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ABSTRACT

For document scoring, although learning to rank and domain adap-

tation are treated as two different problems in previous works, we
discover that they actually share the same challenge of adapting
keyword contribution across different queries or domains. In this
paper, we propose to study the cross-task document scoring prob-
lem, where a task refers to a query to rank or a domain to adapt
to, as the first attempt to unify these two problems. Existing solu-
tions for learning to rank and domain adaptation either leave the
heavy burden of adapting keyword contribution to feature designers,
or are difficult to be generalized. To resolve such limitations, we
abstract the keyword scoring principle, pointing out that the contri-
bution of a keyword essentially depends on, first, its importance to
a task and, second, its importance to the document. For determin-
ing these two aspects of keyword importance, we further propose
the concept of feature decoupling, suggesting using two types of
easy-to-design features: meta-features and intra-features. Towards
learning a scorer based on the decoupled features, we require that
our framework fulfill inferred sparsity to eliminate the interference
of noisy keywords, and employ distant supervision to tackle the
lack of keyword labels. We propose the Tree-structured Boltzman-

n Machine (T-RBM), a novel two-stage Markov Network, as our
solution. Experiments on three different applications confirm the
effectiveness of T-RBM, which achieves significant improvement
compared with four state-of-the-art baseline methods.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval models; I.2.7
[Natural Language Processing]: Text analysis
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1. INTRODUCTION
With much information in the world represented by unstructured

text, many applications study how to develop document scorers,
which can analyze the content of a document and determine its
relevance for some information need, e.g., text categorization [8],
document retrieval [5]. Since manually crafting scorers is difficult,
people are interested in how to automatically learn such scorers
from labeled documents.

Scorer learning techniques have been actively studied for years –
unlike early applications which usually deal with only one topic (e.g.,
judging if a document is about “finance” [8]), with the prevalence of
the Web serving the whole world of users and connecting numerous
sources of data, most applications nowadays must handle various
user needs, i.e., queries, and diverse sources, i.e., domains.

First, in terms of queries, many applications aim at ranking doc-
uments for queries that represent users’ information needs, i.e.,
realizing learning to rank. Unlike traditional IR which deals with
short queries, learning to rank applications nowadays have to handle
more sophisticated queries:
Application 1: Verbose-Query-based Retrieval [11, 2], which ad-
dresses verbose queries that consist of one or more long sentences. It
is more challenging than traditional IR, because long queries usually
contain extraneous terms which might hinder retrieval of relevant
documents.
Application 2: Entity-Centric Document Filtering [22], which stud-
ies, given an entity (e.g., a person) characterized by an identification
page (e.g., her Wikipedia page) as a query, how to identify docu-
ments relevant to the entity. Since an identification page is usually
long and noisy, the solution has to identify keywords that represent
the characteristics of the entity (e.g., “microsoft” for entity “Bill
Gates”) for better retrieval accuracy.

Second, in terms of domains, traditional scorer learning tech-
niques work well only when the training and testing documents use
similar distributions of keywords, i.e., documents are from the same
domain. Due to the expensive cost of labeling, we expect to learn
a document scorer that could be adapted across different domains,
i.e., realizing domain adaptation, for example:
Application 3: Cross-Domain Sentiment Analysis [4], which studies
how to adapt a sentiment scorer across different domains of reviews.
It is challenging because people tend to use different sentiment
keywords in different domains, e.g., “boring” in book reviews, and
“leaking” in kitchen appliance reviews instead.

We observe that, although learning to rank and domain adaptation
seem distinct from each other, both of them have to handle the
varying importance of each keyword in different queries/domains (in
this paper, we do not consider other properties which are orthogonal
to the keyword content, e.g., pagerank, although they can be easily
incorporated as well). For example, in entity-centric document
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filtering, keyword “Microsoft” is important for query “Bill Gates,”
but not for “Michael Jordan;” in sentiment analysis, as mentioned
earlier, different domains would use different keywords to represent
the same sentiment. Therefore, as the common challenge for these
two types of applications, both of them have to consider how to
bridge keywords across different queries or domains.
Problem – Cross-Task Document Scoring. As the first contribu-

tion of this paper, observing such a common challenge, we propose
to study a general cross-task document scoring problem, which, as
far as we know, is the first attempt to unify learning to rank and
domain adaptation. Formally, cross-task document scoring aims
at learning a scorer F(d, t) to predict the relevance of document
d for task t, where the notion of “task” represents the scoring of
documents for one query in one domain. In the training phase,
we are given some documents labeled for some tasks t (e.g., some
queries) to learn F(d, t); in the testing phase, as highlighted by
“cross-task,” F(d, t) should be capable of handling new tasks t′

(e.g., new queries) which do not appear in the labeled data.
Challenge – Learning to Adapt Keyword Contribution. As our
second contribution, we identify the core challenge of cross-task
document scoring as learning to adapt keyword contribution across
tasks. Formally, if we use Contrib(w, d, t) to denote the contri-
bution of keyword w for document d with respect to task t, the
relevance of document d is essentially the accumulation of its key-
words’ contribution Contrib(w, d, t). Therefore, the challenge of
learning F(d, t) lies in how to determine keyword contribution
Contrib(w, d, t) for tasks that do not appear in the training data, i.e.,
learning to adapt keyword contribution.

Learning to adapt keyword contribution is critical for enabling
cross-task scoring; however, traditional learning to rank frameworks
(e.g., RankSVM [10]) simply circumvent the problem. To learn
a scorer, such frameworks adopt an ensembling idea to combine
a set of manually crafted sub-scorers fk(d, t) as features, e.g., in
document retrieval [5, 14], fk(d, t) could be BM25, language mod-
el. These learning to rank frameworks are feasible for traditional
document retrieval, as there exist many readily studied scorers that
could be used as features; however, for newly proposed applications,
such scorers are seldom available, and we need laborious feature
engineering in order to adopt these frameworks.
Insight – Keyword Scoring Principle. As our third contribution,
towards learning to adapt keyword contribution, we propose our key
insight:
Keyword Scoring Principle – the importance of keyword w for doc-

ument d with respect to task t, i.e., Contrib(w, d, t), depends on:

1. the importance of keyword w for task t; 2. the importance of

keyword w for document d.

Although such a principle is not abstracted before, it is intuitive
and implicitly followed in the previous design of manually crafted
scorers. Take BM25 as example: in terms of the first aspect, BM25
assumes that keywords with high inverse document frequency (i.e.,
high IDF) are more important for the query; in terms of the sec-
ond aspect, BM25 assumes that keywords mentioned a lot in the
document (i.e., high TF) should have higher contribution.
Abstract – Feature Decoupling. As our fourth contribution, to ful-
fill our goal of learning Contrib(w, d, t) based on the principle, we
propose the idea of feature decoupling, which suggests “decoupling”
the original scorer-as-feature design in traditional learning to rank
frameworks into two types of more elementary features:

To determine “the importance of keyword w for task t,” we de-

sign meta-features, denoted by f
(M)
k (w, t), to represent task-related

keyword properties. In learning to rank, some recent works [1, 11,
3, 22] adopt such an idea, e.g., using meta-features such as keyword
position to identify important keywords from queries. In domain

adaptation, Blitzer et al. [4] propose a model to use keyword cor-
relation to bridge keywords from different domains. We can use
meta-features to realize the same insight, which will be discussed in
details in Section 3.4.

