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ABSTRACT

We consider a search task as a set of queries that serve the same user
information need. Analyzing search tasks from user query streams
plays an important role in building a set of modern tools to improve
search engine performance. In this paper, we propose a probabilis-
tic method for identifying and labeling search tasks based on the
following intuitive observations: queries that are issued temporally
close by users in many sequences of queries are likely to belong to
the same search task, meanwhile, different users having the same
information needs tend to submit topically coherent search queries.
To capture the above intuitions, we directly model query tempo-
ral patterns using a special class of point processes called Hawkes
processes, and combine topic models with Hawkes processes for
simultaneously identifying and labeling search tasks. Essentially,
Hawkes processes utilize their self-exciting properties to identify
search tasks if influence exists among a sequence of queries for in-
dividual users, while the topic model exploits query co-occurrence
across different users to discover the latent information needed for
labeling search tasks. More importantly, there is mutual reinforce-
ment between Hawkes processes and the topic model in the unified
model that enhances the performance of both. We evaluate our
method based on both synthetic data and real-world query log data.
In addition, we also apply our model to query clustering and search
task identification. By comparing with state-of-the-art methods, the
results demonstrate that the improvement in our proposed approach
is consistent and promising.

Categories and Subject Descriptors:
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning; J.4 [Com-
puter Applications]: Social and Behavioral Sciences

Keywords: Hawkes process, latent Dirichlet allocation, variational
Inference, search task

1. INTRODUCTION
Nowadays, search engines have become the most important and

indispensable Web portal, whereby people pursue a wide range of
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searches in order to satisfy a variety of information needs. To bet-
ter understand users’ information needs and search behaviors, one
important research direction is to detect and split users’ temporal
sequences of queries into disjoint query sessions, which are often
defined as a sequence of queries issued within a fixed period of
time, ranging from 5 to 120 minutes. However, a user’s single ses-
sion may contain queries with multiple intents, or consist of seek-
ing information on single or multiple topics [28]. Going beyond a
search session, a search task [23, 17, 30], which is defined as a set
of queries serving for the same information need, has been recog-
nized as a more suitable atomic unit than a single query or session,
not only for better modeling user search intent but also for improv-
ing other downstream search engines’ applications, such as query
suggestion [9, 17] and personalized search [33]. Additionally, an-
alyzing the formation of search tasks also deepens our understand-
ing of the simultaneous temporal diffusion of multiple memes, i.e.,
intents or ideas, in social networks [34]. Therefore, how to effec-
tively identify and label search tasks becomes an interesting and
challenging problem.

Recently, there have been attempts to extract in-session tasks [28,
23, 17], and cross-session tasks [18, 19, 1, 30] from sequences of
queries. They build clustering or classification methods to identify
tasks based on time splitting, lexicon similarity, and query refor-
mulation patterns. Even though the temporal submission patterns
in query sequences carry valuable information for mining search
tasks, those existing methods only use them for either simply split-
ting sequences of queries into temporally-demarcated sessions [18,
19, 23], or transforming them as features among queries [19, 17,
30]. We believe that by directly modeling temporal information
as part of extracting search tasks in a richer way, we can substan-
tially improve search task mining. Another key drawback of those
existing methods is that most of them focus only on the query se-
quences of individual users instead of considering the whole query
log. Only very recently, there has been an attempt which tries to
take advantage of the collective intelligence of many users for dis-
covering tasks [24]. It is obvious that different users may have the
same information need, and share the same search task, thus mod-
eling query sequences across different users will be very valuable
for capturing semantically similar search tasks in a global context.

