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ABSTRACT
This paper proposes multi-task copula (MTC) that can handle a
much wider class of tasks than mean regression with Gaussian noise
in most former multi-task learning (MTL). While former MTL em-
phasizes shared structure among models, MTC aims at joint predic-
tion to exploit inter-output correlation. Given input, the outputs of
MTC are allowed to follow arbitrary joint continuous distribution.
MTC captures the joint likelihood of multi-output by learning the
marginal of each output firstly and then a sparse and smooth output
dependency graph function. While the former can be achieved by
classical MTL, learning graphs dynamically varying with input is
quite a challenge. We address this issue by developing sparse graph
regression (SpaGraphR), a non-parametric estimator incorporating
kernel smoothing, maximum likelihood, and sparse graph structure
to gain fast learning algorithm. It starts from a few seed graphs on a
few input points, and then updates the graphs on other input points
by a fast operator via coarse-to-fine propagation. Due to the power
of copula in modeling semi-parametric distributions, SpaGraphR
can model a rich class of dynamic non-Gaussian correlations. We
show that MTC can address more flexible and difficult tasks that do
not fit the assumptions of former MTL nicely, and can fully exploit
their relatedness. Experiments on robotic control and stock price
prediction justify its appealing performance in challenging MTL
problems.
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ing Paradigms, Multi-task Learning; K.4.3.5.3 [Computing Method-
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1. INTRODUCTION
Effectiveness of multi-task learning (MTL) has been broadly proved

in massive real applications such as gene expression analysis [41][24],
brain activity prediction [22], collaborative filtering [38], informa-
tion retrieval [25] and economic forecasting [13]. MTL studies how
to exploit the underlying task relatedness in learning multiple tasks’
models so that tasks can benefit from each other. Precisely, let
x ∈ X be input features in domain X ⊆ Rp and y = {yi}ki=1 ∈ Y
be outputs of k tasks in domain Y =

∏k
i=1 Yi ⊆ Rk. Given as-

sociated k training sets {Xi, Yi}ki=1 with Xi ∈ Rni×p and Yi ∈
Rni×1, in machine learning it is of general interest to learn a joint
conditional probability model p(y|x), which contains all predictive
information of outputs y given x. Classical MTL methods study
the case when p(y|x) is a product distribution

∏
p(yi|x) with each

component a mean regression model fi(x) : X → Yi plus an i.i.d.
Gaussian noise εi ∼ N (0, σ2

i )

p(y|x) =

k∏
i=1

p(yi|x), yi|x ∼ N
(
fi(x), σ2

i

)
, (1)

where yi = fi(x) + εi. Note the above model reduces the model
complexity of p(y|x) on the expense of ignoring the dependency
among outputs. Two families of MTL methods have been devel-
oped based on (1) and exploit task relatedness in different ways.

1.1 Classical Multi-task Learning
We first consider the case when fi(x) is a parametric function

fi(x;wi) with parameter wi. While maximizing the likelihood
p(y|x;W ) withW = {wi}ki=1 leads to k independent M-estimators
of ŵi = arg max p(yi|x;wi), which introduce trivial single-task
learning regardless of task-relatedness; maximizing the posterior of
W with a joint prior p(W ) has motivated a line of MTL methods,
which relate different tasks by endowing shared structures across
{wi}ki=1. MAP estimator Ŵ = arg maxW log[p(W )

∏k
i=1 p(yi|x;wi)]

yields a regularization based learning framework d

Ŵ = arg min
W

k∑
i=1

‖fi(Xi;wi)− Yi‖2F + λR(W ), (2)

where fi(Xi;wi) extends fi(x;wi) by applying fi to each sample
inXi, andR(W ) is a regularization term resulting from p(W ) and
encoding the shared structure. In previous MTL methods, a linear
function fi(x;wi) = xwi is usually adopted, whereas their used
regularizers R(W ) are of different types. For instance, an `1/`q
(q > 1) norm regularizer R(W ) =

∑k
i=1 ‖wi‖q results in shared

nonzero patterns among different wi and thus yields joint feature
selection across tasks [2, 23, 29]; a trace norm regularizerR(W ) =
‖W‖∗ restricts vectors {wi}ki=1 lying in a low-dimensional space
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that indicates each wi is generated from a few shared basis vectors
[16, 30]; the vector fields [3] of predictor functions span a low-
dimensional subspace, a graph regularizer R(W ) = tr(WLWT )
can equip {wi}ki=1 with clustered [39], tree [17], manifold or graph
weighted fusion structure [6]. Moreover, sum mixture of two regu-
larizers forW = P+Q is proposed, whereP encodes shared struc-
ture and Q captures task-specific structure [1, 5, 15, 14], which in-
cludes alternating structure optimization (ASO), incoherent sparse
low-rank (ISLR) formulation, robust multi-task feature learning (rMTFL),
robust multi-task learning (rMTL), and so forth. In these methods,
the task relatedness refers to shared model structures that lead to
smaller hypothesis parameter space. When the prior p(W ) agrees
with the true models, a better generalization performance is prov-
ably achieved.

The model (1) also gives rise to a non-parametric MTL scheme
named “multi-task Gaussian process (GP) regression (MTGP)” [4],
which admits more flexible form of fi(x) and assumes identical in-
put X ≡ Xi∈[k] in training set (so n ≡ ni∈[k]). However, rather
than imposing a GP prior to each single fi(x), a task-related GP
prior is placed over all latent functions {fi(x)}ki=1. This GP covari-
ance is the Kronecker product of a covariance function kx(x, x′)
over input x and a “free form” positive semi-definite task similar-
ity matrix Kf ∈ Rk×k. The key assumption added to (1) here
is 〈fi(x), fj(x

′)〉 = Kf
ijk

x(x, x′), which defines correlation be-
tween different predictive function values on different input data
points. Learning hyper-parameters θx in kx and Kf is conducted
by likelihood maximization rather than MAP. In MTGP, it is the
stationary hyperparameter Kf rather than the structure shared by
task-wise parameters {wi}ki=1 encodes the task relatedness. In-
stead of reducing the hypothesis parameter space to gain a better
generalization performance, it abridges the output space.

So the inference of one task output on a new data point requires
weighted averaging of kn outputs from the whole training set. In-
verse of an kn × kn (assume identical input X ≡ Xi∈[k] so n ≡
ni∈[k]) covariance matrix is needed in weight computing and might
cause computational burden. Learning hyperparameters θx of kx

andKf is conducted by likelihood maximization rather than MAP,

{
θ̂x, K̂f

}
= arg max

θx,Kf
log

k∏
i=1

p

(
yi

∣∣∣∣x, θx,{Kf
ij

}k
j=1

)
, (3)

which can be solved by EM algorithm that requires kn×knmatrix
inverse per iterate.

1.2 Motivation and Main Contributions
Although the model in (1) has long been favored and thoroughly

studied in former MTL research, its effectiveness is only limited to
tasks that are mean regressions with independent Gaussian noise.