To determine “the importance of keyword w for document d,”

we propose the concept of intra-features, denoted by f
(I)
k (w, d), to

characterize how keyword w occurs in document d. The motivation
is that, besides simply counting keywords as most applications
do, we can characterize the keyword occurrence more generally
and systematically for higher prediction accuracy. For example,
keywords that appear in the title, anchor text or URL usually have
larger contribution to the relevance.

Given such a decoupled feature design, we have to appropriately

“re-couple” f
(M)
k (w, t) and f

(I)
k (w, d) to determine Contrib(w, d, t),

and F(d, t) finally takes the following abstraction:

F(d, t) : 〈f
(M)
1 (w, t), ...; f

(I)
1 (w, d), ...〉 → R (1)

To the best of our knowledge, such a learning framework, which
aims at learning a scorer upon two types of elementary features, has
not been studied before (previous works [1, 11, 3, 22] which have
the concept of meta-features do not model intra-features).

Towards learning keyword contribution based on decoupled fea-
tures, our framework has to fulfill two requirements:
Requirement 1: Inferred Sparsity. Unlike traditional learning to
rank frameworks [5, 14] which do not model the concept of key-
words, our scorer should be aware of the potential interference from
noisy keywords. For example, both verbose-query-based retrieval
and entity-centric document filtering focus on long queries, in which
many keywords are unrelated to user intent or target entities; in sen-
timent analysis, a review usually contains many keywords that are
irrelevant to sentiment. Even if we assign such keywords with s-
mall contribution, their values, once accumulated, will still severely
affect the document score.

Therefore, in order to filter noisy keywords, we require that the
keyword contribution function Contrib(w, d, t) be sparse, which
only outputs non-zero values for important keywords. Different
from traditional sparse learning [20] which aims at learning sparse
feature weightings to enforce feature sparsity, our goal is to sparsify

the inferred value of a function, i.e., achieving inferred sparsity

(their difference will be further discussed in Section 4.1).
Requirement 2: Distant Supervision. Toward realizing learning
to score keywords, another challenge arises from the lack of the
keyword labels. In most applications, we are only provided with
document labels, and it is impractical to request manual keyword
labels for learning Contrib(w, d, t). Therefore, we require that the
scorer should fulfill distant supervision, by only using document
labels to “distantly” guide the adaptation of keyword contribution.
Solution – Tree-Structured Restricted Boltzmann Machine. As
our fifth contribution, to fulfill these two requirements, we propose
a novel Tree-structured Restricted Boltzmann Machine (T-RBM)
model for the cross-task document scoring problem.

First, to achieve inferred sparsity, the model needs a scoring
scheme which can eliminate the contribution of noisy keywords. We
develop a two-stage procedure: in the first stage, we learn a classifier
to discretize the importance of keywords into different levels based
on their meta-features, and regularize the classifier to enforce the
elimination of noisy keywords; in the second stage, we determine
the contribution of important keywords by their intra-features and
set the contribution of unimportant ones to be zero.

Second, to achieve distant supervision, we propose to join the
two stages in one model. Specifically, we take advantage of Markov
Network to connect keyword importance and document relevance,
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such that we can use document labels to directly supervise the
learning of the keyword classifier.

Based on these ideas, we design T-RBM, which, as a variant of
Restricted Boltzmann Machine [19] (one type of bipartite Markov
Network), models each document as a tree graph with the root
node representing a document and the leaf nodes representing its
keywords. Free of loop structures, T-RBM could be efficiently
trained by exact belief propagation [17].

In the experiments, we performed our evaluation on verbose-
query-based retrieval, entity-centric document filtering and cross-
domain sentiment analysis in three different datasets. By comparing
T-RBM with four state-of-the-art baselines, we observed that our
framework not only provides a conceptually unified modeling but
also significantly improves the results on different applications.

2. RELATED WORK
In terms of abstraction, learning to rank and domain adaptation

are separately abstracted and studied in previous works, e.g., doc-
ument retrieval [5, 1, 11, 3], entity-centric document filtering [22],
cross-domain sentiment analysis [4]. Inspired by their works, we
identify their common challenge and propose a novel framework to
unify these two problems for achieving a more general solution.

In terms of challenge, cross-task document scoring boils down to
learning to adapt keyword contribution across different tasks.
1. For learning to rank, most previous works [5, 14] simply cir-
cumvent the challenge, leaving the burden of determining keyword
contribution to feature designers. Some of the recent works [1, 11,
3, 22] start to confront the challenge by modeling keyword-level
features, i.e., meta-features, to learn keyword contribution; howev-
er, none of them explicitly model intra-features, failing to capture
different kinds of keyword occurrences in the document.
2. For domain adaptation, Blitzer et al. [4] propose structural
correspondence learning (SCL) to bridge keywords from different
domains. The intuition is that, given two domain-specific keywords
(e.g., “boring” from book reviews and “leaking” from kitchen appli-
ance reviews), if both of them co-occur a lot with some pivot key-
words (i.e., keywords like “bad,” “worst” which are commonly used
in all domains), these two keywords should share similar sentiment
(e.g., both “boring” and “leaking” represent negative sentiment). To
realize such an insight, SCL learns a set of pivot predictors, each of
which predicts the occurrence of one pivot keyword based on other
domains-specific keywords, to relate different domains. Li et al.

[13] and Pan et al. [16] follow the same intuition but use different
approaches such as feature alignment [16] and matrix decomposition
[13]. Different from these approaches which “hardcode” the logic
of keyword adaptation in the model design, our feature decoupling
idea allows designers to conveniently incorporate different ways of
keyword adaptation by meta-features.

In terms of technique, we propose T-RBM, a novel two-stage
Markov Network taking the decoupled features as input and fulfilling
the requirements of inferred sparsity and distant supervision.
1. With respect to inferred sparsity, unlike sparse learning [20]
which learns sparse parameters as feature weightings, we aim at
sparsifying the inferred value of the keyword contribution function.
Existing meta-feature-based solutions have different limitations in
fulfilling this requirement. The solutions proposed by Lease et

al. [11], Bendersky et al. [3] and Zhou et al. [22] do not fulfill
the requirement, making the prediction result vulnerable to noisy
keywords. Zhou et al. [22] propose another BoostMapping model,
which achieves inferred sparsity by clustering keywords based on
their meta-features and eliminating noisy clusters; as the limitations,
BoostMapping is difficult to solve when we have to model multiple

intra-features, and might overfit the training data. We will compare
T-RBM with these models in details in Section 4.1.
2. With respect to the requirement of distant supervision, similar to
T-RBM, Bendersky et al. [1] propose to learn a keyword classifier
to discover important concepts for retrieval; however, their solution
relies on the existence of keyword labels, which is impractical for
most applications. Different from their work, taking the advantage
of Markov Network, T-RBM manages to train the keyword classifier
based on only document labels.
3. With respect to the model structure, the most related work to ours
is the Markov Random Field model proposed by Lease et al. [11]. As
the key difference, their solution is a generative model characterizing
P (q, d) – the joint probability of observing query q and document d,
while our T-RBM model directly models the conditional probability
P (d|q). It has been repeatedly confirmed that a discriminative
model usually yields better generalization performance compared
with a generative model [21]; furthermore, as mentioned earlier,
their solution does not fulfill the inferred sparsity requirement.
4. Restricted Boltzmann Machine (RBM), as one type of bipartite
Markov Network, is adopted in many applications such as topic
modeling [18], deep learning [6], etc.With distinct settings and
objectives, our proposed T-RBM is different from traditional RBM
models in two aspects: first, T-RBM takes a tree structure which
can be trained efficiently; second, T-RBM adopts a novel hidden
variable regularization technique, which allows the model to control
the inferred sparsity of keyword contribution.

