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ABSTRACT

Multi-task feature learning has been proposed to improve
the generalization performance by learning the shared fea-
tures among multiple related tasks and it has been suc-
cessfully applied to many real-world problems in machine
learning, data mining, computer vision and bioinformatics.
Most existing multi-task feature learning models simply as-
sume a common noise level for all tasks, which may not be
the case in real applications. Recently, a Calibrated Multi-
variate Regression (CMR) model has been proposed, which
calibrates different tasks with respect to their noise levels
and achieves superior prediction performance over the non-
calibrated one. A major challenge is how to solve the CMR
model efficiently as it is formulated as a composite opti-
mization problem consisting of two non-smooth terms. In
this paper, we propose a variant of the calibrated multi-task
feature learning formulation by including a squared norm
regularizer. We show that the dual problem of the proposed
formulation is a smooth optimization problem with a piece-
wise sphere constraint. The simplicity of the dual problem
enables us to develop fast dual optimization algorithms with
low per-iteration cost. We also provide a detailed conver-
gence analysis for the proposed dual optimization algorithm.
Empirical studies demonstrate that, the dual optimization
algorithm quickly converges and it is much more efficient
than the primal optimization algorithm. Moreover, the cali-
brated multi-task feature learning algorithms with and with-
out the squared norm regularizer achieve similar prediction
performance and both outperform the non-calibrated ones.
Thus, the proposed variant not only enables us to develop
fast optimization algorithms, but also keeps the superior
prediction performance of the calibrated multi-task feature
learning over the non-calibrated one.
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1. INTRODUCTION
Multi-task feature learning aims to improve the general-

ization performance by learning multiple related tasks to-
gether and exploring the shared features among tasks. It
has received a lot of interests and has been successfully ap-
plied to a wide range of applications including gene data
analysis [18], breast cancer classification [34], neural seman-
tic basis discovery [21] and disease progression prediction
[36, 37]. Most existing multi-task feature learning models
can be formulated as a regularized optimization problem
and they usually focus on how to design a good regularizer
to capture the underlying shared features among tasks; ex-
amples include group lasso multi-task feature learning [1,
19, 23, 25, 29, 33, 34], tree-guided group lasso multi-task
feature learning [18], composite regularized multi-task fea-
ture learning [14, 16] and non-convex regularized multi-task
feature learning [13, 15].

However, most existing multi-task feature learning models
simply assume a common noise level for all tasks, which may
not hold in real applications. Moreover, theoretical analysis
in Lounici et al. [26] shows that, to achieve the optimal pa-
rameter estimation error bounds, the regularized parameter
should be chosen in proportion to the maximum standard
deviations of the noise for all tasks. In practice, the standard
deviations of the noise are unknown or very difficult to esti-
mate, which makes the parameter tuning quite challenging.
To this end, Liu et al. [22] propose a Calibrated Multivari-
ate Regression (CMR) model which calibrates each task by
employing different noise levels for all tasks and achieve su-
perior prediction performance over the non-calibrated one.
Moreover, their theoretical analysis shows that the CMR
model can achieve the optimal parameter estimation error
bounds by properly tuning the regularized parameter which
does not depend on the standard deviations of the noise for
all tasks. This makes the parameter tuning of the CMR
model much more insensitive to the noise levels. However,
one major challenge in the practical use of the CMR model
is that it is formulated as a composite optimization prob-
lem consisting of two non-smooth terms, which makes the
optimization problem challenging to solve.

In this paper, inspired by the great success of the elastic
net [38], we propose a variant of the calibrated multi-task
feature learning formulation by including a squared norm
regularizer. The major contributions of this paper include:
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(1) We show that the dual problem of the proposed for-
mulation is a smooth optimization problem with a piece-
wise sphere constraint. (2) The simplicity of the dual prob-
lem enables us to develop fast dual optimization algorithms
with low per-iteration cost. (3) We provide a detailed con-
vergence analysis for the proposed algorithm. (4) Experi-
mental results demonstrate that, the dual optimization al-
gorithm quickly converges and it is much more efficient than
the primal optimization algorithm. Moreover, the calibrated
multi-task feature learning algorithms with and without the
squared norm regularizer achieve similar prediction perfor-
mance and both outperform the non-calibrated ones. These
results demonstrate that the proposed variant not only en-
ables us to develop fast optimization algorithms, but also
keeps the superior prediction performance of the calibrated
multi-task feature learning over the non-calibrated one.

The rest of the paper is organized as follows: We intro-
duce preliminaries in Section 2. We propose a variant of the
multi-task feature formulation and develop fast optimization
algorithms in Section 3. We report experimental results in
Section 4 and we conclude in Section 5.

2. PRELIMINARIES
Assume that we are givenm learning tasks associated with

the data {(X1,y1), · · · , (Xm,ym)} and a linear model:

yi = Xiw
⋆
i + ǫi, i ∈ {1, · · · ,m},

where Xi ∈ R
ni×d is the data matrix and yi ∈ R

ni is the re-
sponse vector for the i-th task, respectively; w⋆

i ∈ R
d is the

underlying true weight and ǫi ∈ R
ni is the noise vector for

the i-th task, respectively; each entry of ǫi is sampled from
the normal distribution with mean zero and standard devi-
ation σi. The ordinary (non-calibrated) multi-task feature
learning model is formulated as the following problem:

min
W∈Rd×m

{
m∑

i=1

‖Xiwi − yi‖2 + λr(W )