Firstly, in a wider range of MTL problems, the k tasks may vary
in diverse types and in different combinations. This implies the
conditional marginal p(yi|x) may be non-Gaussian, or the marginals
for different outputs yi are from different classes of distributions. In
the following, we discuss some non-Gaussian examples of p(yi|x).
Comparing to mean regression with Gaussian noise, median regres-
sion with symmetric heavy-tailed noise such as Cauchy or Laplace
is more robust to outliers in practice; quantile regression with asym-
metric heavy-tailed noise is commonly used in ecology and econo-
metrics to discover input-output relationship when input has weak
ties with output mean; Poisson distribution is naturally used in
count data regression; Gamma distribution is the best model for
studying the emission mechanism of gamma-ray burst data; mix-
ture model is better to fit a multi-mode distribution that can cap-
ture p(yi|x) where yi is the prediction from multi-model or multi-

expert [27], which could be multiple user groups in recommenda-
tion system [19], multiple mechanisms resulting in brain activities,
or multiple systems for economics forecasting. Thus a flexible and
expressive multi-task learning model should allow the combination
of such different choices of p(yi|x). However, most previous MTL
models cannot provide such rich possible options of p(yi|x).

Secondly, correlations among output variables {yi}ki=1 are ig-
nored in (1) to obtain a decomposable model in learning. However,
they are natural task-relatedness that are possible to be directly es-
timated from data and improve prediction. Instead of employing
a joint likelihood to capture such relatedness, exploration of task-
relatedness in previous MTL relies on the joint prior of parame-
ters or prediction functions for multiple models. In this case, it
is required either to know them (e.g., joint prior p(W ) or Kf ) in
advance, or to learn them indirectly from data in a complicated
fashion, like EM algorithm. Both are difficult.

In contrast, if we consider about learning the joint likelihood as a
multivariate Gaussian p(y|x), a direct idea embedding output cor-
relations in p(y|x) = p(ε = y− f(x)) is to posit dependent noises
{εi}ki=1. We also face difficulty because this demands learning
a covariance function Σ(x) : X → Rk×k, which is a difficult
open problem in former studies [10, 20]. It becomes even harder
when marginals {p(yi|x)}ki=1 are allowed to be arbitrary continu-
ous densities to express more general tasks, because in this case the
joint density p(y|x) falls into a broad category of general distribu-
tions, in which the output correlations are usually hard to be even
parametrized.

In this paper, we propose multi-task copula (MTC) that can choose
arbitrary continuous marginal distributions p(yi|x) for different tasks
to build a joint predictive distribution p(y|x), which also encodes
the output correlations as a decomposable parametric part c(·|x)
in its density function. Thanks to the flexibility of copula model,
MTC overcomes the aforementioned two main drawbacks of pre-
vious MTL methods, and can handle more general task types as
well as fully exploit their relatedness via output correlations. A
two-stage learning scheme for MTC will be advocated, in which
we first learn the marginal p(yi|x) for each task independently, and
then learn the copula density c(·|x) encoding outputs dependency.
One merit of this scheme is that previous MTL methods can be
seamlessly incorporated into the first stage, so the task relatedness
can be encoded and fully exploited by both joint prior from previ-
ous MTL and joint likelihood in MTC. Another merit is that, in the
special case of Gaussian copula, learning the non-Gaussian correla-
tions among outputs encoded in c(·|x) can be reduced to estimating
a Gaussian covariance on each given x.

In order to provide a reliable estimation of the Gaussian covari-
ance function of x that defines the Gaussian copula, we develop an
efficient non-parametric estimator “sparse graph regression” (Spa-
GraphR) to predict input-dependent Gaussian covariance, whose
inverse (i.e., precision matrix) is sparse and encodes a structured
dependency graph. The zero entries correspond to the conditional
independence between outputs on the graph. In MTC, rather than
estimating a stationary dependency graph by “covariance selection”
[7], SpaGraphR enables the graph of y to dynamically vary with
input x and thus provides a more expressive and flexible model
for describing output correlations. Such local covariance has been
broadly observed in various real problems, and verified to be a help-
ful information for prediction. For example, the correlations of dif-
ferent factors describing climate or market behaviors are always
changing with time and locations. The prediction of these factors
essentially relies on these changes in their correlations.

Similar problem of learning covariance function has rarely been
studied before. SpaGraphR updates graphs on all given input data

772



points in a hierarchical order and is a result of kernel smoothing in
conjunction with `1 regularized likelihood maximization. In learn-
ing algorithm, it starts with sparse precision matrices on a small
set of representative points, and then updates the precision matri-
ces on other points for several rounds by a fast proximal operator.
In each round, a few new points joined in the set of points with up-
dating graphs, and thus the graph estimator is refined in a coarse-
to-fine multi-resolution style. Each update merely requires small
matrix multiplications and entry-wise soft-thresholding. Hence,
SpaGraphR has promising efficiency on big data. Experiments on
challenging real problems, i.e., robotic control and stock predic-
tion, rigidly demonstrate the effectiveness of MTC and SpaGraphR
in MTL problems.

2. MULTI-TASK COPULA

Table 1: Comparison between MTL and MTC models.

Marginals Joint Prior Outputs Dependency
p(yi|x) p(W ) c({Fi(yi)}ki=1|x)

MTL Gaussian/Logistic Allow -
MTC Any continuous dist. Allow Allow

We propose MTC that tailors the copula model [35] to the MTL
problem as

p(y|x) = c (F1(y1), F2(y2), · · · , Fk(yk)|x)

k∏
i=1

p(yi|x), (4)

where Fi(yi) is the cumulative distribution function (CDF) of out-
put yi associated with density gi(yi) = p(yi|x) so that Fi(yi) ≡
Pr(z ≤ yi|x) ≡

∫ yi
−∞ gi(z)dz. The copula density function c(·|x)

takes all marginal CDFs {Fi(yi)}ki=1 as its augments, and main-
tains the output correlations in a parametric form conditioned on
x. As a semi-parametric model for joint prediction, MTC is easier
to learn and less prone to over-fitting than a fully non-parametric
model, while more expressive and flexible than a fully parameter-
ized model. In theory, let F (y) be the joint CDF, (1) can be derived
from the kth order partial derivative of a copula function C(·).

DEFINITION 1. Let Y1, . . . , Yk be real random variables marginally
uniformly distributed on [0, 1]. A copula function C : [0, 1]k →
[0, 1] is a joint (cumulative) distribution

C (y1, . . . , yk) = F (y) ≡ Pr

(
k∧
i=1

Yi ≤ ui

)
. (5)

By Sklar’s seminal theorem [35], any joint CDF F (y) can be repre-
sented as a copula functionC(·) of its univariate marginals {Fi(yi)}ki=1.
Moreover, C(·) is unique in the case of continuous marginals. Fur-
thermore, the converse is also true, i.e., any copula function defined
on a combination of any marginal functions gives a valid joint dis-
tribution with the same marginals.

This property is critical to MTC. Firstly, it provides a theoret-
ical guarantee that MTC is able to model the multi-task learning
model p(y|x) by arbitrary joint joint distribution with continuous
marginals. So it overcomes the two limitations of previous MTL
models mentioned in the beginning of Section 1.2. Secondly, it in-
dicates that the model is decomposable, so we can separately learn
the marginal prediction model p(yi|x) for each task and the then
learn the outputs dependency conditional on x encoded in C(·).