3. CROSS-TASK DOCUMENT SCORING
In this section, we formally define the cross-task document scor-

ing problem. To tackle the challenge of learning to adapt keyword

contribution, we propose the insight of keyword scoring principle

and the concept of feature decoupling.

3.1 Problem: Cross-Task Document Scoring
In document scoring, we aim at predicting the relevance of a

document d for a particular task t. Formally, task t could be rep-
resented as a function t : d → R, which takes a document d as
input, and outputs a score denoting the relevance of d. We define
that two tasks t1 and t2 are different, if there exists one document
d satisfying t1(d) 6= t2(d). Therefore, identifying relevant docu-
ments for different queries belongs to two different tasks, as one
document usually has different relevance for two queries; similarly,
the sentiment judgement of a book review is also different from that
of a kitchen appliance review.

In contrast with single-task document scoring which tackles only
one task (e.g., text categorization [8] learns a scorer to predict if a
document is about a fixed topic such as “finance”), in a cross-task

document scoring problem, we are interested in a set of different
but related tasks T . For example, in verbose-query-based retrieval
and entity-centric document filtering, each t ∈ T represents a task
of predicting document relevance for one verbose query or one
entity; in cross-domain sentiment analysis, each task t is to judge
the sentiment of reviews form one particular domain.

Formally, in cross-task document scoring, our goal is to auto-
matically learn a document scorer F(d, t), which could output the
relevance of document d for task t ∈ T .

In the training phrase, we are given a set of training docu-
ments d = {d1, d2, ..., dN} and a list of document labels ŷ =
{ŷ1, ..., ŷN}, where each di is labeled by ŷi denoting the relevance
of di for task ti ∈ T (ti and tj could refer to the same task, indicat-
ing di and dj are labeled for the same query or in the same domain).
Here, ŷi could be either binary (e.g., 0–negative, 1–positive) or
ordinal (e.g., 0–irrelevant, 1–relevant or 2–perfectly relevant).
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Based on the training documents, we aim at learning F , which,
in the testing phase, could predict the relevance of a new document
d′ for task t′ ∈ T . Specifically, as highlighted by “cross-task,” we
require that t′ should differ from all the training tasks, i.e., t′ 6= ti
for all i. That is because, in most applications, the target task set
T could not be covered by finite training examples (e.g., there are
infinite possible queries in document retrieval) and thus, F should
be adaptable to unseen queries or domains, i.e., new tasks.

3.2 Challenge: Learning to Adapt Keyword
Contribution

To score a document d for a task t, the scorer has to assess the
content of document d. Formally, we use V(t) to represent the
vocabulary of keywords that are considered in task t, where each
keyword w ∈ V(t) could be 1-gram, 2-gram, noun phrases, etc. Fol-
lowing previous works [3, 22, 4], in verbose-query-based retrieval
and entity-centric document filtering, V(t) covers keywords that are
mentioned in the query or the entity identification page, while in
cross-domain sentiment analysis, V(t) includes all the keywords.
We then define W(d, t) ⊆ V(t) as the content of document d that
is related with task t.

Based on the document content W(d, t), the relevance of doc-
ument d could be viewed as the accumulation of its containing
keywords’ contribution. Formally, if we use Conrib(w, d, t) to de-
note the contribution of keyword w to document d with respect to
task t, F(d, t) takes the form of

F(d, t) ∝
∑

w∈W(d,t)

Conrib(w, d, t) (2)

As Eq. 2 shows, the challenge of cross-task document scoring
becomes how to learn Conrib(w, d, t) to determine the keyword
contribution for new tasks t′ which do not appear in the training
data, i.e., learning to adapt keyword contribution.

3.3 Insight: Keyword Scoring Principle
Due to the requirement of “cross-task,” the learning of Conrib(w, d, t)

is non-trivial. If our target is a single-task document scoring prob-
lem (i.e., tackling the same task in both training and testing phas-
es), as a common solution [8], we can define Conrib(w, d, t) =
αw ∗ TFw(d), where each feature function TFw(d) represents how
many times document d contains a specific keyword w, and αw,
as its weighting, characterizes the importance of keyword w (e.g.,
in text categorization , if the target topic is about finance, keyword
“stock” should have value of αw). The scorer is then defined by

F(d, t) =
∑

w∈W(d,t)

αw ∗ TFw(d) (3)

where αw could be learned by standard learners. However, such a
design could not be applied in cross-task document scoring, because,
as we mentioned in Section 1, one keyword usually has very different
importance for different tasks, and thus, αw learned from training
data could not be adapted to new tasks.

Traditional learning to rank frameworks (e.g., RankSVM [10])
manage to tackle different tasks (i.e., queries); however, they cir-
cumvent the problem of learning Conrib(w, d, t), which define the
scorer by

F(d, t) =

N
∑

k=1

βkfk(d, t) (4)

where fk∈{1...N}(d, t) is a set of handcrafted sub-scorer features
and βk is learned to represent the confidence of fk(d, t), e.g., in
document retrieval [5], fk(d, t) could be vector space model, BM25

and language model. As we discussed in Section 1, such frameworks
require designers to manually determine the keyword contribution
in the feature design, laying heavy burden on designers.

In order to automatically learn the contribution of keywords, as
our key insight, we propose the keyword scoring principle:

Definition 1 (Keyword Scoring Principle). If we use Rt(w, t) to
denote the importance of keyword w for task t, and Rd(w, d) to
denote the importance of keyword w for document d, the keyword
contribution Contrib(w, d, t) should take the following form:

Contrib(w, d, t) : Rt(w, t),Rd(w, d) → R (5)

3.4 Abstract: Feature Decoupling
As we introduced in Section 1, towards automatically learning

the keyword contribution Contrib(w, d, t) based on the principle,
we propose the concept of feature decoupling, which suggest “de-
coupling” the original scorer-as-feature design (i.e., fk(d, t) used in
Eq. 4) into two types of more elementary features:

Definition 2 (Feature Decoupling). To learn Contrib(w, d, t), we

propose to design, first, meta-features f
(M)
k (w, t), which charac-

terize task-t-related properties of keyword w, for determining the
importance of keyword w for task t, i.e., defining Rt(w, t) by

Rt(w, t) : 〈f
(M)
1 (w, t), f

(M)
2 (w, t), ...〉 → R (6)

and, second, intra-features f
(I)
k (w, d), which describe how doc-

ument d contains keyword w, for determining the importance of
keyword w for document d, i.e., defining Rd(w, d) by

Rd(w, d) : 〈f
(I)
1 (w, d), f

(I)
2 (w, d), ...〉 → R. (7)

Figure 1 lists all the features we use for verbose-query-based
retrieval, entity-centric document filtering, and cross-domain senti-
ment analysis.