Generally, two consecutive queries issued by a user are more
likely to belong to the same search task than two non-contiguous
queries, but that is not necessary always the case. For example, as
shown in Figure 1, the consecutive queries “autotrader” and “Ya-
hoo autos” issued by user ua belong to the same search task, while
the consecutive queries “Yahoo autos” and “wells fargo” belong to
two separate search tasks. Another complicated case is that two
non-contiguous queries may belong to the same or different tasks
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Figure 1: An Illustration of Relationship between Consecutive
Queries and Search Tasks. Every circle represents a query is-
sued by a user at time tn. The blue arrow line indicates an in-
fluence exists between queries. A set of queries linked by blue
lines denotes a search task, and some topically coherent search
tasks across three users are labeled by different colors.

as well, e.g., “verizon wireless” and “autotrader” issued by user ua

belong to two different search tasks, but “Yahoo autos” and “KBB
cars” issued by users ub belong to the same search task. These
examples show that in reality we cannot simply rely on the time
splitting or an individual user behavior for identifying search tasks.
It makes more sense to take into account the explicit temporal in-
formation of query sequences exhibited by many different users in
the whole query logs. The basic intuition is that if two consecu-
tive or temporally-close queries are issued many times by the same
user or many others users, it is more likely these two queries are
semantically related to each other, i.e., belong to the same search
task. As we can see, the consecutive queries “wells fargo” and
“Bank of america” are issued by both ua and ub (and possible
many other users), while the consecutive queries “Yahoo autos”
and “wells fargo” are only issued by user ua. Therefore, accord-
ing to the above intuition, “wells fargo” and “bank of america” are
more likely to belong to the same search task compared with “Ya-
hoo auto” and “wells fargo”. Similarly, for non-contiguous queries,
“autotrader” and “KBB cars” are issued temporally very close by
both ub and uc, which indicates they have higher chance of be-
longing to the same search task. Moreover, different users may
engage in different search patterns, e.g., user ub searches more fre-
quently than user ua, which indicates how likely the search tasks
may change within a certain time period for different users, and
then they should be treated differently based on their search activi-
ties. All in all, we choose to identify search tasks by leveraging the
temporally weighted query co-occurrence — this not only guaran-
tees sound performance by making full use of both textual and tem-
poral information of the entire query sequences, but also enables
the labeling of the identified search tasks since semantically related
queries are clustered together through query links determined by
co-occurrence.

To model temporally close query co-occurrences, we turn to La-
tent Dirichlet Allocation (LDA) [7], one powerful graphical model
that exploits co-occurrence patterns of queries in query sequences.
Existing temporal LDA models [16, 32] learned distinguished topic
distributions from temporal fragments of data, while ignored query
co-occurrence across different fragments, thus failed to make full
use of the temporal information. Recently, some spatial-LDA mod-
els [31] encouraged queries that are very close in space to share
similar topic distributions, i.e., weighing the reliability of query

co-occurrence based on spatial closeness. However, there exists
no uniform standards for measuring such closeness across different
instances, especially in temporal data. Our research, on the other
hand, considers making full use of temporal information by weigh-
ing the reliability of each co-occurrence of a pair of queries based
on how likely an influence exists between this pair of queries. Here
we define query influence as:

• The occurrence of one query raises the probability that the
other query will be issued in the near future.

Influence, rather than closeness, enables us to distinguish tempo-
rally close query co-occurrence from temporally regular query co-
occurrence for each user based on his own propensity of query
submission. For instance, in Figure 1, the absolute temporal dis-
tance between "KBB cars" and "Expedia" is smaller than that be-
tween "verizon wireless" and "sprint wireless", however, influence
exists between the latter pair of queries rather than the former one,
since user ub’s query submission propensity is much larger than
that of user ua. To model such personal propensity and influence,
in this paper, we utilize Hawkes processes [14], a special class of
point processes, whose intensity functions characterize how likely
an event will happen at each timestamp. The intensity function of
Hawkes includes a base intensity, along with a positive influence of
the past events on the current one. Such a positive influence is orig-
inated from the self-exciting property that the occurrence of one
event in the past increases the probability of events happening in
the future. We find that Hawkes’s self-exciting property coincides
with the concept of influence in our situation, and its base intensity
captures the personal propensity. Thus we employ Hawkes pro-
cesses to fully utilize temporal information in query sequences for
identifying the existence of query influence.