In addition, we do not need to estimate the partition function for
normalization in MTC. The copula model p(y|x) (4) automatically
turns into a legal joint prediction model taking output correlations
into account.

Theoretically, we can construct any legal copula C(·) by a cop-
ula trick derived from inverting Sklar’s theorem. For example,
Gaussian copula [9, 21]

C
(
{Fi(yi)}ki=1

)
= ΦΣ

(
{Φ−1 (Fi(yi))}ki=1

)
, (6)

where Φ is the standard normal distribution and ΦΣ is the zero
mean multivariate Gaussian with covariance matrix Σ, and Archimedean
copula [26]

C
(
{Fi(yi)}ki=1

)
= ψ

(
k∑
i=1

ψ−1 (Fi(yi))

)
, (7)

where ψ is the so called generator function with a single parameter
are two families of copulas widely applied in practice. Both have
the strength to model dependency in high dimensions (i.e., with
large k). While Archimedean copula is easier to estimate due to its
single parameter, Gaussian copula is more powerful for expressing
the sophisticated dependency graph structure.

When the structure of a graphical model G = (V,E) (where V
is the vertex set and E is the edge set) is known in advance, we can
decompose the joint density into the product of several components
based on local copulas. Two recent examples are tree-structured
copula [18] with density

g(y) =

[
k∏
i=1

fi(yi)

] ∏
(i,j)∈E

cij (Fi(yi), Fj(yj)) , (8)

where cij is a bivariate copula density associated with yi and yj ,
and copula Bayesian network (CBN) [8] with density

g(y) =

k∏
i=1

Rci
(
Fi(yi), Fi1(pai1), . . . , Fi1(paiki)

)
fi(yi), (9)

where {paij}
ki
j=1 is the parents of node i and Rci is the so called

“copula ratio” computed from a local copula associated with yi and
its parents.

It is not hard to verify that the density functions of all the above
copula models can be written in the same form as p(y|x) in MTC
(4), i.e., a parametric component 1 encoding the conditional depen-
dency of y multiplied by the product of all marginals {p(yi|x)}ki=1.
In addition, since all of them are capable of handling an arbitrary
number of outputs, after they have been learned from training data,
they can be freely plugged into MTC (4) and results in a joint pre-
diction model.

In Table 1, we provide a comparison between classical MTL (1)
and MTC (4) from the perspective of model. In addition, an illus-
tration of MTC is also given in Figure 2.

3. TWO-STAGE LEARNING FOR MULTI-
TASK COPULA

Note the parameters in both c(·|x) and the marginals {p(yi|x)}ki=1

of copula models introduced before are assumed to depend on x in
MTC. Therefore, before producing a valid prediction model, these

1In CBN it is not always a legal copula density c(·|x), but can still
be treated as a parametric component conditioned on x in MTC,
and thus causes no difference in learning and inference.
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SPARSE NONPARAMETRIC GRAPHICAL MODELS 15

Fig. 10. Graphs build on S&P 500 stock data from Jan. 1, 2003 to Jan. 1, 2008. The graphs are estimated using (a)
the glasso, (b) the nonparanormal and (c) forest density estimation. The nodes are colored according to their GICS sector
categories. Nodes are not shown that have zero neighbors in both the glasso and nonparanormal graphs. Figure (d) shows the
maximum weight spanning tree that results if the data are not Winsorized to trim outliers.

c(F1(y1), F2(y2), … , Fk(yk)|x) 

Figure 1: Illustration of multi-task copula (4) in generating outputs y given inputs x. Left: the copula density
c (F1(y1), F2(y2), · · · , Fk(yk)|x) as a function of x and defined by an outputs dependency graph. Right: the marginal conditional
density for y1 and y2 can be any continuous density functions, and MTC defines the dependent joint distribution of y, from which
we draw a sample (y1, y2). MTC fully captures the outputs correlations varying with inputs, and fits the conditional marginals by
arbitrary continuous density functions. Thus it provides an expressive joint likelihood model with small complexity.

parameters have to be learned as parametric or non-parametric func-
tions of x from training data. According to the “distribution gen-
eration” mechanism of copula suggested by Sklar’s theorem, we
adopt a two-stage learning scheme that estimates the marginal dis-
tributions {p(yi|x)}ki=1 at first and then the parameters in c(·|x) as
functions of x to build the joint prediction model.

A primary advantage of this scheme is that its first stage is ex-
actly equal to likelihood or posterior maximization ignoring out-
puts dependency, and thus can be accomplished by off-the-shelf
classical MTL methods in Section 1.1 or their trivial variants. For
example, in the case of robust regression, we consider a general
task with output yi = fi(x) + εi, where noise εi is a random vari-
able obeying symmetric (for mean regression) or asymmetric (for
quantile regression) distribution, and function fi(x) is a constant
computed from x. When fi(x) is assumed to have a parametric
form fi(x;wi) like linear or log-linear functions, the parameters
{wi}ki=1 sharing structures can be immediately learned by the reg-
ularization based MTL (2). When a more flexible non-parametric
function fi(x) is preferred, the multi-task GP regression can be ap-
plied to achieve k predictive functions with related GP priors.

In addition, in the case of multi-model or multi-expert, we can
consider a more general task whose output yi obeys a conditional
1-D Gaussian mixture model such that

p(yi|x) =

m∑
j=1

wj

σ
√

2π
exp

{
(yi − fij(x))2

2σ2

}
. (10)

When fij(x) = xwij , each task is exactly the “Gaussian mixture
regression” (GMR) [12], and an MAP estimator of W with any
joint prior p(W ) mentioned in Section 1.1 can result in an EM al-
gorithm, whose M-step invokes the regularized MTL (2). When
fij(x) is selected as a non-parametric function, each task collapses
to the “mixture of Gaussian processes” (MGP) model [33]. The
GPs associated with different tasks can be related by the same trick

used in multi-task GP regression via positing a task-similarity ma-
trix Kf . An EM algorithm is also required in learning Kf and
kernel parameters. Since the above EM algorithms can be directly
derived by standard procedures, we will not go into their details in
this paper and leave them to a longer version.

Therefore, the first stage allows lots of flexible choices of tasks
and their corresponding marginal prediction models. Moreover, the
first stage enables MTC to take the advantage of the task related-
ness exploited by joint prior in classical MTL methods, whose mer-
its thus can be fully inherited in MTC. Together with the task re-
latedness complied in the output dependency graph, which will be
learned in the second stage, MTC can achieve a considerable per-
formance boost. This is because the output dependency encoded
by c(·|x) and the task-relatedness encoded by joint prior in classi-
cal MTL play independent roles in MTC model, and thus cannot
be transferred to each other. To see this, we investigate the two
terms on the right hand side of (4). While the outputs dependency
is encoded by the first term c(·|x), the coherent latent structures
exploited by classical MTL are embedded in the second term, i.e.,
the product of marginals. It is worthy noting that the marginals
can also be trained independently as single tasks, and the MTC can
still give promising prediction. The benefit of doing this is we can
enjoy faster speed from divide-and-conquer or distributed compu-
tation naturally in this stage.