First, for meta-features, the designs vary a lot across applications:
a) In verbose-query-based retrieval, meta-features are designed to
identify important keywords in the query. For example, Query-

Pos is used, as keywords mentioned earlier in the query tend to
be more important. Following previous works [3], we model not
only unigram, but also adjacent bigrams in the query. To discrim-
inate their importance, we design separate features for them, e.g.,
QueryPos[unigram] and QueryPos[bigram].
b) In entity-centric document filtering, we only model unigrams,
because the query is already very long, and we find that considering
bigrams does not help improve the performance. In additional to
the features used in verbose-query-based retrieval, we also design
meta-features like TFInTitle, TFInInfoBox, to leverage the structure
of Wikipedia pages for identifying importance keywords.
c) In cross-domain sentiment analysis, the design of meta-features
is very different from the other applications. In order to realize the
insight proposed by Blitzer et al. [4] (introduced in Section 2), given
a domain-specific keyword w, we propose to calculate a list of meta-
features Corr[wp], each of which measures the Pearson correlation
between w and one particular pivot keyword wp – the correlation
is positive if two keywords are positively correlated, negative if
negatively correlated and zero if independent.

Second, intra-features characterize how a document contains a
keyword. As discussed in Section 1, our designed intra-features
describe how a keyword appears in different positions of a document
(e.g., title, anchor text) by different representations of term frequency
(e.g., term frequency normalized by document length). In verbose-
query-based retrieval, as suggested by Bendersky et al. [3], we also
design WindowTF specifically for bigrams, which counts the number
of times that two keywords appear within a fixed size of window.
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Name Description

Meta-Feature

QueryTF Term Frequency of is in the query (or the Wiki page).

IDF The inverse term frequency of 

IsNoun (Vb/ Adj/ Adv/Num ) If is a noun/verb/adjective/adverb/number

QueryPos The first position where is mentioned.

TFInTitle (InfoBox/OpenPara

/AnchorEntity)

Term Frequency of in the Wikipedia title/ the InfoBox/ the 

Wikipedia opening paragraph/ the anchor entities.

Corr[ ] Pearson Correlation between and one pivot keyword 

Intra-Feature

DocTF(Raw/Normalized/Log

-Scaled)

Term frequency of in , which is represented by three 

features: raw frequency, frequency normalized by length, and 

logarithmically scaled frequency computed by log (f(w,d) + 1).

AnchorTF(Raw/...) Term frequency of in the anchor text of 

TitleTF(Raw/...) Term frequency of in the title of 

WindowsTF(Raw/...) Only for Bigram. The number of times two keywords appear 

within a fixed size of window.

Doc-Feature

DocLen The document length of 

PivotTF[ ] Term Frequency of pivot keyword in document 

Type Feature List

Verbose-Query-based Retrieval

Meta-Feature [UniGram/Bigram] QueryTF, IDF, QueryPos [UniGram] IsNoun(Vb/...)

Intra-Feature [UniGram/Bigram] DocTF(Raw/...), AnchorTF(Raw/...), TitleTF(Raw/...) 

[Bigram] WindowTF (Raw/...)

Doc-Feature DocLen

Entity-centric document Filtering

Meta-Feature QueryTF, IDF, IsNoun(Vb/ ...), QueryPos, TFInTitle(InfoBox/...)

Intra-Feature DocTF(Raw/...), DocAnchorTF(Raw/...), DocTitleTF(Raw/...)

Doc-Feature DocLen

Cross-domain Sentiment Analysis

Meta-Feature Corr[ ]

Intra-Feature DocTF(Raw/...)

Doc-Feature DocLen, PivotTF[ ]

Figure 1: Feature design for three applications.

Training Phase:

Given: Training documents , each is labeled by 

denoting the relevance of with respect to task , represented 

by its content , and characterized by meta-features 

, intra-features and doc-features 

Output: A document scorer learned from training data.

Testing Phase:

Given: A new task ( , for all ), document represented by 

, features , and 

Output: The relevance of with respect to , i.e., 

Figure 2: Cross-task document scoring.

Finally, we design doc-features f
(D)
k (d), which characterize

document features that have the same weightings across different
tasks. For example, in cross-domain sentiment analysis, we de-
sign PivotTF[wp] for each pivot keyword wp (e.g., “good,” “bad”),
which represents the same sentiment in all domains. The design of
doc-features is not the main focus of this paper, as they are the same
with the features used in traditional learning models.

Given such a decoupled feature design, the cross-task document
scoring problem is summarized in Figure 2.

4. TREE-STRUCTURED RESTRICTED

BOLTZMANN MACHINE
Towards realizing learning to adapt keyword contribution, we re-

quire that our framework fulfill the requirements of inferred sparsity

and distant supervision. As our solution, we propose Tree-Structured

Restricted Boltzmann Machine (T-RBM) to learn a two-stage docu-
ment scorer based on the decoupled features.

4.1 Requirement: Inferred Sparsity &
Distant Supervision

As we motivated in Section 1, in many applications, the keyword
vocabulary V(t) we model is very noisy. If such noisy keywords are
not appropriately filtered, their inferred values of Contrib(w, d, t),
once accumulated, will severely affect the prediction accuracy of
F(d, t). Therefore, we require that our framework achieve inferred

sparsity:

Requirement 1 (Inferred Sparsity for Keyword Contribution).

Contrib(w, d, t) should equal to zero for unimportant keywords w.

This concept of inferred sparsity is closely related with feature
sparsity, which traditional sparse learning works [20] aim to achieve.
The goal of feature sparsity is to learn a sparse feature weighting
vector, in which only a few features have non-zero weightings, for
the purpose of reducing model complexity and increasing prediction
accuracy. One common technique for achieving feature sparsity is l1
regularization. For example, in single-task document scoring (which
defines F(d, t) by Eq. 3), we can add an l1 regularization term |αw|1
to the objective function to learn sparse feature weightings αw.

In contrast with feature sparsity which aims at learning sparse
feature weightings, in inferred sparsity, we would like to “sparsify”
the inferred value of a function, i.e., Contrib(w, d, t). Traditional
feature sparsity techniques simply do not work, because the value of
Contrib(w, d, t) is jointly determined by a set of decoupled features
– setting some of their weightings to be zero can not make the whole
function become sparse.

Besides inferred sparsity, due to the lack of keyword labels, the
learning framework should also achieve distant supervision:

Requirement 2 (Distant Supervision by Document Labels). The
learning of keyword contribution Contrib(w, d, t) should be distant-
ly guided by only document labels ŷ.

As we introduced in Section 2, some existing works [3, 11, 22] on
verbose-query-based retrieval and entity-centric document filtering
also adopt the concept of meta-features. Although we can extend
their works to support multiple intra-features, their models still have
different limitations in fulfilling our requirements.

First, the concept weighting model proposed by Bendersky et

al. [3], the Markov random field model proposed by Lease et al.