From the perspective of Hawkes processes, influence generally
exists between temporally-close queries. However, for an observed
query sequence, not all temporally-close query-pairs have the ac-
tual influence in between, since in some cases the occurrence of
the later queries may result from the base intensity rather than self-
exciting property. Furthermore, existing Hawkes models [20, 35]
find it intractable to obtain an optimal solution of influence exis-
tence based on temporal information only. Last but the most im-
portant, it is unable to directly identify search tasks by either gen-
erating topics based on query co-occurrence using LDA, or esti-
mating all influence candidates by Hawkes. To address the above
issues, we concentrate on the influence existence between seman-
tically related queries, whose estimation can be simplified by the
joint efforts of LDA and Hawkes and enable a direct identification
of search tasks.

According to the above intuition, a search task can be viewed as
a sequence of semantically related queries linked by influence. A
query that does not satisfy user’s information need will self-excite
the submission of another semantically related query in the near fu-
ture. On the other hand, a query rarely excites the submission of
another semantically unrelated query even if their timestamps are
very close. Thus we believe that those semantic influence are the
influence that actually take effect, and our paper solves search task
identification directly by identifying those influence. To limit the
solution space of such influence, we cast both influence existence
and query-topic membership into latent variables, and identify the
existence probability of pairwise influence with the similarity of
the memberships of associated two queries. This identification
works as a bridge between LDA and Hawkes processes, as LDA
assigns high influence-qualified co-occurred queries to the same
topic, while query co-occurrence frequency narrows the solution
space of influence. In this way, LDA and Hawkes mutually bene-
fit each other in identifying search tasks using both temporal and
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textual information. To this end, we propose a probabilistic model
that incorporates this equalization to combine the LDA model with
Hawkes processes, and develop a mean-field variational inference
algorithm to estimate the influence by optimizing the data likeli-
hood. We evaluate our method on synthetic data, and also apply it
to mine search tasks in both AOL and Yahoo query log data. Exper-
imental results show that the proposed method can achieve signifi-
cantly better performance than existing state-of-the-art methods.

In a nutshell, our major contributions include: (1) We cast search
task identification into the problem of identify semantic influence
in observed query sequences, and propose a probabilistic model
by combining LDA model with Hawkes processes to address the
problem. Most importantly, there is mutual reinforcement between
Hawkes processes and the topic model in the unified model that en-
hances the performance of both. (2) We employ Hawkes processes
to directly model temporal information as part of search task iden-
tification, which has never been explicitly exploited in the existing
works.

The rest of the paper is organized as follows. We first introduce
Hawkes processes, and the proposed model by combining LDA
with Hawkes processes in Section 2. In Section 3, we develop a
fast mean-field variational inference algorithm for the resulting op-
timization problem. We then describe and report the experimental
results in Section 4. Finally, we introduce the related work in Sec-
tion 5, and present our conclusions and future work in Section 6.

2. PROBLEM DEFINITION
Let us consider a typical scenario where M users issue M corre-

sponding query sequences, and we mark the query sequence of user
m as Tm = {tm,n, n = 1, . . . , Nm}, where tm,n is the time-stamp
of the n-th query. We denote the word set of the n-th query of user
m as Wm,n = {wm,n,1, . . . , wm,n,cm,n}. Existing works gen-
erally identify search task by sequentially solve two subproblems:
1) using queries’ textual information to cluster queries in observed
query sequences, and 2) using obtained clusters together with tem-
poral information to partition query sequences into search tasks. In
this section, we show how these two subproblems can be simulta-
neously addressed by combining Hawkes processes with the LDA
model, and how temporal and textual information can be combined
to address the above two subproblems in a mutually-beneficial way.
We also show how our model can be used to automatically label
search tasks along with search task identification.