After the first stage, we obtain the estimates of all the marginal
densities, as well as those of their associated cumulative functions
{F̂i(yi)}ki=1. In the second stage, we estimate copula density c(·|x)
in the form of c

(
{Fi(yi)}ki=1

∣∣Θ(x)
)

from the training set{
Z ≡ {F̂i(Yi)}ki=1, X

}
, (11)

where the copula parameter Θ(x) is a function of x. For an Archimedean
copula with only one parameter, and copula models built from local
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copulas defined on a given graphical model, the regular maximum
likelihood estimate is able to achieve an accurate estimate Θ̂(x).

In this paper, an primary challenge is to learn a locally smooth
or piece-wise linear covariance function Σ(x) in accompany with
sparse precision S(x) = (Σ(x))−1 for Gaussian copula (6) ap-
plied to MTC. The main reason for choosing Gaussian copula here
is its capability of modeling high dimensional distributions. Learn-
ing Gaussian copula in MTC requires a simultaneous learning of
the graph structure and the corresponding edge weights, both vary-
ing with x. This problem is extremely challenging because: 1)
a parametric Σ(x) easily suffers from over-fitting in large k and
p case, for example, k2p parameters are required to be estimated
even when each entry of Σ(x) is a linear function of x; 2) a non-
parametric Σ(x) by kernel smoothing of local covariance matri-
ces is unlikely to also be sparse; 3) point-wise covariance selection
based on only one sample of y on each point x is seriously ill-posed
and computationally intractable.

4. SPARSE GRAPH REGRESSION
In this section, we propose an efficient algorithm called “sparse

graph regression” (SpaGraphR), which learns a non-parametric co-
variance function Σ(x) that has sparse inverse S(x) on any x in
the dataset and are locally smooth. SpaGraphR leverages the lo-
cal smoothness to avoid a great amount of costly computations,
and achieves sparse . From the perspective of non-parametric re-
gression, we need to estimate a sparse precision S(x) for multi-
variate Gaussian variable z = {Φ−1(F̂i(yi))}ki=1 from its i.i.d.
samples on each point x. However, we usually have only one out-
put sample yi ∈ Rk on the ith input sample xi in training set
X = {xi}ni=1, which indicates only one sample zi is available
for estimating S(xi). This brings difficulty in estimation. We
will firstly discuss two possible classes of covariance estimator that
have been investigated recently.

Covariance selection (CS), first proposed in [7] and drawing tremen-
dous interests recently [11, 34], aims to estimate a sparse precision
matrix from insufficient samples in a high-dimensional space. In
this case, maximum likelihood estimate Ŝ = Σ̂−1 cannot offer a
legal Ŝ, because the sample covariance matrix Σ̂ is singular and
thus does not have an inverse. Additional `1 regularization is ap-
plied to S in CS for two purposes: 1) to obtain a valid S, and 2) to
make the entries of S sparse, where the zeros indicate conditional
independence and suggest a structured Gaussian Markov random
field. CS is formulated as

ŜΣ̂,λ = arg min
S�0
− log det(S) + tr(Σ̂S) + λ ‖vec(S)‖1 . (12)

The estimate ŜΣ̂,λ has been proved to converge to the true S at dif-
ferent rates in different norms by recent papers. These convergence
rates differs in the order of dimension p yet share the same order
O(1/

√
n) of sample number n. However, in our case n = 1 for

each xi, the variance of CS estimate (12) with Σ̂ = zizi
T (zi is z

corresponding to xi) is unbearable. In addition, applying expensive
CS algorithm to each data point is impractical on computation.

Different from CS, another strategy that is able to achieve a Σ̂
with lower variance is to take the local smoothness of Σ(x) into
account, which results in Nadaraya-Watson (NW) estimator [28,
36] based on kernel smoothing (with kernel function K(x, ·)) of
covariance, i.e.,

ΣK(x) =

∑n
i=1 K(x, xi)zizi

T∑n
i=1 K(x, xi)

. (13)

NW estimator involves the neighbors of xi in the covariance es-
timation on xi, and thus could provide a more precise estimator
ΣK(xi) than ziziT under the assumption that Σ(x) is a smooth
function of x. However, in practice, the resulting Ŝ(x) = (ΣK(x))−1

does not hold a guarantee of sparsity, so we usually cannot gain a
structured graph from directly taking the inverse. A straightforward
approach to obtain a sparse graph regression in this case is to plug
a NW estimator into CS by replacing Σ̂ in (12) with ΣK(x), i.e.,
Ŝ(x) := ŜΣK(x),λ. However, its computational cost is prohibitive
when applied to a great number of data points, because we have to
apply CS algorithm to each point.

According to the density function of multivariate Gaussian, it
is the entries in precision matrix S that encode the weights of all
edges on the dependency graph. Therefore, it is more preferable to
seek a smooth precision function S(x) rather than a smooth covari-
ance function Σ(x), when the generated sparse graphs are expected
to exhibit structures and edge weights smoothly varying with x. In
contrast to (13), we define an NW estimator for S(x) as

SK(x,X) =

∑
i∈Bε(x,X) K(x, xi)S(xi)∑

i∈Bε(x,X) K(x, xi)
. (14)

Note SK(x,X) is defined as the kernel smoothing of the preci-
sion matrices on training data points within the ε-ball Bε(x,X) ≡{
i : ‖x− xi‖2 ≤ ε, xi ∈ X

}
of x. If the neighboring precision

matrices {S(xi)}i∈Bε(x,X) are sparse, SK(x,X) is also sparse
on the union of their support sets. In addition, due to the non-
negative kernel weights, SK(x,X) is a symmetric positive definite
(PSD) matrix if all the involved S(xi)i:i∈Bε(x) � 0 is PSD. Thus
SK(x,X) is a legal precision matrix estimator encoding underly-
ing graph structure, and will be used for outputs dependency graph
prediction in SpaGraphR.

Unfortunately, {S(xi)}i∈Bε(x,X) in (14) are unknown and need
to be estimated in advance. We cannot obtain them by applying
SK(x,X) again because it turns out to be the “chicken or the egg”
dilemma. We also cannot apply the aforementioned CS estimate
ŜΣK(x),λ because the training set could be huge and thus causes
heavy computational burden. Nevertheless, it is possible to start
from a few graphs by applying ŜΣK(x),λ to a small subset of train-
ing points Ω ⊆ X , and then develop an efficient operator to update
graphs on the other points from the known ones in an incremental
or propagation manner. By incorporating the likelihood maximiza-
tion on point x, `1 regularization in (12), and local smoothness of
SK(x,X), we develop an operator S+(x,Ω) for updating S(x) in
SpaGraphR

S+(x,Ω) := ηλ
{[

(1− γ)zzT + γ (SK(x,Ω))−1]−1
}

= ηλ
{

1
γ

[
SK(x,Ω)− 1−γ

γ+(1−γ)zT [SK(x,Ω)z]

[SK(x,Ω)z] [SK(x,Ω)z]T
]}

,

(15)
where ηλ(·) is an matrix element-wise soft-thresholding operator
[ηλ(X)]i,j = sgn (Xi,j) max (|Xi,j | − λ, 0) that results in sparse
update S+(x,Ω), and γ is a parameter adjusting the trade-off be-
tween likelihood maximization and local smoothness. Kailath vari-
ant of Woodbury identity is used to obtain the equality between
the two representations in (15). As an important consequence, the
second representation merely requires simple matrix-vector mul-
tiplication and entry-wise substraction, and thus makes S+(x,Ω)
considerably efficient to compute.