[11] and the linear weighting model proposed by Zhou et al. [22]
all belong to same the category, which define Contrib(w, d, t) =

[
∑

i
βi ∗ f

(M)
i (w, t)] ∗DocTF(w, d) as a linear function over meta-

features. Since DocTF(w, d) is just one type of intra-feature, we
can easily extend it to support multiple intra-features, by defining

Contrib(w, d, t) =
∑

i,j
βij ∗ f

(M)
i (w, t) ∗ f

(I)
j (w, d), and the

scorer becomes

F(d, t) =
∑

i,j

βij
∑

w∈W(d,t)

f
(M)
i (w, t) ∗ f

(I)
j (w, d) (8)

where each
∑

w∈W(d,t) f
(M)
i (w, t)∗f

(I)
j (w, d) could be treated as

a generated feature, and βij could be learned by standard learners.
Such a linear design of Contrib(w, d, t) fails to fulfill the require-

ment of inferred sparsity. Actually, except the trivial solution which
sets all βij to be 0, for other assignments of βij , we can only get a
small number of keywords (no more than the number of βij) which
have zero contribution. The drawback of failing to achieve inferred
sparsity could be observed by checking the semantics of the generat-
ed features. Take meta-feature QueryPos and intra-feature DocTF as
example. The generated feature denotes the QueryPos summation of
keywords from a document, which fails to capture the intuition that
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keywords with low QueryPos are more important, and documents
containing more low-QueryPos keywords are more relevant.

Second, realizing the limitations of linear models, Zhou et al. [22]
propose BoostMapping, which first adopts a boosting framework
to generate a set of clusters c1, c2, ..., with each cluster ci contain-
ing keywords sharing similar meta-features, e.g., “IDF > 10 and
QueryPos < 5,” and then assumes that keywords from the same
cluster ci share the same contribution Contribi(w, d, t) = γi ∗
DocTF(w, d). Similar to the linear weighting model, we can extend
it to support multiple intra-features by defining Contribi(w, d, t) =
∑

j
γij ∗ f

(I)
j (w, d), and the scorer becomes

F(d, t) =
∑

i,j

γij
∑

w∈W(d,t)∩ci

f
(I)
j (w, d). (9)

BoostMapping manages to achieve inferred sparsity, as the learn-
er will assign γij = 0 for unimportant clusters. However, it is
difficult to extend the learning algorithm of BoostMapping (specifi-
cally, for generating clusters ci) to support multiple intra-features.
Furthermore, as reported in the paper [22] and confirmed in our
experiment, BoostMapping might overfit to training tasks in some
specific settings, which would lead to poor generalization capability.

4.2 Proposal: Two-Stage Scoring Model
To fulfill these two requirements, we develop a two-stage scoring

procedure. Specifically, to achieve inferred sparsity, we discretize

the importance of a keyword into different levels, and explicitly
define Contrib(w, d, t) = 0 for unimportant keywords; to realize
distant supervision, we unify the two stages in one single model, and
learn the feature weightings by only document labels. The model is
described in the following:

• In the first stage, we build a keyword classifier C(w, t) ∈ {0, 1, ..., L}

based on meta-features f
(M)
k (w, t) to discretize the importance of

keywords, where C(w, t) = 0 indicates that w is a noisy keyword
for task t, and C(w, t) ∈ {1, ..., L} represents keywords of different
importance levels.
• In the second stage, we determine contribution of each keyword
w based on its importance level C(w, t). For important keywords
with C(w, t) = l 6= 0, the value of Contrib(w, d, t) should de-

pend on intra-features f
(I)
k (w, d), while for unimportant ones (i.e.,

C(w, t) = 0), we set Contrib(w, d, t) = 0 to fulfill the requirement
of inferred sparsity.

Formally, such a two-stage model defines Contrib(w, d, t) as,

Contrib(w, d, t) =

{

Ul(w, d) if C(w, t) = l 6= 0;
0 if C(w, t) = 0.

(10)

where Ul(w, d) is a function defined over intra-features f
(I)
k (w, d).

4.3 Solution: Tree-Structured Restricted
Boltzmann Machine

In order to realize the design of Contrib(w, d, t) in Eq. 10, the
model should, first, characterize how keyword classifier C(w, t) de-

pends on meta-features f (M)(w, t), second, determine how the con-
tribution of important keywords, i.e., U(w, d), is defined based on

intra-features f (I)(w, d), and, third, be capable of learning C(w, t)
in the absence of keyword labels. To achieve these three goals,
we propose a novel Tree-structured Restricted Boltzmann Machine

(T-RBM), in the framework of Markov Network, as our solution.
Restricted Boltzmann Machine (RBM) [19] refers to one type of
bipartite Markov network, which is widely used in many applica-
tions (e.g., deep learning [6], topic modeling [18]). As a simplified
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Figure 3: Tree-structured Restricted Boltzmann Machine.

RBM, our proposed T-RBM takes a tree structure to characterize
the dependency between documents and keywords.

We highlight three important features of our proposed T-RBM
model. First, to tackle the lack of keyword labels, T-RBM models
the importance of keywords as hidden variables, and only uses
document labels to guide the learning. Second, T-RBM adopts a
novel hidden variable regularization idea, which allows the model to
control the inferred sparsity of keyword contribution. Third, taking
a tree structure, T-RBM could be efficiently learned by standard
optimization techniques.

4.3.1 Model Overview

Figure 3 shows a T-RBM model designed for entity-centric docu-
ment filtering. Generally, T-RBM is composed of N tree-structured
Markov Networks, each of which corresponds to one document.
There are no edges between trees, indicating that the documents
are independent with each other. Each tree contains two types
of nodes yi and hi = {hi1, ..., hi|hi|}, with yi ∈ {0, 1} denot-
ing the relevance of document di (yi = 1 if di is relevant, and
yi = 0 otherwise) and hij ∈ {0, 1, ..., L} is a hidden variable
denoting the importance of wij for task ti (for notational conve-
nience, we use wi = {wi1, wi2, ...} to represent document con-
tent W(di, ti), where wij denotes the j-th keyword in document
di). More specifically, hij = 0 indicates that wij is unimportant,
and hij ∈ {1, ..., L} corresponds to different importance levels of
keywords, e.g., in sentiment analysis, both “good” and “bad” are
important keywords, but have different contribution to the document
sentiment.

Three types of factors ψij(hij), φij(yi, hij) and τi(yi) are de-
fined in T-RBM. Specifically, ψij(hij) characterizes whether key-
word wij is important for task ti, φij(yi, hij) models how keyword
wij contributes its importance to document di, and τi(yi) models

the effect of other document features f
(D)
k (di). Based on the fac-

tors, the conditional probability P (yi,hi|di,wi, ti) is defined to
represent the probability of a specific assignment of yi and hi, given
in the following,

P (yi,hi|di,wi, ti) ∝ τi(yi)

|wi|
∏

j=1

φij(yi, hij)ψij(hij) (11)

We are interested in document scorer F(di, ti), which, in the lan-
guage of probability, is formally described by P (yi = 1|di,wi, ti).
Based on Eq. 11, we can represent P (yi = 1|di,wi, ti) in the form
of graph factors, by marginalizing P (yi = 1,hi|di,wi, ti) over all
possible assignments of hi,

P (yi = 1|di,wi, ti) =
∑

hi

P (yi = 1,hi|di,wi, ti) (12)
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To enforce inferred sparsity, we also want to control the percent-
age of noisy keywords in the model learning. In the language of
probability, the inferred sparsity of keyword contribution could be
represented by P (hi = 0|di,wi, ti), defined as follows,

P (hi = 0|di,wi, ti) =

1
∑

y=0

|wi|
∏

j=1

P (yi = y, hij = 0|di,wi, ti)

(13)

4.3.2 Factor Design

In T-RBM, we design factors ψij(hij), φij(yi, hij) and τi(yi)
to characterize the dependency required by Eq. 10.