2.1 Query Co-occurrence and LDA
We address the query clustering problem using graphical mod-

els like LDA [7], which has been proven to be effective in topic
discovery by clustering words that co-occur in the same document
into topics. Let us first introduce how to use LDA to cluster queries
based on their textual information only. One straightforward idea
is to treat each user’s query sequence as a document, and clus-
ter queries that co-occur in the same query sequence into topics,
since queries issued by the same user are generally more likely
to share the same information need than queries issued by dif-
ferent users. Since we focus on query co-occurrence instead of
word co-occurrence, we enforce that words in one query belong
to the same topic. Our LDA model assumes K topics lie in the
given query sequences, and each user m is associated with a ran-
domly drawn vector πm, where πm,k denotes the probability that
a query issued by user m belongs to topic k. For the n-th query
in the query sequence of user m, a K-dimensional binary vector
Ym,n = [ym,n,1, . . . , ym,n,K ]T is used to denote the query’s topic
membership. One challenge we encounter in the inference of topic
membership Y is that, without temporal information of queries, it is

difficult to judge whether two non-contiguous co-occurred queries
should belong to the same topic or not. The reason is that the re-
liability of the co-occurrence of queries heavily depends on their
temporal distances. A pair of queries that co-occurs many times
may be completely unrelated if the temporal gap between them is
always large.

Since the co-occurrence of queries with large temporal gap can
be harmful, we make use of temporal information to decide which
query co-occurrence should be taken into account by LDA, i.e.,
how a document in LDA model should be constructed. One sim-
ple way of utilizing temporal information is to define a document as
consecutive queries in a fixed time window (or time session), which
enables us to focus on temporally close query co-occurrence. Tem-
porally close queries that issued many times by the same user or
many other users are more likely to be semantically related to each
other, i.e., belong to the same search task. However, a time win-
dow based LDA model may suffer from the following drawbacks:
1) Usually no optimal solution exists for cutting the entire query
sequence into different time-sessions. If we allow different time-
sessions to overlap, redundant query co-occurrence will be taken
into account; otherwise, pairs of queries with very small temporal
gap can be partitioned into different tasks, which may cause infor-
mation loss. 2) Using time windows will ignore or misunderstand
users’ own temporal patterns in searching.

To address the above drawbacks, we can weigh each query co-
occurrence based on how likely an influence exists between this
pair of queries, i.e., the degree to which the occurrence of one
query raises the probability that the other query will be issued in
the near future. That is to say, one document is a subsequence
of queries linked through influence. This influence, rather than
time window, enables us to distinguish temporally close query co-
occurrence from temporally regular query co-occurrence for each
user based on his/her own propensity of query submission. To
model such personal propensity and influence, we will utilize Hawkes
processes to capture the temporal information in different query se-
quences.

2.2 Hawkes Process
One powerful tool in statistics for modeling event (query) se-

quence data is temporal point processes, which are widely used
to describe data that are localized at a finite set of time points
{t1, . . . , tN} [27]. In a temporal point process, N(t) counts the
number of events that has occurred up to and including time t, and
the conditional intensity function λ(t|Ht) denotes the expected in-
finitesimal rate at which events occur at timestamp t depending on
Ht, the history of events preceding t. For clarity, hereafter we use
∗ to imply the dependence on Ht, i.e., λ(t|Ht) will be denoted
λ∗(t).

The Hawkes process is a class of self- or mutually-exciting point
process models [14]. A univariate Hawkes process {N(t)} is de-
fined by its intensity function

λ∗(t) = µ(t) +

∫ t

−∞

κ(t− s)dN(s),

where µ > 0 is a base intensity, κ is a kernel function capturing the
positive influence of past events on the current value of the inten-
sity process, which is the process’s self-exciting property that the
occurrence of one event in the past will trigger events happening
in the future. Such self-exciting property can either exists between
every pair of events as assumed in a normal univariate Hawkes pro-
cess, or only exists between limited pair of events. For instance,
any query but the last one in a search task can imply an increased
probability of future queries issued in the same search task, since
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the user’s information need in this search task hasn’t been satisfied.
Meanwhile, queries from different search tasks may rarely affect
each other.

