

competitive stability and discrimination. To compute MAP, Aver-
age Precision (AP) of top R retrieved documents for a single query
is first calculated. AP = 1

L

∑R
r=1 P(r)δ(r) where L is the number

of groundtruth in the R retrieved set, P(r) indicates the precision
of top-r retrieved documents and δ(r) = 1 denotes whether the rth
retrieved document is a true neighbour otherwise δ(r) = 0. MAP is
then averaged over all queries’ APs. The larger the MAP score, the
better the retrieval performance. In our experiments, we set R= 50.
The precision and recall scores reported in this paper are averaged
over all queries. The larger the area under the curves, the better the
achieved performance.

4.2 Results on NUS-WIDE Dataset
We perform two kinds of tasks on the NUS-WIDE dataset: 1)

retrieving text documents by using images as queries; 2) retrieving
images by using text documents as queries. In either task, we ran-
domly select 3002 = 90, 000 image-tag pairs from the NUS-WIDE
dataset to be our training pairs. For the task of retrieving texts by
image queries (retrieving images by text queries), we select 2,000
images (text documents) as queries and 10,000 text documents (im-

Table 2: MAP comparison on NUS-WIDE.

Task Algorithm
Code Length (kq = kp)

8 16 24 32

Image→Text

CVH 0.4210 0.4085 0.4066 0.4112
CMSSH 0.4447 0.4209 0.4109 0.4123
CRH 0.4645 0.5003 0.5255 0.3207
RaHH 0.4120 0.4122 0.4098 0.4182
HTH 0.5013 0.5357 0.5362 0.5151

Text→Image

CVH 0.4483 0.4323 0.4296 0.4361
CMSSH 0.4779 0.4485 0.4378 0.4373
CRH 0.4986 0.5327 0.5774 0.3378
RaHH 0.4595 0.4396 0.4351 0.4315
HTH 0.5398 0.5688 0.5508 0.5525

ages) to be the database. We perform our experiment on four such
randomly sampled datasets and the average MAP results for all the
compared algorithms are reported in Table 2. To be comparable

(a) (b)

Figure 4: Study of parameter sensitivity on NUS-WIDE

dataset. Parameter settings in our experiments are labelled in

red dots and correspond to the best performances.

with CVH, CMSSH and CRH, HTH adopts the same code length
for different domains. From Table 2, we have the following obser-
vation. HTH outperforms all state-of-the-art methods in almost all
settings at most 30%.
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(a) kq = kp = 8
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(b) kq = kp = 16
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(c) kq = kp = 24
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(d) kq = kp = 8
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(e) kq = kp = 16
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(f) kq = kp = 24

Figure 5: Precision-recall curves on MIRFLICKR-Yahoo Answer dataset.

The precision-recall curves for 8, 16 and 24 bits are plotted in
Figure 3. The superior performance of HTH in precision-recall
curves agrees with the results of MAP in Table 2.
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(a) Training time

8 16 24 32
0

0.01

0.02

0.03

0.04

0.05

Code length

T
e
s
t 

ti
m

e

 

 

RaHH

HTH

(b) Test time

Figure 6: Time cost of training and testing on NUS-WIDE

dataset with different code lengths. The time is measured in

seconds. Y-axis in (a) is the natural logarithm of training time.

We also study the effect of different parameter settings on the
performance of HTH. We fix the code lengths of both modalities
to be 16. There are four trade-off parameters, β, γq, γp and γC
as shown in objective function (8). We perform grid search on β
and γC in the range of {10−6,10−3,100,103,106} by fixing γq and
γp. HTH gains the best MAP at β = 1, 000, γC = 1 as Figure 4(a)
shows. When fixing the β and γC , grid search of γq and γp in the
range of {10−4,10−2,100,102,104} shows that γq = γp = 0.01 per-
forms the best. We adopt γC = 1, β = 1, 000, γq = 0.01, γp = 0.01
in our experiments.
The time costs of HTH and other baselines are shown in Figure 6

as the code length changes. Since the training complexity of HTH
is quadratic with respect to the code length, it takes more training
time when the codes are longer. However, hashing with less bits is
expected, thereby HTH is practical. In online querying phase, since
CVH, CMSSH and CRH have the same time complexity as HTH,
we only compare HTH with RaHH. The average query search time
of HTH is much less than RaHH because RaHH does not learn

explicit hash functions and has to adopt the fold-in scheme for out-
of-sample data.