Let’s look at some motivations behind (15). Equivalently, it can
be derived by applying a proximal operator [31] to PSD matrix
SV (x,Ω) =

[
(1− γ)zzT + γ (SK(x,Ω))−1]−1

with `1 regular-

775



ization, i.e.,

proxλ‖vec(S)‖1 (SV (x,Ω)) =

arg minS
{
‖vec(S)‖1 + 1

2λ
‖S − SV (x,Ω)‖2F

}
.

(16)

According to the property of proximal operator, S+(x,Ω) finds a
sparse precision matrix (whose sparsity is controlled by λ) close
to SV (x,Ω), whose inverse is a “pseudo sample covariance” (1 −
γ)zzT + γ (SK(x,Ω))−1 comprised of a rank-1 sample covari-
ance zzT and a covariance matrix estimated by inverting the NW
estimator SK(x,Ω). The weight γ ∈ [0, 1] adjusts the contribu-
tions of the two terms in building the pseudo sample covariance.
When the neighboring graphs used in SK(x,Ω) are precise with
preferred sparsity, a large γ is applied so that zzT is a minor max-
imum likelihood correction term to (SK(x,Ω))−1. Hence the re-
sulting S+(x,Ω) has sparse graph structure and edge weights close
to those of SK(x,Ω) and fitting training data z well. This can be
verified more clearly in the second row of (15), in which SV (x,Ω)
is comprised of the NW estimator SK(x,Ω) and a rank-1 correc-
tion term caused by z. With a large γ, the resulting S+(x,Ω) en-
codes a similar dependency graph as SK(x,Ω), while the likeli-
hood on the unique sample z is properly maximized and the spar-
sity is maintained by soft-thresholding. Hence, the proximal oper-
ator (15) allows us to update sparse precision matrices on arbitrary
points given those on a small subset Ω.

In SpaGraphR, we start from a small subset Ω0 storing the most
representative points whose S(x) have been estimated by CS ŜΣK(x),λ

as “seeds”, and a sequence of disjoint subsets {Ωi}Mi=1 ⊆ X that
are ordered by their capability to represent the whole training setX .
When the representative capability of a subset is measured by the
squared error, the subset sequence can be built by top-down hierar-
chical k-means clustering. In this case, cluster centers of the second
layer constitute Ω0, and Ωt∈[M ] is comprised of the training points
closest to the cluster centers at the (t+ 2)th layer. In iterations,
S(x) on points of each subset is updated given S(x) estimated on
all the prior subsets by (15). For example, S(x) on points in subset
Ωt is updated as

{
S(xj) := S+(xj ,∪t−1

l=1Ωl)
}
j∈Ωt

.
In SpaGraphR, graph regression S(x) on a smaller Ω places a

warm start for the regression on a larger Ω, and thus the depen-
dency graphs encoded by S(x) in X are updated in a coarse to
fine multi-resolution manner by incrementing Ω of SK(x,Ω) in
S+(x,Ω). In addition, SpaGraphR is equal to applying a spe-
cial proximal Newton-like method [31] to a CS problem (12) with
Σ̂ = SV (x,X) for each involved x. Since we do not know Σ̂ =
SV (x,X), in the tth iterate, a quadratic approximation of CS ob-
ject function (12) on S = SV (x,∪t−1

l=1Ωl) and with Σ̂ = SV (x,∪t−1
l=1Ωl)

is minimized. We summarize SpaGraphR in Algorithm 4.

Algorithm 1 Sparse Graph Regression (SpaGraphR)

Input:
{
X, {Yi}ki=1

}
, {F̂i(yi)}ki=1, λ, γ, M

Output: precision matrices S(x) on all points

Compute {Zi}ki=1 by applying zi = Φ−1
(
F̂i(yi)

)
to each sam-

ple in {Yi}ki=1;
Generate subset sequence {Ωi}Mi=0 by (M + 2)-layer top-down
hierarchical k-means on X;
Estimate S(x) on x ∈ Ω0 by Ŝ(x) = ŜΣK(x),λ, where any CS
algorithm can be applied;
for t = 1→M do

Update {S(x)}x∈Ωt :
{
S(xj) := S+(xj ,∪t−1

l=1Ωl)
}
j∈Ωt

;
end for

5. JOINT PREDICTION BY MAP INFER-
ENCE

Given a new instance x, the predictive distribution of y can be
obtained by plugging x into the learned MTC model (4). Specif-
ically, the precision matrix S in Gaussian copula density is esti-
mated by SK(x,X), while the marginals are achieved by plugging
x into the classical MTL model learned in the first stage. If the goal
is to achieve a distribution of y or its clustering structure, the above
procedure directly provides the results. However, when exact val-
ues for outputs y are required for prediction, an additional MAP
inference needs to be conducted to p(y|x) in (4)

ŷ = arg min
y

{
− log c

(
{Fi(yi)}ki=1

∣∣∣x)− k∑
i=1

log p(yi|x)

}
.

(17)
Without loss of generality, we study the case of Gaussian copula,
the above optimization is equal to

ŷ = arg min
y:{Fi(yi)=Φ(zi)}ki=1

{
1

2
zTSz −

k∑
i=1

log p(yi|x)

}
,

(18)
which can be solved by alternating direction method of multipliers
(ADMM) [31]

zt+1 := arg min
z

k∑
i=1

[
p
2

∥∥Fi(yti)− Φ(zi)
∥∥2

2
+

qki
(
Fi(y

t
i)− Φ(zi)

)]
+ 1

2
zTSz,{

yt+1
i := arg min

yi

p
2

∥∥Fi(yi)− Φ(zt+1
i )

∥∥2

2
+

qki
(
Fi(yi)− Φ(zt+1

i )
)
− log p(yi|x)

}k
i=1

,

qt+1 := qt + p ·
{
Fi(y

t+1
i )− Φ(zt+1

i )
}k
i=1

,
(19)

where the subscript ·t denotes the tth iterate, p/2 is the weight
of quadratic penalty in augmented Lagrangian, q ∈ Rk is the La-
grangian multiplier, and the diagonal of S is set to zero. In the
above inference algorithm, the k outputs in y are updated indepen-
dently as in classical MTL except an additional regularizer linking
yi with zi. The k elements in z are jointly updated according to
their dependency graph encoded in S and relationship to y. Dual
variable q is updated by gradient ascent. In practice, we usually
initialize y by classical MTL such that

{y0
i = arg min

yi
− log p(yi|x)}ki=1. (20)

So only a few subsequent iterates are required to gain an appealing
joint prediction. Moreover, linear approximation could be applied
to Fi(yi) − Φ(zi) in the updates of y and z for obtaining ana-
lytical solutions to the minimizations. Hence, the joint prediction
conducted by (19) is efficient.