}
, (1)

where ‖ · ‖ is the Euclidean norm; W = [w1, · · · ,wm] ∈
R

d×m is the weight matrix with the i-th column wi ∈ R
d

being the weight vector for the i-th task; λ > 0 is a regu-
larized parameter; r(W ) is a model-specific regularizer (such
as group lasso, tree-guided group lasso, a composite regular-
izer and a non-convex regularizer). To calibrate each task
by considering the different noise levels of all tasks, Liu et
al. [22] propose to use the square-root function [6, 11] in-
stead of the least squares function, resulting in the following
Calibrated Multivariate Regression (CMR) model:

min
W∈Rd×m

{
m∑

i=1

‖Xiwi − yi‖+ λr(W )

}
. (2)

Liu et al. [22] interpret the CMR model in Eq. (2) as the
following weighted regularized least squares problem:

min
W∈Rd×m

{
m∑

i=1

1

σi
√
ni
‖Xiwi − yi‖2 + λr(W )

}
, (3)

where 1
σi
√

ni
is the weight for calibrating the i-th task. When

we do not have any prior knowledge on σi’s, σi is chosen as

σi =
1√
ni
‖Xiwi − yi‖, i ∈ {1, · · · ,m}. (4)

Thus, using the weight defined in Eq. (4), the CMR model
in Eq. (2) calibrates different tasks via solving the weighted
regularized least squares model in Eq. (3). Although the
Robust Feature Selection (RFS) algorithm in [28] also uses
a similar square-root loss, it is quite different from the CMR
model in Eq. (2) that RFS“calibrates” different samples but
not different tasks via the square-root loss. Notice that the
regularizer and the loss function in Eq. (2) are usually both
non-smooth, which makes the optimization problem chal-
lenging to solve.

3. FORMULATION AND EFFICIENT OP-

TIMIZATION ALGORITHMS
Inspired by the great success of the elastic net [38], we pro-

pose a variant of the calibrated multi-task feature learning
model by adding a squared norm regularizer as follows:

min
W∈Rd×m

{
m∑

i=1

‖Xiwi − yi‖+ λ1‖W ‖1,2 + λ2

2
‖W ‖2F

}
, (5)

where ‖W ‖1,2 =
∑d

j=1 ‖wj‖ with wj being the j-th row

of W ; ‖W ‖2F =
∑m

i=1

∑d
j=1 w

2
ij with wij being the (i, j)-th

entry of W ; λ1, λ2 > 0 are regularized parameters. The
major benefit of the proposed formulation is that we can
derive a smooth dual optimization problem with a piece-
wise sphere constraint. The simplicity of the dual problem
enables us to develop fast optimization algorithms with low
per-iteration cost. Moreover, the proposed variant keeps the
superior prediction performance of the calibrated multi-task
feature learning over the non-calibrated one.

3.1 The Dual Ascent Optimization Algorithm
We first derive the dual problem of the optimization prob-

lem in Eq. (5) and then present key properties of the dual
problem. Finally, we propose fast algorithms to solve the
dual problem and provide detailed convergence analysis ac-
cordingly. Let zi = Xiwi − yi. Then Eq. (5) is equivalent
to the following constrained optimization problem:

min
W,z

{
m∑

i=1

‖zi‖+ λ1‖W ‖1,2 + λ2

2
‖W ‖2F

}
,

s.t. zi = Xiwi − yi, i ∈ {1, · · · ,m}, (6)

where z = [zT1 , · · · , zTm]T ∈ R

∑m
i=1

ni . It is easy to verify that
the strong duality [9] holds for the optimization problem in
Eq. (6). We can write down the Lagrange function of the
above problem as follows:

L(W,z,θ) =
m∑

i=1

‖zi‖+ λ1‖W ‖1,2 + λ2

2
‖W ‖2F

+
m∑

i=1

θ
T
i (Xiwi − yi − zi), (7)

where θ = [θT
1 , · · · ,θT

m]T ∈ R

∑m
i=1

ni with θi ∈ R
ni being

the Lagrange multiplier corresponding to the constraint zi =
Xiwi − yi. Minimizing L(W, z,θ) with respect to W and
z, we obtain the objective function of the dual problem of
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Eq. (6) as follows:

D̃(θ) =min
W

{
λ1‖W ‖1,2 +

λ2

2
‖W ‖2F +

m∑

i=1

θ
T
i (Xiwi − yi)

}

+

m∑

i=1

min
zi

{
‖zi‖ − θ

T
i zi
}
, (8)

where

min
zi

{
‖zi‖ − θ

T
i zi
}
=

{
0, if ‖θi‖ ≤ 1,
−∞, otherwise.

(9)

Thus, we obtain the dual problem of Eq. (6) as follows:

max
θ

D(θ), s.t. ‖θi‖ ≤ 1, i ∈ {1, · · · ,m}, (10)

where the objective function is

D(θ) = min
W

{
λ1‖W ‖1,2 + λ2

2
‖W ‖2F +

m∑

i=1

θ
T
i (Xiwi − yi)

}
.

(11)

We show that the optimization problem in Eq. (11) has
nice properties which enable us to develop fast algorithms
for solving the dual problem in Eq. (10).

Theorem 1. The optimization problem in Eq. (11) has a
unique solution W (θ). Moreover, D(θ) is continuously dif-
ferentiable and L-Lipschitz continuous gradient. Specifically,
the gradient of D(θ) is

∇D(θ) = [(X1w1(θ) − y1)
T , · · · , (Xmwm(θ) − ym)T ]T ,

(12)

where wi(θ) is the i-th column of W (θ). The Lipschitz con-
stant of ∇D(θ) is

L =
maxi∈{1,··· ,m} σ

2
max(Xi)

λ2
, (13)

where σmax(Xi) is the largest singular value of Xi.