Since our definition of influence coincides with the self-exciting
property of Hawkes process, we propose to identify the influence
among queries by building one separate Hawkes process on each
user’s query sequence. In the query sequence of user m, we use
Rm,n,n′ to denote whether influence exists between the n-th and
n′-th query. If influence exists, we believe that the occurrence of
n-th query has a time-decay effect on increasing the intensity at
the timestamp of the occurrence of the n′-th query. Thus based on
influence Rm, we model the query sequence issued by user m with
a univariate Hawkes process, whose intensity can be written as:

λm(t) = µm +
∑

tm,l<t

Rm,l,nβmκ(t− tm,l). (1)

Here the baseline intensity µm captures how often user m issues
a query spontaneously1 (i.e., not triggered by any other queries),
while βm models the degree of influence between sequential queries
issued by user m, and κ(t − tm,l)

2 captures the time-decay effect
only.

Influence R can be estimated together with µ and β by maxi-
mizing the likelihood of the proposed Hawkes model on observed
query sequence {Tm = {tm,n}}. The estimation of R is actually
to identify query-pairs in which the occurrence of the later query
most likely violates the normal query-submission propensity, and
gets triggered by the earlier one. In other words, if influence exists
between two queries, the corresponding temporal gap can be signif-
icantly less than the average temporal gap of pairs of queries in the
same query sequence (issued by the same user). Since the definition
of influence suggests that queries linked by significant influence
naturally form search tasks, a thresholding of Rm,l,nβmκ(t−tm,l)
with a small constant automatically results in search task partition.
The estimation of R consequently partitions observed query se-
quences into search tasks.

2.3 LDA-Hawkes
Estimated by Hawkes processes, influence R captures the unique

temporal pattern of each user’s query sequence. We use R to weight
the query co-occurrence, which bridges the LDA model and Hawkes
process through:

Rm,n,n′ = Y T
m,n ∗ Ym,n′ , (2)

that is to say, influence exists between these two queries if and only
if the two queries share the same topic. Since queries in the same
search task are linked by influence, all queries in the same search
task share the same topic, which labels this search task as well.

Through our defined bridge between influence R and query-topic
membership Y , the Hawkes process and the LDA model mutu-
ally benefit each other in identifying and labeling search tasks.
On the one hand, provided influence among queries, we obtain 0-
1 weighted query co-occurrence of each candidate query-pair in
observed query sequences, and generate topics accordingly. For
instance, in Figure 2, although 8 pairs of queries (9 possible com-
binations with 8 unique query-pairs) co-occur in query sequences,
only the co-occurrences of query-pairs “bank of america”–“wells

1For simplicity, we assume this cascade-birth process is a homoge-
neous Possion process with µm(t) = µm.
2Our paper uses the exponential kernel in experiments, i.e.,
κ(∆t) = ωe−ω∆t if ∆t ≥ 0 or 0 otherwise. However, the
model development and inference is independent of kernel choice
and extensions to other kernels such as power-law, Rayleigh, non-
parametric kernels are straightforward.

Figure 2: A Toy Example of our LDA-Hawkes model. Blue line
denotes the influence among queries. Green dash line shows the
label each query belongs to.

fargo” and “Expedia”–“american airline” have positive weights.
These weighted query co-occurrences contain personal temporal
information, thus are expected to lead to improved topics compared
with existing LDA-based methods [16, 32, 31] that used no weight
scheme or only unifom standard weight scheme.