Another optimization algorithm for solving (18) can be derived
by computing the finite difference approximation of Jacobi matrix
in computing the first order gradient. In particular, if we substi-
tute z(y) = {Φ−1(F̂i(yi))}ki=1 into (18), the problem is reduced
to an unconstrained optimization, which can be efficiently solved
by gradient descent method or accelerated first order optimization
like Nesterov’s method. By using chain rule, the gradient of the
objective function G(y) in (18) can be approximated by

∂G(y)

∂y
≈
[

2

h

]
[z (y + h)− z (y − h)]T Sz−

∂
∑k
i=1 log p(yi|x)

∂y
,

(21)
where h is a difference vector for y.
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Figure 2: LEFT: Q-Q plot showing non-Gaussian noises obtained by classical MTL. RIGHT: sparse precision matrices by Spa-
GraphR on representative points selected by hierarchical k-means.

6. NUMERICAL RESULTS

6.1 Robotic Control
In the first experiment, we apply MTC and MTL algorithms to

inverse dynamics dataset Sarcos 2 collected from a 7 degrees-of-
freedom robot arm. It contains 48933 samples, each has 21 input
features including 7 joint positions, 7 joint velocities plus 7 joint
accelerations, and 7 joint torques as task outputs. In experiments,
400 samples are randomly selected for training and the rest are for
test, in which averaged normalized MSE (nMSE) is measured for
evaluation. We firstly apply single-task regression and regulariza-
tion based MTL methods embedded in [40], and obtain 7 mean
regression models. However, the Q-Q plot of the model noises
{εi = yi − xwi}7i=1 in Figure 2(a) shows that 3 outputs tend to
have non-Gaussian noises, and thus implies the contradiction to as-
sumed model in (1). This may cause sensitiveness to outliers and
weaken the prediction performance.

We then apply MTC with Gaussian copula for achieving a joint
conditional model p(y|x) that can fit data better. In particular, we
change the predictive models for the 3 outputs to a median regres-
sion with symmetric Laplacian noise and two quantile regression
with asymmetric Laplacian noise, while keep the mean regression
models for the rest outputs. In learning, these marginal models
are estimated at first and then SpaGraphR is invoked to obtain a
sparse precision function of x depicting the correlations among the
Gaussian and non-Gaussian marginals. In Figure 2(b), we show the
resultant sparse precision matrices on representative points identi-
fied by hierarchical k-means (2 points per cluster and 2t clusters
on tth layer). It could be seem that both the graph sparse struc-
ture and the edge weights vary smoothly in local area of X . Hence
SpaGraphR provides a flexible model for outputs conditional cor-
relations without losing robustness. In prediction, MTC has com-
petitive performance comparing ro most classical MTL methods.
The nMSE of different methods are listed in Table 2. In this case
when the number of tasks is closed to the number of features, MTC
exploiting outputs dependency is more effective in reducing model
complexity.

2http://gaussianprocess.org/gpml/data/

6.2 Stock Price Prediction
In this experiment, we establish an MTC model for stock price

prediction by learning from historical quote data collected from Ya-
hoo! Finance 3. Then we test and compare the prediction perfor-
mance of MTC and other MTL methods for recently stock prices.
In particular, we collect the weekly closing price of 35 famous
companies’ stocks from their historical quotes on NASDAQ be-
tween 01/01/2000 and 09/23/2013, which are 35 time series of
stock prices in 716 weeks. For each stock, given historical prices in
the pasting v weeks {qt−i}vi=1, the price qt in tth week can be pre-
dicted by linear autoregression (AR) model q̂t =

∑v
i=1 wiqt−i +

w0. Hence, we sample 600 weeks with equal time intervals, and
let the stock prices in these 600 weeks as responses. For each week
out of the 600, we let the stock prices in the pasting 10 weeks as
its input features. Therefore, for sth stock, we have a dataset with
outputs Ys ∈ R600 and inputs Xs ∈ R600×10.

Table 2: Comparison of single-task regression (STR), dirty
model for MTL [15], clustered MTL (CMTL) [39] and MTC
on Sarcos dataset (nMSE).

STR Dirty CMTL MTC
nMSE 0.1828 0.1651 0.2733 0.1204

However, when predicting multiple stocks, we expect the histor-
ical prices of other stocks can also help the prediction. Therefore,
we expand the input features and the AR model predicting the sth

stock’s price in the tth week turns to

q̂s,t =

k∑
i=1

v∑
j=1

wi,jqi,t−j + ws,0, (22)

where s ∈ [35] indexes the k = 35 stocks and t ∈ [600] indexes
the 600 weeks, and v = 10. The inputs of the dataset for each
stock changes to the same matrix [X1, . . . , X35] ∈ R600×350. In
the experiment, we split the dataset by choosing the prices in the

3http://finance.yahoo.com/
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first 400 weeks out of the 600 weeks as training set, and the prices
in the rest 200 weeks for test. Note this setting is more challenging
than random split and is closer to real problem, in which we expect
to gain a reliable model for future prices only from historical prices.

Our goal here is to build a joint prediction model for all 35 stocks
by not only using all of their historical prices’ information cap-
tured by the AR model (22), but also by leveraging the dynami-
cally varying correlations among different stocks. When modeling
the conditional marginal p(qs,t|{qi,t−j}i∈[35],j∈[10]) in (4) by AR
model (22), an interesting and broadly verified phenomenon is that
q̂s,t in (22) performs more robust and reliable when assigned to the
τ th quantile (e.g., median, 25%, 75%) of the conditional marginal
rather than the mean. This indicates that the conditional marginals
are non-Gaussian, possibly asymmetric and heave tailed, and the
conditional correlations among outputs are also non-Gaussian. The
former fact leads to the failure of most MTL methods based on
mean regression with Gaussian noise, while the latter fact leads to
the failure of most covariance regression/selection methods based
on Gaussian covariance assumption.

Fortunately, MTC is able to precisely model the non-Gaussian
conditional marginals and correlations by learning the marginal
model and copula density model separately. In particular, we adopt
a τ th quantile regression with skewed Laplace noise for each marginal
model, i.e.,

p(yi|x,w) = bτ(1− τ)·{
exp(−b(1− τ)(xw − yi)), yi < xw;
exp(−bτ(yi − xw)), yi ≥ xw;

(23)

In the first learning stage, we impose additional `1 regularization
to the coefficients w as a sparse prior. This is essentially helpful
to our problem because 1) the current price of one stock is usually
related to the prices of a few other stocks at a few historical time
intervals rather than all stocks over all intervals; and 2) the number
of training samples 400 is very close to the feature dimensions 350
and thus may introduce large variance. Given w, b can be easily
obtained via MLE. The quantile τ (reported in Table 3) and the
weight of `1 regularization (either 0.2 or 0.3) for each stock are
achieved by hypothesis testing and cross-validation, respectively.

In the second learning stage, we compute 400 Gaussian samples
Z from Y and the CDF of marginal models obtained in the first
stage as training set for SpaGraphR, which learns the sparse and
smooth graph function describing the dynamic graph over stocks.
The sparse prior of the graph function also plays an important role
here, because one stock currently is only related to a subset of other
stocks in the same or related areas, and the influence of one area
to another varies over time, which makes the edges in the graph
changing over time.

We report both the `1 relative error |q̂ − q|/|q| averaged over all
200 testing weeks for each stock in Table 3. The performance of
marginal models before joint inference (STR) is also reported in
order to make the improvement solely brought by the sparse graph
function more clear. For comparison, we also apply existing MTL
methods to this problem and report their performance in the same
ways. Different from modeling q̂s,t in (22) by quantile regression,
all of them model it by least square regression yet with different
joint priors/regularization over all w.