Proof. Denote the objective function of the optimization
problem in Eq. (11) as

f(W,θ) = λ1‖W ‖1,2 + λ2

2
‖W ‖2F +

m∑

i=1

θ
T
i (Xiwi − yi).

(14)

Obviously, f(W,θ) is strongly convex and coercive with re-
spect to W . Hence, the optimization problem in Eq. (11)
has a unique solution W (θ).

To prove the remaining part of Theorem 1, we rewrite
f(W,θ) in the following compact form:

f(W,θ) = λ1‖W ‖1,2 + λ2

2
‖W ‖2F + Tr(W TU(θ)) − θ

Ty,

where Tr(·) denotes the trace norm and

U(θ) = [XT
1 θ1, · · · , XT

mθm] ∈ R
d×m,

θ = [θT
1 , · · · ,θT

m]T ∈ R

∑m
i=1

ni ,

y = [yT
1 , · · · ,yT

m]T ∈ R

∑m
i=1

ni .

Denote

g(W ) = λ1‖W ‖1,2 + λ2

2
‖W ‖2F . (15)

Then we have

D(θ) = min
W

{
f(W,θ) = g(W ) + Tr(W TU(θ))− θ

Ty
}

= −max
W

{
Tr(−W TU(θ)) − g(W )

}
− θ

Ty

= −g⋆(−U(θ)) − θ
Ty, (16)

where g⋆(·) is the conjugate function of g(·). Recalling
the definition of g(·) in Eq. (15), we know that g(·) is a
proper, lower semi-continuous and convex function. Thus,
we have g⋆⋆(·) = g(·) and g⋆(·) is also a proper, lower semi-
continuous and convex function. Moreover, g(·) is strongly
convex with the parameter λ2. Thus, by Proposition 12.60
in [31], we obtain that g⋆(·) is continuously differentiable and
∇g⋆(·) is Lipschitz continuous with constant 1/λ2. Hence,
D(θ) is continuously differentiable. Noting that W (θ) is the
minimizer of the optimization problem in Eq. (11), we have

W (θ) = argmax
W

{
Tr(−W TU(θ)) − g(W )

}
,

and hence

−U(θ) ∈ ∂g(W (θ)).

According to Corollary 23.5.1 in [30], we have −U(θ) ∈
∂g(W (θ)) if and only if W (θ) = ∇g⋆(−U(θ)), which to-
gether with Eq. (16) and the definition of U(θ) implies that

∇D(θ) = Xs(θ)− y

= [(X1w1(θ))
T , · · · , (Xmwm(θ))T ]T − y, (17)

where

X =




X1

. . .

Xm


 , s(θ) =



∇1g

⋆(−U(θ))
...

∇mg⋆(−U(θ))




with ∇ig
⋆(−U(θ)) being the partial derivative of g⋆(−U(θ))

with respect to the i-th column of −U(θ). Thus, Eq. (12)
immediately follows from Eq. (17). Moreover, for any θ, γ ∈
R

∑m
i=1

ni , we have

‖∇D(θ) −∇D(γ)‖ = ‖X(s(θ)− s(γ))‖ ,

Recalling that ∇g⋆(·) is Lipschitz continuous with constant
1/λ2, we have

‖∇D(θ) −∇D(γ)‖ ≤ σmax(X)‖s(θ) − s(γ)‖

≤ σmax(X)

λ2
‖U(θ) − U(γ)‖F =

σmax(X)

λ2
‖XT (θ − γ)‖

≤ σ2
max(X)

λ2
‖θ − γ‖,

where σmax(X) is the largest singular value of X. By notic-
ing that X is a block diagonal matrix, we have

‖∇D(θ) −∇D(γ)‖ ≤ maxi∈{1,··· ,m} σ
2
max(Xi)

λ2
‖θ − γ‖.

That is, ∇D(θ) is Lipschitz continuous with constant L de-
fined in Eq. (13). �

Remark 1. The squared norm regularizer λ2

2
‖W ‖2F in

Eq. (5) is critical for the establishment of Theorem 1 and
hence is crucial to develop fast optimization algorithms on
solving the dual problem in Eq. (10).
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Based on Theorem 1, we know that the objective function of
the dual problem in Eq. (10) is smooth (Lipschitz continuous
gradient) and the constraint is a piecewise sphere. Thus, we
can use the framework of FISTA [4, 24, 12, 2] to solve the
dual problem in Eq. (10). We present the pseudo codes in
Algorithm 1. Notice that the dual problem in Eq. (10) is a
maximization problem. Therefore, the gradient projection
step in Eq. (20) and the line search criterion in Eq. (21) are
modified accordingly.