First, ψij(hij) characterizes how keyword classifier C(wij , ti)
judges if wij is an important keyword for task ti, which should

depend on meta-features f
(M)
k (wij , ti):

ψij(hij) =

{

e
∑

k θ
(M)
kl

f
(M)
k

(wij ,ti) if hij = l > 0;
1 if hij = 0.

(14)

Eq. 14 characterizes different levels of important keywords by defin-

ing L sets of feature weightings θ
(M)
k,l . Note that we set τi(0) = 1

since only relative value between τi(l) and τi(0) matters in the
Markov Network.

Second, φij(yi, hij) models how noisy keywords are filtered, and
how the contribution of important keywords Ul(w, d) depends on

intra-features f
(I)
k (wij , di),

φij(yi, hij)

=







exp[
∑

k
θ
(I)
kl0f

(I)
k (wij , di)] if hij = l & yi = 0;

exp[
∑

k
θ
(I)
kl1f

(I)
k (wij , di)] if hij = l & yi = 1;

1 if hij = 0.

(15)

We set φij(0, 0) = φij(1, 0) = 1 to represent that if wij is an
unimportant keyword, wij would not contribute any score to doc-
ument di. When wij is important, i.e., hij = l > 0, the value
of φij(yi, hij) depends on how wij appears in document di, i.e.,

intra-features f
(I)
k (wij , di). It should be noted that, even if we as-

sume only one keyword importance level with L = 1, such a factor
design can still discriminate keywords of different importance, be-
cause the contribution of keyword wij is the marginalization result
of P (yi, hij = 1|di,wi, ti) and P (yi, hij = 0|di,wi, ti).

Finally, we define τi(di) to incorporate document features f
(D)
k (di)

that are generalizable across tasks:

τi(yi) =

{

exp[
∑

k
θ
(D)
k f

(D)
k (di)] if yi = 1;

1 if yi = 0.
(16)

We use θ = {θ
(M)

1..K(M),1..L
, θ

(I)

1..K(I),1..L,0..1
, θ

(D)

1..K(D)} to denote

the set of parameters that need to be determined in T-RBM, where
K(M),K(I) andK(D) denote the number of designed meta-features,
intra-features and doc-features respectively, and the total number of
parameters is K(M) ∗ L+K(I) ∗ L ∗ 2 +K(D).

4.3.3 Model Learning

Following the maximal likelihood principle, our objective is to
learn θ to maximize the likelihood L(θ; ŷ) of observing document

labels ŷ, regularized by G(θ) =
∑N

i=1 logP (hi = 0|di,wi, ti)
to control the inferred sparsity of all the keywords. Formally the
likelihood is defined by

argmax
θ

L(θ; ŷ) + λG(θ)

= argmax
θ

N
∑

i=1

logP (yi = ŷi|di,wi, ti) + λ logP (hi = 0|di,wi, ti)

= argmax
θ

N
∑

i=1

log
∑

hi

τi(ŷi)

|wi|
∏

j=1

φij(ŷi, hij)ψij(hij)

+λ log

1
∑

y=0

τi(y)

|wi|
∏

j=1

φij(y, 0)ψij(0) + (1 + λ) log

1
∑

y=0

∑

hi

τi(y)

·

|wi|
∏

j=1

φij(y, hij)ψij(hij) (17)

where λ controls the inferred sparsity of keyword contribution.
Specifically, when λ > 0, the model will favor more sparse keyword
contribution, and vice versa. Here we first study document scoring
as a classification problem by assuming that document labels are
all binary (i.e., ŷi ∈ {0, 1}), and will later extend our solution to
document ranking problems which accept ordinal labels.

To optimize the objective function, we use the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, which is a
popular gradient-based method for solving unconstrained nonlinear
problems – specifically, we adopt the LibLBFGS library [15], a
c-implementation of L-BFGS. As the optimization routine, in each
step, we compute the current gradient value of the objective func-
tion at θ, and LibLBFGS will update θ according to the gradient
value. The optimization routine stops until the objective function
converges.

The gradient value of the objective function at θ, as required by
LibLBFGS, is computed as follows,

∂L(θ; ŷ)

∂θ
(M)
kl

=

N
∑

i=1

|wi|
∑

j=1

[P (hij = l|yi = ŷi, di,wi, ti)

−(1 + λ)P (hij = l|di,wi, ti)]f
(M)
k (wij , ti) (18)

∂L(θ; ŷ)

∂θ
(I)
kly

=

N
∑

i=1

|wi|
∑

j=1

[P (hij = l, yi = y|yi = ŷi, di,wi, ti)

−(1 + λ)P (hij = l, yi = y|di,wi, ti)]f
(I)
k (wij , di)

(19)

∂L(θ; ŷ)

∂θ
(D)
k

=

N
∑

i=1

[P (yi = 1|yi = ŷi, di,wi, ti)

−(1 + λ)P (yi = 1|di,wi, ti)]f
(D)
k (di) (20)

In Eq. 18, Eq. 19 and Eq. 20, all the probabilities could be computed
by belief propagation [17]. As T-RBM is a tree-structured graph,
belief propagation could efficiently compute the exact result.

In general, the time complexity of T-RBM isO[T ∗ (Nd ∗K
(D)+

Ne ∗ K(I) + Nw ∗ K(M))], where T denotes the number of to-
tal iterations, Nd, Ne and Nw represent the number of documents,
keyword-document pairs and keywords respectively. Such time com-
plexity stems from the computation of factors ψij(hij), φij(yi, hij)
and τi(yi) given current model parameters θ. After computing the
factors, the time complexity of belief propagation is O(Ne), and
updating parameter θ takes O(|θ|), which are much faster than the
factor computation and could be ignored.
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4.3.4 Extension to Ranking Problem

This section discusses how to extend T-RBM to ranking prob-
lems, where training labels are ordinal instead of binary, e.g., ŷi ∈
{0, 1, 2}, denoting {“irrelevant”, “relevant”, “perfectly relevant”}.

As the solution, we apply the cumulative logits approach [12] to
convert the ranking problem back to a binary classification problem.
Assume that each ŷi ∈ {0, 1, ..., V }, we will construct V different
binary document classifier separately. For the v-th document classi-
fier, we partition the data into two groups: {yi < v} and {yi ≥ v},
and learn a document classifier P (yi ≥ v|di,wi, ti) based on the
learning algorithm in Section 4.3.3. Given the results of the classi-
fiers, we can compute the expected relevance as the ranking score
of each document, given as follows,

F(di, ti) =

V
∑

v=1

v ∗ P (yi = v|di,wi, ti) (21)

=

V
∑

v=1

v ∗ [P (yi ≥ v|di,wi, ti)− P (yi ≥ v − 1|di,wi, ti)]

(22)

5. EXPERIMENT
In this section, we compare the overall performance of T-RBM

with four state-of-the-art baselines, to demonstrate the effectiveness
of applying T-RBM for cross-task document scoring problems.