4.3 Results on MIRFLICKR-Yahoo Answers
Dataset

We also report the results of the two tasks (using images to search
text documents and using text documents to search images) on the
MIRFLICKR-Yahoo Answers dataset which contains a larger num-
ber of images and text documents.

In this experiment, Nxy = 2, 0002 = 4×106 image-tags pairs from
NUS-WIDE dataset, 500 randomly selected images fromMIRFLIC
-KR as well as 500 sampled QAs from Yahoo Answers are chosen
for training. In this case, these image-tag pairs from NUS-WIDE
serve as the auxiliary bridge while queries and the database have no
direct correspondence since MIRFLICKR images and Yahoo An-
swers are obtained independently.

Table 3: MAP comparison on MIRFLICKR-Yahoo Answers.

Task Algorithm
Code Length(kq = kp)

8 16 24 32

Image→QA

CVH 0.1331 0.1443 0.1460 0.1506
CMSSH 0.1373 0.1268 0.1210 0.1295
CRH 0.0979 0.1419 0.1317 0.1216
RaHH 0.1346 0.1437 0.1474 0.1275
HTH 0.1577 0.1738 0.1824 0.1617

QA→Image

CVH 0.1515 0.1758 0.1694 0.1721
CMSSH 0.1735 0.1483 0.1518 0.1544
CRH 0.1048 0.2234 0.1793 0.1862
RaHH 0.1669 0.1731 0.1686 0.1452
HTH 0.1785 0.2460 0.2055 0.2324

To apply CVH, CMSSH, CRH to this dataset, we simply train
hash functions for images and texts using the image-tag pairs from
NUS-WIDE and generate hash codes of images fromMIRFLICKR
and QAs from Yahoo Answers by directly applying corresponding
hash functions. For RaHH, in the training phase, the data is the
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same as those used in CVH, CMSSH and CRH. In the testing phase,
we do not add any relationships between queries and database enti-
ties when applying the fold-in algorithm to generate hash codes for
out-of-sample data. For HTH, we train the hash functions with the
auxiliary heterogeneous pairs and unlabelled homogeneous data. In
the testing phase, it is easy to apply the learned hash functions to
out-of-sample data without any correspondence information.

Table 4: MAP of RaHH and HTH onMIRFLICKR-Yahoo An-

swer with different combinational code length.
❍
❍
❍

❍❍
kq

kp 8 16 24 32
RaHH HTH RaHH HTH RaHH HTH RaHH HTH

8 0.1346 0.1577 0.1315 0.1410 0.1442 0.1583 0.1366 0.1725

16 0.1346 0.1525 0.1437 0.1738 0.1545 0.1894 0.1274 0.1638

24 0.1346 0.1692 0.1437 0.1736 0.1474 0.1824 0.1378 0.1625

32 0.1346 0.1761 0.1437 0.1626 0.1474 0.1701 0.1275 0.1617

The MAP results are summarized in Table 3 with various code
length settings. It shows that HTH outperforms all the other al-
gorithms under all settings. This demonstrates that HTH shows
more superiority in situations where queries and the database do
not interrelate. Similarly, the precision-recall curves are plotted in
Figure 5.

Figure 7: The influence of varying Nxy, the number of auxiliary

heterogeneous pairs, and n, the number of added unlabelled

images/QAs, on MAP performance.