In Algorithm 1, there are two critical steps. In the fol-
lowing, we show that both steps have closed-form solutions
with low cost. The first critical step is how to efficiently com-
pute the dual objective function value D(θ) and the gradient
∇D(θ), which depends on how to efficiently obtain the op-
timal solution W (θ) for the problem in Eq. (11). Next, we
show how to efficiently solve the optimization problem in
Eq. (11). By exploring the special structure of Eq. (11), we
have for all j ∈ {1, · · · , d}:

wj(θ) = argmin
wj

{
λ2

2
‖wj‖2 + uj(θ)(wj)T + λ1‖wj‖

}
,

(18)

where wj(θ),wj and uj(θ) are the j-th row of W (θ),W and
U(θ) = [XT

1 θ1, · · · , XT
mθm], respectively. Eq. (18) has the

following closed-form solution [14, 23]:

wj(θ) = argmin
wj

{
λ2

2

∥∥∥∥w
j +

uj(θ)

λ2

∥∥∥∥
2

+ λ1‖wj‖
}

= argmin
wj

{
1

2

∥∥∥∥w
j +

uj(θ)

λ2

∥∥∥∥
2

+
λ1

λ2
‖wj‖

}

= − 1

λ2
max

(
0, 1− λ1

‖uj(θ)‖

)
uj(θ). (19)

The second critical step is how to efficiently solve the gradi-
ent projection subproblem. Due to the simplicity of the
piecewise sphere constraint, the gradient projection sub-
problem has a closed-form solution in Eq. (20).

By Theorem 4.4 in [4], we have the following result.

Theorem 2. (Theorem 4.4 [4]) Let {θk} be the sequence
generated by Algorithm 1 and θ⋆ be an optimal solution for
the problem in Eq. (10). Then for all k ≥ 1, we have

D(θ⋆)−D(θk) ≤ 2βL‖θ0 − θ⋆‖2
(k + 1)2

,

where θ0 is the initial point; β > 1 is the factor used in the
line search (β is defined in Algorithm 1); L is the Lipschitz
constant defined in Eq. (13).

Based on Theorem 2, we establish a convergence rate for
the sequence {W k} generated by Algorithm 1 in the follow-
ing theorem:

Theorem 3. Let {W k} and {θk} be the sequences gen-
erated by Algorithm 1, and let W ⋆ and θ⋆ be any optimal
solutions for the problems in Eq. (5) and Eq. (10), respec-
tively. Then for all k ≥ 1, we have

‖W k −W ⋆‖F ≤ 2

√
βL

λ2

‖θ0 − θ⋆‖
k + 1

.

Algorithm 1: Accelerated Dual Ascent Algorithm

Input : θ0 ∈ R

∑m
i=1

ni , η0 > 0, β > 1
1 Initialize θ1 ← θ0; t0 ← 1; t1 ← 1;
2 for k = 1, 2, · · · do
3 αk ← tk−1−1

tk
;

4 νk ← θk + αk(θ
k − θk−1);

5 for j = 0, 1, 2, · · · do
6 ηk ← βjηk−1;

7 Compute θk via gradient projection:

θ
k =

[
(ν̃k

1 )
T

max(1, ‖ν̃k
1 ‖)

, · · · , (ν̃k
m)T

max(1, ‖ν̃k
m‖)

]T
with

[
(ν̃k

1 )
T , · · · , (ν̃k

m)T
]T

= ν̃
k = ν

k +
1

ηk
∇D(νk).

(20)

if the following line search criterion

D(θk) ≥D(νk) +∇D(νk)T (θk − ν
k)

− ηk
2
‖θk − ν

k‖2 (21)

is satisfied then
8 break;
9 end

10 end

11 Compute W k ←W (θk) via Eq. (19);
12 if some convergence criterion is satisfied then
13 Let θ⋆ ← θk and W ⋆ ←W k;
14 break;

15 end

16 tk+1 ← 1+
√

1+4t2
k

2
;

17 end
Output: θ⋆, W ⋆

Proof. We follow the proof of Theorem 4.1 in [5]. Denote

h(z, θ) =
m∑

i=1

{
‖zi‖ − θ

T
i zi
}
, (22)

zk ∈ argmin
z

h(z, θk), (23)

where {θk} is the sequence generated by Algorithm 1. Con-
sidering Eqs. (7), (14), (22) together, we have

L(W, z,θk) = f(W,θk) + h(z, θk). (24)

From Algorithm 1, we have

W k = W (θk) = argmin
W

f(W,θk). (25)

By the optimality condition of Eq. (25), we have

O ∈ ∂Wkf(W
k,θk), (26)

where O denotes the zero matrix and ∂Wkf(W k,θk) denotes
the sub-differential of f(W,θk) with respect to W at the
point W = W k. Recalling that f(W,θk) is strongly convex
with respect to W with the parameter λ2, which together
with Eq. (26) implies that for all W ∈ R

d×m

f(W,θk)− f(W k,θk) ≥ λ2

2
‖W −W k‖2F . (27)
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By Eq. (23), we have for all z ∈ R

∑m
i=1

ni

h(z, θk)− h(zk,θk) ≥ 0. (28)

Adding Eqs. (27), (28) together and considering Eq. (24),

we have for all W ∈ R
d×m and z ∈ R

∑m
i=1

ni :

L(W, z,θk)−L(W k, zk,θk) ≥ λ2

2
‖W −W k‖2F . (29)

From Eqs. (11), (25), we know that

D(θk) = f(W k,θk). (30)

Recalling that the sequence {θk} = {[(θk
1 )

T , · · · , (θk
m)T ]T }

satisfies the constraint in Eq. (10) and considering Eqs. (9),
(23), we have for all k ≥ 1:

h(zk, θk) = 0,

which together with Eqs. (24), (30) implies that

D(θk) = L(W k, zk, θk). (31)

Denote by (W ⋆, z⋆) as an optimal solution for the optimiza-
tion problem in Eq. (6). Then by the equality constraint in
Eq. (6), we have for all i ∈ {1, · · · ,m}

z⋆ = Xiw
⋆
i − yi,

which together with Eq. (7) implies that

L(W ⋆, z⋆,θk) =
m∑

i=1

‖z⋆i ‖+ λ1‖W ⋆‖1,2 + λ2

2
‖W ⋆‖2F . (32)