5.1 Experiment Setting
To demonstrate the capacity of T-RBM on general cross-task

document scoring problems, we study three different applications
– verbose-query-based retrieval, entity-centric document filtering
and cross-domain sentiment analysis – on different datasets with
specification shown in Figure 4.

1. Robust (Verbose-query-based Retrieval). In order to construct a
large dataset, we combined two newswire collections released by
TREC 2004 and 2005 Robust tracks. Unlike most datasets that con-
tain only short keyword queries, these two collections are the largest
publicly available datasets that have detailed query descriptions,
which could be used as verbose queries. Following previous verbose
query works [3], we only used the 〈desc〉 portions of TREC queries,
and ignored the 〈title〉 portions. Given one query, each document
is labeled as 2–perfectly relevant, 1–relevant and 0–irrelevant.
2. TREC-KBA (Entity-centric Document Filtering). This dataset
includes 29 Wikipedia entities covering living persons from differ-
ent domains and a few organizations. For each entity, 100∼3000
candidate documents are collected and labeled as garbage, neutral,
relevant or central. Following the same procedure in the previous
work [22], we got binary labels by viewing central and relevant
documents as positive, and others negative.
3. Review (Cross-domain Sentiment Analysis). This dataset was
constructed by Blitzer et al. [4] through selecting Amazon product
reviews from four different domains: books, DVDs, electronics
and kitchen appliances. Each domain contains 1000 positive, 1000
negative and 3000∼5000 unlabeled reviews. We selected 60 pivot
keywords by mutual information as suggested by Blitzer et al. [4],
and learned pivot predictors (for SCL) and Pearson Correlation (for
T-RBM) based on unlabeled reviews.

Among the three applications, verbose-query-based retrieval was
studied as a ranking problem in previous works, while entity-centric
document filtering and cross-domain sentiment analysis were treated
as classification problems. Following such conventions, we used
ranking-oriented metrics like NDCG@k and MAP (Mean Aver-
age Precision) for verbose-query-based retrieval, and classification-

Dataset Num of 

Tasks 

Num of 

Docs 

Num of Positive Docs Classification / 

Ranking 

Robust 
249 

Queries 
349,093 

Perfectly Relevant: 3,821 

Relevant: 20,147 
Ranking 

TREC-KBA 29 Entities 52,238 24,704 Classification 

Review 4 Domains 8,000 4000 Classification 

Figure 4: Dataset specification.

oriented metrics including precision, recall, F1-measure and accura-
cy for the other two tasks.

To confirm the confidence of the comparison, for both verbose-
query-based retrieval and entity-centric document filtering, we di-
vided queries into 5 sets, and adopted 5-fold cross validation with
standard t-test. For cross-domain sentiment analysis, we applied
the evaluation method in [4], which trained one model for each
domain, adapted the model to the other three domains and reported
the average ranking performance over 12 sets of results.

To deal with unbalanced data, we reweighed the training instances
to balance positive and negative data. All features were first stan-
dardized to reduce the impact of different feature scales. In those
baselines which require classifier or ranker learning, we used SVM-
Light [9] and RankSVM [10] to learn the feature weightings with
default parameters. In T-RBM, we empirically set the number of
keyword importance level L to be 2 and regularization factor λ to
be 0.005, and will later investigate their impact.

5.2 Quantitative Evaluation

5.2.1 Overall Performance

We designed different baselines to incrementally validate the
performance of our proposed T-RBM model. First, we experimented
the StandardLearner baseline to demonstrate the necessity of
realizing learning to score keywords. Second, we compared T-
RBM with LinearMapping [22, 3, 11] and BoostMapping [22]
to verify the effectiveness of T-RBM on learning to adapt keyword
contribution. In cross-domain sentiment analysis, we also compared
T-RBM with SCL [4] to demonstrate that T-RBM well realizes the
domain adaptation insight proposed by Blizter et al. [4].

1. Standard Learning Model (StandardLearner). This baseline
solves the problems by standard learning to rank/classify techniques,
which defines the scorer by Eq. 4. In the feature design, for verbose-
query-based retrieval, we followed the LETOR benchmark [14] to
extract ranking features such as TFIDF, BM25 and Language model
for each query-document pair; for entity-centric document filtering,
as the input query is an entity document, we designed features to
calculate the document similarity using different metrics introduced
in [7], e.g., Euclidean distance, cosine similarity; in cross-domain
sentiment analysis, we used all keywords as features and disregarded
domain differences.
2. Linear Weighting Model (LinearWeight). As discussed in Sec-
tion 4.1, the models proposed by Bendersky et al. [3], Lease et al.

[11], and Zhou et al. [22] all belong to the same category. This base-
line extends such models to support multiple intra-features, which
defines the scorer by Eq. 8.
3. Boosting Mapping Model (BoostMapping). This baseline adopts
the boosting framework proposed by Zhou et al. [22], which defines
the document scorer by Eq. 9. Since learning keyword clusters based
on multiple intra-features is difficult, we first learned the keyword
clusters ci based on only DocTF(w, d), and then applied the SVM
or RankSVM again to re-learn the feature weightings γij .
4. Structural Correspondence Learning (SCL) [4]. This baseline
implements the SCL algorithm (introduced in Section 2) proposed
by Blitzer et al. We used SVMLight to train pivot predictors and the
final classifiers, and adopted the same parameter setting used in [4].
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Figure 5: Performance comparison with baselines.

Figure 5 demonstrates T-RBM consistently outperforms other
baselines in three applications. Specifically, we observe that T-
RBM achieves encouraging improvement against runner-up Boost-
Mapping in verbose-query-based retrieval (NDCG@5 +10.2%,
NDCG@10 +7.3%, NDCG@20 +8.5% and MAP +9.4%) and
entity-centric document filtering (F-Measure +3.5% and accuracy
+5.4%) with p-value< 0.05, while in cross-domain sentiment anal-
ysis, T-RBM outperforms runner-up SCL (F-Measure +4.4% and
accuracy +2.7%). We analyze the performance differences between
T-RBM and other baselines in the following.

First, for the StandardLearner baseline, its performance largely
depends on the quality of the adopted features. The results in Figure
5 show that, intuitive feature designs fail to achieve satisfactory
results for general cross-document scoring problems. Specifically,
in verbose-query-based retrieval, using traditional document scorers
as features does not perform well because of the existence of noisy
keywords. In entity-centric document filtering, since there exist
many relevant documents that are not similar to the identification
page (e.g., they might discuss only one or two aspects of the entity),
StandardLearner based on document similarity fails as well. In
cross-domain sentiment analysis, the result confirms the necessity
of adapting keyword importance for different domains.