More importantly, our proposed HTHmethod adopts uneven bits
for different modalities so that it discriminates between the query
and database domain flexibly. In Table 4, we compare HTH with
RaHH, which also supports different code lengths. The row repre-
sents code length of images while the column is for that of QAs.
HTH and RaHH both attain the best MAP results at kq = 16 and
kp = 24. This code length combination is regarded as the best
trade-off between effective translator learning and original infor-
mation preservation. Moreover, images require less bits to achieve
comparable performance compared to QAs because instances in
text domain are more dispersed so that more bits are called for en-
coding all the instances.
The influence of Nxy, the number of auxiliary heterogeneous

training pairs, and n, the number of added unlabelled images/QAs,
onMAP performance is investigated in Figure 7. Reasonably, larger
n and Nxy result in better MAP performance. In practice, we choose
Nxy = 4×106 and n = 500, which is competitive with Nxy = 4×106

and n = 2, 000, to be more efficient during training.
The time costs of HTH on MIRFLICKR-Yahoo Answers dataset

is also reported in Figure 8. The results are similar to Figure 6
except that HTH is more efficient by contrast. This demonstrates
that HTH is less sensitive to the size of the training data, which can
be further proved in Figure 9. CVH and CMSSH rely on eigen-
decomposition operations which are efficient especially when the
dimensions of the dataset are comparatively low. However, they
do not consider homogeneous similarity or the regularization of pa
rameters, thus resulting in less accurate out-of-sample testing per-
formance. Although HTH takes more training time than CRH and
RaHH when the number of auxiliary heterogeneous pairs, Nxy, is
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Figure 8: Time cost of training and testing on MIRFLICKR-

Yahoo Answers dataset with code lengths. The time is mea-

sured in seconds. Y-axis in (a) is the natural logarithm of train-

ing time.

small, it shows more efficiency compared with CRH and RaHH as
Nxy increases. Therefore, HTH has good scalability and can be ap-
plied to large-scale datasets. Note that we do not report results of
CMSSH when Nxy = 2.5 × 107, 108 since the algorithm has “out-
of-memory” at these scales.
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Figure 9: Scalability of training on MIRFLICKR-Yahoo An-

swers dataset as the number of auxiliary heterogeneous pairs,

Nxy, increases. The time is measured in seconds. X-axis is in

logarithmic scale. Y-axis is the natural logarithm of training

time.

What is the best field guide to the night sky?

How do I eliminate white sky when photographing?

How do i get sky plus box for free or cheap if you are

already a sky user?

What is the average length of a 2 night hiking trip?

Which color gloves is suitable for summer to avoid

the direct sunrays in the hand during bike riding?

What delicious and easiest dishes can a 14 yr old 

make for Christmas?

How long does it take for a tree to die after you cut it 

down for christmas?

Why do conservatives think liberals are in love with 

unions?

Can I make a pie in a glass dish?

what kind of shrub would be good to plant in front of 

my house and that doesn't grow very big?

HTH

CVH
March China Xian

Night Street Tree

Light Rain Bicycle

Figure 10: Given a picture in the MIRFLICKR dataset as

query, we retrieve top-5 nearest questions from the Yahoo An-

swers dataset by HTH and CVH. Whether there exist corre-

sponding keywords in a retrieved question to the labels of the

picture indicates the relevance of this question to the picture.

We finally provide a similarity search example in Figure 10 to vi-
sually show the effectiveness of HTH. Given an image from MIR-
FLICKR, we compare the relevance of top-5 nearest questions to
the image by HTH and CVH3. The retrieved questions via HTH are
more relevant to this picture as shown in Figure 10.

3For space limitation, we only compare with CVH.
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5. CONCLUSIONS
In this paper, we propose a novel heterogeneous translated hash-

ing (HTH) model to perform similarity search across heteroge-
neous media. In particular, by leveraging auxiliary heterogeneous
relationship on the web as well as massive unlabelled instances in
each modality, HTH learns a set of hash functions to project in-
stances of each modality to an individual Hamming space and a
translator aligning these Hamming spaces. Extensive experimen-
tal results demonstrate the superiority of HTH over state-of-the-art
multi-modal hashing methods. In the future, we plan to apply HTH
to other modalities from social media and mobile computing, and
to devise a more appropriate scheme to translate between different
Hamming spaces, thereby further improving HTH.
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