Noticing that Eq. (32) attains the minimum objective func-
tion value in Eq. (6) and strong duality holds for the opti-
mization problem in Eq. (6), we have

D(θ⋆) = L(W ⋆, z⋆,θk), (33)

where θ⋆ is an optimal solution of the dual problem in
Eq. (10). Substituting W = W ⋆, z = z⋆ into Eq. (29) and
considering Eqs. (31), (33), we obtain

D(θ⋆)−D(θk) ≥ λ2

2
‖W ⋆ −W k‖2F ,

which together with Theorem 2 immediately implies that
the inequality in Theorem 3 holds. �

Remark 2. In additional to FISTA [4], we can use many
other optimization algorithms to solve the dual problem in
Eq. (10). For example, the SpaRSA framework [32] can
be adopted to efficiently solve the dual problem. The the-
oretical convergence rate of SpaRSA is no better than that
of FISTA. However, due to the utilization of the Barzilai-
Borwein (BB) rule [3, 32], the empirical convergence per-
formance of SpaRSA is much better than that of FISTA for
solving the dual problem in Eq. (10) [see Section 4.2].

3.2 Discussion
Notice that the objective function in Eq. (5) consists of

a differentiable term λ2

2
‖W ‖2F and a non-differentiable term∑m

i=1 ‖Xiwi − yi‖ + λ1‖W ‖1,2. Theoretically, we can use
the framework of FISTA [4] to directly solve the optimiza-
tion problem in Eq. (5), achieving a convergence rate of
O(1/k2). If we additionally consider the strong convexity
of the objective function in Eq. (5), the proximal gradient

method (PGM) can achieve a geometrically linear conver-
gence rate. However, both FISTA and PGM are not practi-
cal for directly solving the optimization problem in Eq. (5).
Specifically, at each iteration of both FISTA and PGM, we
need to solve the following proximal operator problem:

min
W

{
1

2
‖W −B‖2F + ρ

(
m∑

i=1

‖Xiwi − yi‖+ λ1‖W ‖1,2
)}

,

where B ∈ R
d×m and ρ > 0 are both constant with re-

spect to W . Obviously, solving the above proximal operator
problem is as difficult as solving the original optimization
problem in Eq. (5).

We can also use a similar primal smoothed optimization
algorithm (more details are provided in the Appendix A)
proposed in [22] to solve the primal problem in Eq. (5) di-
rectly. One problem is that the smoothing parameter is
quite challenging to tune while this parameter is crucial to
the convergence performance of the SPG algorithm.

Another approach which can solve the optimization prob-
lem in Eq. (5) is the Alternating Direction Method of Multi-
pliers (ADMM) method [8] (more details are provided in the
Appendix B). One problem is that, at each step, we need to
solve a Lasso problem which does not admit a closed-form
solution. Moreover, the penalty parameter is very hard to
tune while this parameter is critical for the efficiency of the
ADMM method.

A very straightforward approach to solve the optimiza-
tion problem in Eq. (5) is the sub-gradient method [10]. In
the non-smooth case, the objective function value sequence
{l(W k)} generated by the sub-gradient method converges

to the optimal value l⋆ at a rate of O(1/
√
k) under certain

conditions [10], where l(W ) denotes the objective function in
Eq. (5). However, this convergence rate is established with-
out exploiting the strong convexity of the objective function
l(W ). By considering the strong convexity of l(W ), Beck
and Teboulle [5] show that the convergence rate of the ob-

jective function value has been improved from O(1/
√
k) to

O(ln(k)/k) using the sub-gradient method. However, the
sub-gradient method still converges slowly because the sub-
gradient method is a very general method for solving non-
smooth optimization problems without exploring the special
structure of Eq. (5) and the step size at each step is shrinking
to zero (or the step size is a very small constant).

The cutting plane method [7] and the level set method [20]
are another two approaches which can solve the optimization
problem in Eq. (5). They can be viewed as improved meth-
ods of the sub-gradient method. Similar to the sub-gradient
method, the cutting plane and the level set methods are gen-
eral methods for solving non-smooth optimization problems
and do not exploit the the special structure of Eq. (5).

4. EXPERIMENTS
In this section, we first evaluate the prediction perfor-

mance of the calibrated multi-task feature algorithms with
and without the squared norm regularizer. Then, we present
computational efficiency studies for our proposed algorithms.
Matlab codes are included at MALSAR package [35].

4.1 Prediction Performance
We include the following algorithms for comparison: (1)

Calibration: the calibrated multi-task feature learning for-
mulation in Eq. (5) by setting λ2 = 0; (2) Calibration-
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Table 1: The averaged MSE (standard deviation) over 10 random splittings of training and test samples.
Training ratio refers to the ratio of training samples to the total samples.

data sets training ratio Calibration Calibration-L2 LeastSquares LeastSquares-L2

Synthetic
60% 11.73(0.37) 11.80(0.42) 12.03(0.29) 12.03(0.29)
70% 9.19(0.43) 9.18(0.40) 10.09(0.49) 10.09(0.49)
80% 7.24(0.42) 7.25(0.42) 8.28(0.65) 8.28(0.65)