Second, LinearWeight does not perform well. As we discussed
in Section 4.1, the linear definition of keyword contribution function
makes it vulnerable to noisy keywords. From the result, we can
observe that LinearWeight achieves relatively better performance
in verbose-query-based retrieval, which is a task that involves less
noisy keywords compared with the other two. The results confirm
the importance of fulfilling the inferred sparsity requirement.

Third, BoostMapping fulfills the inferred sparsity requirement,
by eliminating the contribution of keywords from noisy clusters;
however, it might easily overfit the dataset in some specific settings.
In the experiment, we can observe that BoostMapping outperforms
LinearWeight over Robust and KBA datasets, but achieves very
poor performance on the Review dataset. That is because, unlike
the first two applications where the training dataset contains many
different tasks (i.e., queries or entities), in cross-domain sentiment
analysis, the training data only contains one domain at a time. As
the result, BoostMapping severely over-fits the training domain
and fails to be generalized to the other domains.

Fourth, SCL outperforms other baselines, and the result is con-
sistent with the performance reported in [4]. However, SCL relies
on the idea of pivot predictors to realize domain adaptation, which
could not be generalized to other cross-task document scoring prob-
lems that do not have the concept of pivot keywords. Moreover, in
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Figure 6: Effect of different parameters.
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Figure 7: Learning efficiency.

the experiment, we discover that the performance of SCL is sensi-
tive to the model used for training the pivot predictors – different
pivot predictors (e.g., trained by SVM and logistic regression) tend
to result in very different prediction performance.

Finally, T-RBM outperforms all the four baselines on three differ-
ent applications. Essentially, the insight of T-RBM is very similar
to BoostMapping, which classifies keywords into groups based on
their meta-features, and learns the importance of different groups.
However, different from BoostMapping which adopts a greedy
algorithm to generate clusters, T-RBM takes advantage of Markov
Network to jointly learn the weightings for meta-features and intra-
features, which greatly reduces the risk of over-fitting. The results
demonstrate that T-RBM achieves satisfactory performance on both
learning to rank and domain adaptation.

5.2.2 Different Parameters

In T-RBM, we have to manually determine two parameters: the
number of keyword importance levels L and regularization param-
eter λ. We experimented different values of L ranging from 1 to
5, and discovered that the performance of T-RBM is not sensitive
to L. That is because, as we discussed in Section 4.3.2, even if
we set L = 1, T-RBM can still model different levels of keyword
importance by the marginalization of hidden variables.

In this section, we only investigate the impact of λ. Figure 6
shows how different values of regularization parameter λ affect
the performances of T-RBM (in Figure 6 (a)) and the number of
keywords that are classified as noise (in Figure 6 (b)). In Figure 6
(a), we can discover that, when λ is negative, the performance of
T-RBM decreases significantly for all three datasets. That is because,
as Figure 6 (b) illustrates, a negative value of λ will tempt the model
to judge more keywords as important, making the scorer vulnerable
to noisy keywords. The result again confirms the importance of ful-
filling the requirement of inferred sparsity. T-RBM usually achieves
the best performance when λ is around 0.005 and 0.05. Continually
increasing the value of λ will over-regularize the model and lower
down the performance.

5.2.3 Training Efficiency

In this section, we are going to investigate the training efficiency
of T-RBM. Figure 7(a) shows that the likelihood value converges
very quickly within around 100 iterations in all three applications,
which, as Figure 7(b) displays, takes 358 seconds for verbose-query-
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Data set Task 
Unimportant 

(L=0) 
Important (L=1) 

Robust 

2005 

Query: Marine Vegetation as, of, purpose Drug purpose, marine vegetation, harvest 

Query: Abuse of E-Mail  by, in, through prevent excess, many people, mail 

KBA 
Entity: Jim Steyer 2011, http, media privacy, manager, expert, professor 

Entity: Douglas Carswell http, UK, time donate, foundation, enthusiast, localist 

Review 
Domain: DVD was,  you, just amazing, great performance, great dvd 

Domain: electronics what, get inexpensive, works great, fit into, faster 

Data set Meta-Feature ( ) Intra-Feature ( ) 

Robust 

2005 

IDF[Uni](1.118), IDF[Bi](0.535), QueryTF 

[Bi](0.301), IsVerb[Uni](0.209) 

DocTF_Log[Uni](0.744), HeadTF_Log 

[Uni](0.178), WindowTF_Raw[Bi](0.103) 

KBA 
QueryPos (-0.829), IsNum(-0.353), IDF (0.169), 

TextTF (0.082), TFInInfoBox(0.075) 

DocTF_Noramlized(0.082), TitleTF_Log 

(0.034) AnchorTF_Raw(-0.072)  

Review 
Cor[a_wonerful](14.662), Cor [easy_to](9.097), 

Cor[poorly] (-7.746), Cor[enjoable](7.694) 

DocTF_Raw(0.0362), DocTF_Log(0.023) 

DocTF_Normalized(0.005) 

(a) Examples of important/unimportant keywords. 

(b) Features with highest absolute weightings. 

Figure 8: Case study.

based retrieval, 2672 seconds for entity-centric document filtering,
and 211 seconds for cross-sentiment analysis. In general, the train-
ing speed is very fast to get a stable solution.

5.3 Case Study
To give an intuitive illustration of how T-RBM identifies impor-

tant/unimportant keywords for cross-task document scoring applica-
tions, in Figure 8 (a), we perform case studies by showing 2 example
tasks per dataset, and listing some of their unimportant (L = 0) and
important keywords (L = 1) based the value of P (hij) derived by
T-RBM. To analyze the effect of our designed features, we list the
meta-features and intra-features which have the maximal absolute
weightings in Figure 8 (b).

As Figure 8 displays, in terms of meta-features, in verbose-query-
based retrieval, it meets our expectation that IDF, for both unigrams
and bigrams, has the highest weightings; the result also includes
QueryTF[Bigram], implying that bigrams (e.g., “drug purpose,”
“prevent excess”) usually have higher importance than unigrams.
In entity-centric document filtering, QueryPos is the most impor-
tant meta-feature, demonstrating the position of a keyword is a
very useful signal for identifying important keywords from a long
Wikipedia page; TFInfoBox also has high weighting, which verifies
our intuition of using Wikipedia page structure to identify important
keywords. In cross-domain sentiment analysis, the result shows that
the correlation with keywords such as “a_wonderful” and “easy_to”
is helpful for identifying the sentiment of a keyword, demonstrating
that our framework successfully realizes the insight proposed by
Blizter et al. [4]. In terms of intra-features, we can observe DocTF

always has the highest weighting, whereas, different applications
favor different term frequency representations. For example, in
entity-centric document filtering, DocTF_Normalized has higher
weighting because the TREC-KBA dataset contains a large number
of short documents (e.g., tweets), and without normalization, the
scorer would severely bias towards long documents.

6. CONCLUSION
In this paper, we proposed to study the cross-task document

scoring problem – given some labeled documents for some user
queries or data domains, how to learn a scorer which could predict
the relevance of a new document for a new query or domain. As
the key insight, towards facilitating the feature design, we proposed
the idea of feature decoupling. To design a document scorer based
on the decoupled features, we proposed a novel T-RBM model
as our solution. Experiments on three applications confirmed the
effectiveness of T-RBM.
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