The results in Table 3 show that MTC successfully and precisely
predict most of the stock prices over time, while the other classic
MTL fail on most of them (their training errors are between [0.5, 2]
but the test errors are much worse, indicating their joint likelihood
is very far from the truth, which can be accurately modeled by
MTC). This is because the mean regression with Gaussian noise
has large variance on stock data, and classical MTL cannot cor-

rectly capture and leverage the conditional non-Gaussian correla-
tions by joint prior. Comparing to the prediction by single quantile
regression models, the additional improvement of MTC prediction
proves the essential role of SpaGraphR in relating multiple tasks to
help prediction.

7. CONCLUSION
Multi-task learning (MTL) covers a rich class of machine learn-

ing and statistical problems expecting to let different tasks benefit
each other by exploring their relatedness [32][37]. However, in
order to reduce MTL to a easier regularization problem, most pre-
vious MTL methods limit the types of tasks, ignore the conditional
dependency among outputs and merely rely on the pre-defined joint
prior distribution of models to capture the relatedness. So they can
hardly handle more complex tasks in practice, and usually achieve
limited improvement over single task learning.

In this paper, we adapt copula model from semi-parametric statis-
tics to the joint likelihood function p(y|x) in MTL. The capabil-
ity of copula in generating arbitrary continuous joint distribution
results in an expressive model that allows combination of differ-
ent types of marginal models p(yi|x) for different tasks, and an
unified parametric description of outputs dependency. This struc-
ture enables us to develop a two-stage learning scheme for the
proposed “multi-task copula (MTC)”. While the first stage learns
the marginals by using single task learning or any previous MTL
method, the second stage aims at learning a conditional covariance
function Σ(x) (or precision function Σ−1(x) encoding a sparse de-
pendency graph of y varying with inputs x.

Although this covariance regression is an open challenging prob-
lem in recent machine learning community, we proposes an effi-
cient nonparametric estimator for Σ(x) called "sparse graph regres-
sion (SpaGraphR)" that incorporates local likelihood maximiza-
tion, kernel smoothing, and sparse structure of graph. SpaGraphR
enables both the edge weighs and the sparse graph structure smoothly
changing with varying x, which can be rarely achieved by previous
methods. In addition, SpaGraphR starts from a few seed graphs on
a small number of representative x and updates the graphs on other
points from the known graphs by cheap matrix multiplication and
entry-wise soft-thresholding. So it can refine the estimation accu-
racy of Σ−1(x) in a coarse-to-fine grained space of x efficiently for
big data.

Different from previous MTL methods relying on given joint
prior applied to task models, MTC automatically learns the con-
ditional dependency of task outputs which directly serves the joint
prediction. The joint prediction can be obtained by solving an easy
optimization problem.

We applied MTC to robotic control and stock price prediction
problems, in which there exist strong correlations between task out-
puts that cannot be correctly captured by previous MTL methods
due to the non-Gaussian and asymmetric properties of their data
distribution. In experimental comparison, we verify that the capa-
bility of both integrating different types of marginal distributions
and capturing their conditional dependency lends MTC the power
to outperform other MTL methods.

It is worth noting that the models presented in this paper and
used in experiments are merely special instances of MTC. MTC
allows rich combination of marginal models from different distri-
bution classes or even non-parametric distributions, and arbitrary
copula density functions that describe the output dependency. Sim-
ilar to copula which is a “distribution generator”, MTC plays a role
of “model generator” for multi-task learning that can fit each task
with the suitable marginal model and simultaneously fully leverage
the task-relatedness encoded by both output dependency and joint
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Table 3: Comparison of Dirty, CMTL, MTL with trace norm penalty, STR, MTC on stock price data (test relative `1 error).
Stock τ Dirty CMTL Trace STR MTC
ATT 0.1 3.9653 4.8156 2.2068 0.1239 0.0937
BOA 0.1 6.0347 4.4945 5.7678 0.0920 0.0679
Boeing 0.9 8.0096 8.3798 8.142 0.2544 0.2102
CVS 0.2 6.2283 4.8732 3.7163 0.0879 0.0841
FeDex 0.1 2.7012 9.976 5.6893 0.2353 0.2193
Ford 0.5 9.7238 2.1568 6.481 0.1142 0.1048
GE 0.4 3.9807 4.7537 2.388 0.0733 0.0707
HP 0.2 3.8119 8.3573 17.4959 0.1000 0.0910
IBM 0.1 1.9552 3.8116 4.0757 0.0997 0.0948
JPMorgan 0.2 3.2578 5.5316 2.4995 0.1555 0.1262
Macy 0.1 5.8561 5.8208 3.2293 0.1128 0.1115
Adobe 0.1 5.2789 5.1415 4.3769 0.1317 0.0814
Amazon 0.2 6.5161 0.6358 31.5366 0.3619 0.3204
Apple 0.1 8.7289 1.8109 21.0517 0.7708 0.5172
Autodesk 0.1 5.5317 8.3711 5.12 0.1936 0.1458
Chevron 0.1 2.8925 3.8882 2.8397 0.0366 0.0366
Cisco 0.2 5.2039 5.5257 5.1972 0.1619 0.1071
Costco 0.4 8.1616 5.6682 5.6519 0.4100 0.3601
Dell 0.1 7.0798 5.3801 8.6039 0.1481 0.1339
Ebay 0.9 4.6712 3.1633 3.374 0.1150 0.1050
Intel 0.1 7.1312 3.7495 7.6896 0.1004 0.0947
Maxim 0.2 4.7308 3.4045 2.473 0.1706 0.1145
Microsoft 0.9 6.7137 3.1567 4.2504 0.0485 0.0492
Oracle 0.2 16.283 4.0686 3.7193 0.0886 0.0820
Priceline 0.2 44.4155 148.1859 151.665 1.3897 1.0205
Qualcomm 0.1 2.5908 3.8174 2.5528 0.1125 0.0944
Sandisk 0.2 9.0629 5.6423 12.1588 0.1947 0.1748
SouthwestAir 0.1 12.7343 4.438 6.107 0.0878 0.0704
Target 0.9 8.8795 6.8072 5.1398 0.2976 0.2432
TI 0.1 6.3444 4.4869 4.503 0.1427 0.1085
Vodafone 0.1 14.3038 5.5485 3.5616 0.0818 0.0721
Walmart 0.2 4.6541 4.4191 3.9601 0.0551 0.0550
Wholefood 0.1 3.3218 6.0992 7.2131 0.1108 0.0857
Xilinx 0.1 6.1487 3.1605 1.6395 0.1889 0.1555
Yahoo 0.1 7.4028 6.0218 6.2141 0.2003 0.1862

prior of marginal models. Therefore, we believe lots of possible
future contributions can be made to improve either MTC model for
specified MTL problems or the efficiency of its learning/inference
algorithms.

Acknowledgement
We would like to thank Prof. Carlos Guestrin, Prof. Ben Taskar
and Prof. Emily Fox for their important suggestions in improving
this draft. This work is supported by Australian Research Council
Projects FT-130101457 and DP-140102164.