ADNI ADAS-Cog
60% 37.27(2.31) 37.45(2.24) 38.92(2.75) 39.02(2.81)
70% 32.95(1.88) 33.57(2.21) 34.19(1.99) 34.15(1.98)
80% 27.11(2.12) 26.73(1.72) 27.38(1.82) 27.35(1.75)

ADNI MMSE
60% 21.93(0.87) 21.80(0.97) 23.63(0.71) 23.69(0.71)
70% 18.75(0.24) 18.52(0.39) 20.26(0.86) 20.30(0.87)
80% 15.20(1.00) 15.08(1.12) 16.53(0.76) 16.54(0.78)
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Figure 1: The primal objective function value (P-SPG, P-SFISTA and P-ADMM) and the dual objective
function value (D-PG and D-FISTA) vs. CPU time (seconds) plots on the Synthetic data set. The right
figures are magnified views of the left figures. The legend “PrimalObj” denotes the optimal primal objective
function value in Eq. (5) and regularized parameters are set as λ1 = λ2 = λ0

∑m
i=1 ni, where ni is the number

of samples from the i-th task.

L2: the calibrated multi-task feature learning formulation
in Eq. (5) by setting λ2 6= 0; (3) LeastSquares: the non-
calibrated multi-task feature learning formulation in Eq. (1)
by setting r(W ) = ‖W ‖1,2; (4) LeastSquares-L2: the non-
calibrated multi-task feature learning formulation in Eq. (1)
by setting r(W ) = ‖W ‖1,2 and adding a squared norm regu-
larizer λ2

2
‖W ‖2F . We conduct experiments on both synthetic

and real-world data sets which are described as follows:
Synthetic Data: We adopt the similar procedure in [22]

to generate the synthetic data as follows: we set the num-
ber of tasks as m = 10 and each task has ni = 100 sam-
ples which have d = 200 features (i.e., the dimensionality
is d = 200); each row of the data matrix Xi ∈ R

ni×d of
the i-th task is independently sampled from the multivari-
ate normal distribution N(0,Σ) with σjj = 1 and σjk = 0.5
for all j 6= k, and it is normalized such that the length of
each column of Xi is 1; each entry of the underlying ground
truth matrix W ∈ R

d×m is independently sampled from the

uniform distribution U(−10, 10) and then we randomly set
95% rows of W as zero vectors; each entry of the noise vector
δi ∈ R

ni is independently sampled from the normal distri-
bution N(0, σ2

i ), where σi = 2−(i−1)/4 for i = 1, · · · , m; the
response vector yi ∈ R

ni of the i-th task is computed by
yi = Xiwi + σmaxδi, where σmax = 2

√
2.

Real-World Data: We conduct experiments on two real-
world data sets which are summarized as follows: (I) The
Alzheimer’s Disease Neuroimaging Initiative (ADNI)1 is a
longitudinal study aiming at identifying important neuroimag-
ing biomarkers that are predictive of the progression of the
Alzheimer’s disease and building predictive models for prog-
nosis of the disease. In our experiments, we use 310 MRI
features from 648 patients to predict the MMSE value, which
is a cognitive score that indicates the cognitive functionality
of the patients. According to the medical diagnosis, there

1
www.loni.ucla.edu/ADNI/
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Figure 2: The primal objective function value (P-SPG, P-SFISTA and P-ADMM) and the dual objective
function value (D-PG and D-FISTA) vs. CPU time (seconds) plots on the ADNI ADAS-Cog data set. The
right figures are magnified views of the left figures. The legend “PrimalObj” denotes the optimal primal
objective function value in Eq. (5) and regularized parameters are set as λ1 = λ2 = λ0

∑m
i=1 ni, where ni is the

number of samples from the i-th task.

are 191 normal control (NC), 319 mild cognitive impairment
(MCI), and 138 patients with probably Alzheimer’s disease
(AD) [please refer to [36, 37] for more details about the data].
We thus construct three tasks, and in each medical group
we build one regression model to predict the corresponding
MMSE scores. (II) We also use the ADNI data set and build
multi-task regression models for predicting the ADAS-Cog
score, which is another important cognitive score. We con-
struct the task in the same way as in (I).

In the prediction performance experiments, we terminate
the comparative algorithms when the relative change of the
two consecutive objective function values is less than 10−6 or
the number of iterations exceeds 10000. We randomly split
the samples from each task into training and test samples
with different training ratios (60%, 70% and 80%). All pa-
rameters of the comparative algorithms are tuned via 5-fold
cross validation. For each training ratio, we report the aver-
aged mean squared error (MSE) and the standard deviation
over 10 random splittings of training and test samples as
shown in Table 1. From these results, we have the following
observations: (a) The calibrated multi-task feature learn-
ing algorithms (Calibration and Calibration-L2) outperform
the non-calibrated ones (LeastSquares and LeastSquares-
L2), which shows the superior prediction performance of the
calibrated algorithms over the non-calibrated ones. (b) Cal-
ibration and Calibration-L2 achieve very similar prediction
performance, which demonstrates that the proposed variant
keeps the superior prediction performance of the calibrated
multi-task feature learning over the non-calibrated one. In
the next subsection, we will show that solving the smooth
dual problem using a proper optimization algorithm is much
more efficient than solving the primal problem directly.

4.2 Computational Efficiency Studies
We study the computational efficiency of solving the op-

timization problem in Eq. (5) by comparing the following
algorithms: (1) D-PG: solve the primal optimization prob-
lem in Eq. (5) via using SpaRSA [32] to solve the dual opti-
mization problem in Eq. (10); (2) D-FISTA: solve the pri-
mal optimization problem in Eq. (5) via using FISTA [4] to
solve the dual optimization problem in Eq. (10); (3) P-SPG:
solve the primal optimization problem in Eq. (5) via using
SpaRSA [32] to solve the smoothed optimization problem
in Eq. (37); (4) P-SFISTA: solve the primal optimization
problem in Eq. (5) via using FISTA [4] to solve the smoothed
optimization problem in Eq. (37); (5) P-ADMM: solve the
primal optimization problem in Eq. (5) by using ADMM [8].
We conduct the experiments on the same data sets (both
synthetic and real-world) described in the last subsection.
We initialize D-PG and D-FISTA with θ0 whose entries are
independently sampled from the standard normal distribu-
tion, and initialize P-SPG, P-FISTA and P-ADMM with
W 0 which is computed by Eq. (19) using θ0. We terminate
the comparative algorithms when the relative change of the
two consecutive objective function values2 is less than 10−6

or the number of iterations exceeds 10000. All algorithms
are implemented in Matlab and executed on an Intel Core
i7-3770 CPU (@3.4GHz) with 32GB memory.

2The objective function value indicates the dual objective
function value in Eq. (10) and the primal objective function
value in Eq. (5) for dual optimization algorithms (D-PG and
D-FISTA) and for primal optimization algorithms (P-SPG,
P-FISTA and P-ADMM), respectively.
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Figure 3: The primal objective function value (P-SPG, P-SFISTA and P-ADMM) and the dual objective
function value (D-PG and D-FISTA) vs. CPU time (seconds) plots on the ADNI MMSE data set. The right
figures are magnified views of the left figures. The legend “PrimalObj” denotes the optimal primal objective
function value in Eq. (5) and regularized parameters are set as λ1 = λ2 = λ0

∑m
i=1 ni, where ni is the number

of samples from the i-th task.

To show detailed convergence behaviors of the compara-
tive algorithms and compare their computational efficiency,
we report the primal objective function value (for P-SPG, P-
FISTA and P-ADMM) and the dual objective function value
(for D-PG and D-FISTA) vs. CPU time plots as shown in
Figure 1, Figure 2 and Figure 3. To better compare the
efficiency of dual and primal optimization algorithms, in
each figure, we also draw a horizontal line indicating the
optimal primal objective function value in Eq. (5). From
these results, we have the following observations: (a) D-
PG and D-FISTA increase the dual objective function value
which finally converges to the optimal primal objective func-
tion value. This validates the fact that the strong duality
holds for the optimization problem in Eq. (5). (b) D-PG
is the most efficient among all algorithms on all data sets.
Specifically, D-PG always quickly increases the dual objec-
tive function and rapidly terminates by approaching the op-
timal primal objective function value. (c) D-PG converges
faster than D-FISTA and D-SPG converges faster than P-
SFISTA, which demonstrates that SpaRSA indeed has very
good empirical convergence performance. Although there is
no rigorous proof that D-PG is the most efficient, empirical
studies demonstrate that using SpaRSA to solve the dual
problem is much more efficient than that by solving the pri-
mal problem directly. This may be due to the nice properties
of the dual problem and the empirically fast convergence of
SpaRSA.

5. CONCLUSIONS
In this paper, we study a variant of the calibrated multi-

task feature learning by adding a squared norm regularizer.

We derive a smooth dual optimization problem with a piece-
wise sphere constraint, which enables us to develop fast dual
optimization algorithms. We also provide a detailed conver-
gence analysis for the proposed dual optimization algorithm.
Empirical studies demonstrate that, the dual optimization
algorithm quickly converges and it is much more efficient
than the primal optimization algorithm. Moreover, the cali-
brated multi-task feature learning algorithms with and with-
out the squared norm regularizer achieve similar prediction
performance and both outperform the non-calibrated ones.
In our future work, we will analyze statistical properties of
the proposed formulation and apply it to other applications
such as Drosophila image annotation [17].
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APPENDIX

A. Primal Smoothed Optimization Algorithm

We use the smoothing technique [27] to derive a primal
smoothed optimization algorithm to solve Eq. (5). Based
on the definition of the dual norm, we have

m∑

i=1

‖Xiwi − yi‖ =
m∑

i=1

max
‖vi‖≤1

vT
i (Xiwi − yi). (34)

Define a function as
m∑

i=1

‖Xiwi − yi‖µ =

m∑

i=1

max
‖vi‖≤1

{
vT
i (Xiwi − yi)−

µ

2
‖vi‖2

}
,

(35)

where µ > 0 is a smoothing parameter. We show in the
following proposition that

∑m
i=1 ‖Xiwi − yi‖µ is smooth.

Theorem 4. The optimization problem in Eq. (35) has a
unique solution in the following closed-form:

vi(wi) =
Xiwi − yi

max(µ, ‖Xiwi − yi‖)
.

Moreover,
∑m

i=1 ‖Xiwi−yi‖µ is continuously differentiable
and Lipschitz continuous gradient with respect to W . Specif-
ically, the gradient Gµ(W ) of

∑m
i=1 ‖Xiwi − yi‖µ is

Gµ(W ) = [XT
1 v1(w1), · · · , XT

mvm(wm)],

and the Lipschitz constant of Gµ(W ) is

L̃ =
maxi∈{1,··· ,m} σ

2
max(Xi)

µ
. (36)

Based on Theorem 4 (the proof of Theorem 4 is very similar
to that of Theorem 1 and is thus omitted here), we know
that

∑m
i=1 ‖Xiwi−yi‖µ is a smoothed surrogate of the non-

smooth term
∑m

i=1 ‖Xiwi − yi‖. Thus, we consider solving
the following smoothed version of the optimization problem
in Eq. (5):

Ŵ = argmin
W∈Rd×m

{
m∑

i=1

‖Xiwi − yi‖µ +
λ2

2
‖W ‖2F + λ1‖W ‖1,2

}
.