References
[1] R. Ando and T. Zhang. A framework for learning predictive

structures from multiple tasks and unlabeled data. Journal of
Machine Learning Research, 6:1817–1853, 2005.

[2] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature
learning. In Advances in Neural Information Processing
Systems (NIPS), 2007.

[3] C. Z. J. Y. B. Lin, S. Yang and X. He. Multi-task vector field
learning. In Advances in Neural Information Processing
Systems (NIPS), 2013.

[4] E. Bonilla, K. Chai, and C. Williams. Multi-task gaussian
process prediction. In Advances in Neural Information
Processing Systems (NIPS), 2007.

[5] J. Chen, J. Liu, and J. Ye. Learning incoherent sparse and
low-rank patterns from multiple tasks. In Proceedings of the
16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2010.

[6] X. Chen, Q. Lin, S. Kim, J. Carbonell, and E. Xing.
Smoothing proximal gradient method for general structured
sparse learning. In The Conference on Uncertainty in
Artificial Intelligence (UAI), 2011.

[7] A. Dempster. Covariance selection. Biometrics, 28:157–175,
1972.

[8] G. Elidan. Copula bayesian networks. In Advances in Neural
Information Processing Systems (NIPS), 2010.

779



[9] P. Embrechts, F. Lindskog, and A. McNeil. Modeling
dependence with copulas and applications to risk
management. Handbook of Heavy Tailed Distributions in
Finance. 2003.

[10] E. Fox and D. Dunson. Bayesian nonparametric covariance
regression. arXiv:1101.2017, 2011.

[11] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse
covariance estimation with the graphical lasso. Biostatistics,
9(3):432–441, 2008.

[12] Z. Ghahramani and M. Jordan. Supervised learning from
incomplete data via an em approach. In Advances in Neural
Information Processing Systems (NIPS), 1994.

[13] J. Ghosn and Y. Bengio. Multi-task learning for stock
selection. In Advances in Neural Information Processing
Systems (NIPS), 1997.

[14] P. Gong, J. Ye, and C. Zhang. Robust multi-task feature
learning. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD), 2012.

[15] A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty
model for multi-task learnin. In Advances in Neural
Information Processing Systems (NIPS), 2010.

[16] S. Ji and J. Ye. An accelerated gradient method for trace
norm minimization. In International Conference on Machine
Learning (ICML), 2009.

[17] S. Kim and E. Xing. Tree-guided group lasso for multi-task
regression with structured sparsity. In International
Conference on Machine Learning (ICML), 2010.

[18] S. Kirshner. Learning with tree-averaged densities and
distributions. In Advances in Neural Information Processing
Systems (NIPS), 2007.

[19] B. Liu, Y. Fu, Z. Yao, and H. Xiong. Learning geographical
preferences for point-of-interest recommendation. In
Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), pages 1043–1051, 2013.

[20] H. Liu, X. Chen, J. Lafferty, and L. Wasserman.
Graph-valued regression. In Advances in Neural Information
Processing Systems (NIPS), 2010.

[21] H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal:
Semiparametric estimation of high dimensional undirected
graphs. Journal of Machine Learning Research,
10:2295–2328, 2009.

[22] H. Liu, M. Palatucci, and J. Zhang. Blockwise coordinate
descent procedures for the multi-task lasso, with applications
to neural semantic basis discovery. In International
Conference on Machine Learning (ICML), 2009.

[23] J. Liu, S. Ji, and J. Ye. Multi-task feature learning via
efficient l2,1-norm minimization. In The Conference on
Uncertainty in Artificial Intelligence (UAI), 2009.

[24] Q. Liu, Q. Xu, V. W. Zheng, H. Xue, Z. Cao, and Q. Yang.
Multi-task learning for cross-platform sirna efficacy
prediction: an in-silico study. BMC Bioinformatics, 11:181,
2010.

[25] X. Mao, B. Lin, D. Cai, X. He, and J. Pei. Parallel field
alignment for cross media retrieval. In Proceedings of the
21st ACM International Conference on Multimedia, MM
’13, pages 897–906, 2013.

[26] A. McNeil and J. Nešlehová. Multivariate archimedean
copulas, d-monotone functions and `1-norm symmetric
distributions. Annals of Statistics, 37(5b).

[27] K. Mo, E. Zhong, and Q. Yang. Cross-task crowdsourcing.
In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), pages 677–685, 2013.

[28] E. Nadaraya. On estimating regression. Theory of
Probability and its Applications, 9(1):141–200.

[29] G. Obozinski, B. Taskar, and M. Jordan. High-dimensional
union support recovery in multivariate regression. In
Advances in Neural Information Processing Systems (NIPS),
2009.

[30] G. Obozinski, B. Taskar, and M. Jordan. Joint covariate
selection and joint subspace selection for multiple
classi?cation problems. Statistics and Computing,
20:231–252, 2010.

[31] N. Parikh and S. Boyd. Proximal algorithms. Foundations
and Trends in Optimization, 2013.

[32] N. Quadrianto, A. J. Smola, T. S. Caetano, S. V. N.
Vishwanathan, and J. Petterson. Multitask learning without
label correspondences. In Advances in Neural Information
Processing Systems (NIPS), pages 1957–1965, 2010.

[33] C. Rasmussen and Z. Ghahramani. Infinite mixtures of
gaussian process experts. In Advances in Neural Information
Processing Systems (NIPS), 2001.

[34] B. Rolfs, B. Rajaratnam, D. Guillot, I. Wong, and A. Maleki.
Iterative thresholding algorithm for sparse inverse covariance
estimation. In Advances in Neural Information Processing
Systems (NIPS), 2012.

[35] A. Sklar. Fonctions de repartition a n dimensions et leurs
marges. Publications de l’Institut de Statistique de
L’Universite de Paris, 8:229–231.

[36] G. Watson. Smooth regression analysis. Sankhya: The
Indian Journal of Statistics, Series A, 26(4):359–372.

[37] S. Yang, Y. Jiang, and Z.-H. Zhou. Multi-instance
multi-label learning with weak label. In International Joint
Conference on Artificial Intelligence (IJCAI), 2013.

[38] S. Yu, K. Yu, V. Tresp, and H. Kriegel. Collaborative ordinal
regression. In International Conference on Machine
Learning (ICML), 2006.

[39] J. Zhou, J. Chen, and J. Ye. Clustered multi-task learning via
alternating structure optimization. In Advances in Neural
Information Processing Systems (NIPS), 2011.

[40] J. Zhou, J. Chen, and J. Ye. MALSAR: Multi-tAsk Learning
via StructurAl Regularization. Arizona State University,
2011.

[41] J. Zhu, B. Zhang, E. Smith, B. Drees, R. Brem, L. Kruglyak,
R. Bumgarner, , and E. Schadt. Integrating large-scale
functional genomic data to dissect the complexity of yeast
regulatory networks. Nature Genetics, 40:854–861, 2008.

780


	Introduction
	Classical Multi-task Learning
	Motivation and Main Contributions

	Multi-task Copula
	Two-stage Learning for Multi-task Copula
	Sparse Graph Regression
	Joint Prediction by MAP Inference
	Numerical Results
	Robotic Control
	Stock Price Prediction

	Conclusion