(37)
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The primal smoothed algorithm in fact solves the optimiza-
tion problem in Eq. (5) via solving the smoothed optimiza-
tion problem in Eq. (37). To be more specific, we present a
primal smoothed optimization algorithm called accelerated
primal smoothed algorithm given in Algorithm 2, in which
FISTA [4] is used to solve the smoothed optimization prob-
lem in Eq. (37) and some notations are defined as follows:

l(W )µ =

m∑

i=1

‖Xiwi − yi‖µ +
λ2

2
‖W ‖2F + λ1‖W ‖1,2,

s(W )µ =

m∑

i=1

‖Xiwi − yi‖µ +
λ2

2
‖W ‖2F .

The convergence analysis of Algorithm 2 is similar to The-
orem 2.2 in [22] and is thus omitted here.

Algorithm 2: Accelerated Primal Smoothed Algorithm

Input : W 0 ∈ R
d×m, η0 > 0, β > 1;

1 Initialize W 1 ← W 0; t0 ← 1; t1 ← 1;
2 for k = 1, 2, · · · do
3 αk ← tk−1−1

tk
;

4 V k = W k + αk(W
k −W k−1);

5 for j = 0, 1, 2, · · · do
6 ηk ← βjηk−1; Ṽ

k ← V k − 1
ηk
∇s(V k)µ;

7 Compute W k via proximal gradient:

W k = argmin
W

{ηk
2
‖W − Ṽ k‖2F + λ1‖W ‖1,2

}
;

if the following line search criterion

l(W k)µ ≤l(W k)µ + tr(∇l(V k)Tµ (W
k − V k))

+
ηk
2
‖W k − V k‖2F

is satisfied then
8 break;
9 end

10 end
11 if some convergence criterion is satisfied then
12 Let W ⋆ ←W k;
13 break;

14 end

15 tk+1 ← 1+
√

1+4t2
k

2
;

16 end
Output: W ⋆

Remark 3. Similar to the dual optimization algorithm,
we can also use SpaRSA [32] to solve the smoothed opti-
mization problem in Eq. (37). Due to the use of the Barzilai-
Borwein (BB) rule [3, 32], SpaRSA achieves very good em-
pirical convergence performance.

B. Alternating Direction Method of Multipliers

(ADMM)

We know that the optimization problem in Eq. (5) is equiv-
alent to the constrained optimization problem in Eq. (6)
and we can write down the augmented Lagrange function of

Eq. (6) as follows:

LA(W,z, θ, ρ) =
m∑

i=1

‖zi‖+ λ1‖W ‖1,2 + λ2

2
‖W ‖2F ,

+
m∑

i=1

{
θ
T
i (yi − zi −Xiwi) +

ρ

2
‖yi − zi −Xiwi‖2

}
,

where z = [zT1 , · · · , zTm]T ∈ R

∑m
i=1

ni ; θ = [θT
1 , · · · ,θT

m]T ∈
R

∑m
i=1

ni with θi ∈ R
ni being the Lagrange multiplier cor-

responding to the constraint zi = yi − Xiwi; ρ > 0 is a
penalty parameter.

The ADMM solves the optimization problem in Eq. (5)
by alternatively updating the variables as follows:
(1) Update W :

W k = argmin
W

{
λ1‖W ‖1,2 + λ2

2
‖W ‖2F

+

m∑

i=1

[
(θk−1

i )T (yi − zk−1
i −Xiwi)

+
ρ

2
‖yi − zk−1

i −Xiwi‖2
]}

= argmin
W

{
λ1‖W ‖1,2 + λ2

2
‖W ‖2F

+
ρ

2

m∑

i=1

∥∥∥∥∥
θk−1
i

ρ
− zk−1

i + yi −Xiwi

∥∥∥∥∥

2}

We can use FISTA [4] or SpaSRA [32] to efficiently solve
the above problem, where the gradient of the smooth part
of the objective function is given by:

∇W fs(W ) = λ2W + [t1 . . . tm] with

ti = −ρXT
i

(
θk−1
i

ρ
− zk−1

i + yi −Xiwi

)
.

(2) Update z:

zk = argmin
z

{
m∑

i=1

‖zi‖+
m∑

i=1

[
(θk−1

i )T (yi − zi −Xiw
k
i )

+
ρ

2
‖yi − zi −Xiw

k
i ‖2
]}

= argmin
z

m∑

i=1

{
‖zi‖+ ρ

2

∥∥∥∥∥
θk−1
i

ρ
+ yi − zi −Xiw

k
i

∥∥∥∥∥

2}
.

For the above problem, the optimal solution is given by the
following closed-form:

zki = argmin
zi

{
1

ρ
‖zi‖+

1

2

∥∥∥∥zi −
(
θk−1
i

ρ
+ yi −Xiw

k
i

)∥∥∥∥
2
}

= max

(
0, 1− 1

ρ‖vi‖

)
vi,

where vi =
θk−1
i

ρ
+ yi −Xiw

k
i .

(3) Update θ:

θ
k
i = θ

k−1
i + ρ

(
yi − zki −Xiw

k
i

)
.
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