On the other hand, the estimation of influence R only based on
temporal data {Tm} can be intractable, since the exploration of

the whole space of R is known to very costly (2
∑

m Nm possi-
ble solutions). LDA-Hawkes further makes use of textual data to
limit the output space of R to the most probable subspace, since
topics learned by the LDA part in turn justify the influence exis-
tence between each pair of queries. Two queries rarely co-occur
can be clustered into different topics by the LDA part, based on
such query-topic membership no influence exists between these two
queries. For example, in the query sequence of user ub shown in
Figure 2, the temporal gap between query-pair “bank of america”–
“wells fargo” is larger than the temporal gap between query-pair
“wells fargo”–“facebook”. However, the pair of queries “bank of
america”–“wells fargo” also co-occurs in the query sequence of
user ua, while “wells fargo”–“facebook” does not, which in turn
emphasizes that influence should exist between “bank of america”
and “wells fargo” rather than between “wells fargo” and “face-
book”. To sum up, combined through influence, Hawkes process
and LDA reciprocally contribute to the search task identification
and labeling.

Finally, we present our generative model that combines Hawkes
process and LDA as follows:

• For each topic k, draw a V dimensional membership vector
σk ∼ Dirichlet(α′).

• For each user m, draw a K dimensional membership vector
πm ∼ Dirichlet(α).

• For the content of the n-th query issued by user m,

– Ym,n ∼ Multinomial(πm);

– For the i-th word in the n-th query issued by user m,

∗ wm,n,i ∼ Multinomial(Ym,n,σ);

• For the timestamp of the sequence of queries issued by user
m,

– draw personal base intensity µm and degree of influence
βm;

– derive Rm from {Ym,n} through Eqn (2);

– Nm(·) ∼ HawkesProcess(λm(·)), where the inten-
sity λm is defined as in Eqn (1).
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Figure 3: Graphical model representation of LDA-Hawkes and
the variational distribution that approximates the likelihood.
The upper figure shows the graphical model representation of
LDA-Hawkes, while the lower figure shows the variational dis-
tribution that approximates the likelihood.

Here V is the size of vocabulary. Note that in our LDA-Hawkes
model, queries issued by one user share the same topic distribu-
tion, while words in one query belong to the same topic. The topic
membership of the n-th query of user m, Ym,n, determines not only
the words the query owns, but also the timestamp of its occurrence
through Hawkes process λm(·).

Under our LDA-Hawkes model, the joint probability of data T =
{Nm(·)} = {{tm,n}

Nm
n=1}, W = {{Wm,n}

Nm
n=1} and latent vari-

ables {π1:M , Y } can be written as follows:

p(T,W,π1:M , Y, σ|α,α ′, µ,β)

=
∏

m

P ({tm,n}
Nm
n=1|Ym,1:Nm , µm,βm)

∏

m

∏

n

∏

i

P (wm,n,i|Ym,n,σ)

∏

m

∏

n

P (Ym,n|πm)
∏

m

P (πm|α)
∏

k

P (σk|α
′).

3. INFERENCE
Despite that a tremendous amount of work on inference of topic

models have been published, none of them are designed to address
topic model combined with point processes. In this section, we
derive a mean-field variational Bayesian inference algorithm for
our proposed LDA-Hawkes model.

3.1 Variational Inference
Under LDA-Hawkes model, given observations of both temporal

information T = {Nm(·)} = {{tm,n}
Nm
n=1} and textual informa-

tion W = {{Wm,n}
Nm
n=1} of query sequences, the log-likelihood

for the complete data is given by logP (T,W |µ,β,α,α ′). Since
this true posterior is hard to infer directly, we turn to variational
methods [6], whose main idea is to posit a distribution over the la-
tent variables with variational parameters, and find the settings of
the parameters so as to make the distribution close to the true pos-
terior in Kullback-Leibler (KL) divergence. In Figure 3, the lower
part shows the variational distribution that approximates the data
likelihood. Our paper chooses to introduce a distribution of latent
variables q specified as the mean-field fully factorized family as
follows:

q(π1:M , Y,σ1:K |γ1:M ,Φ, ρ1:K)

=
∏
m

q1(πm|γm)
∏
m

∏
n

q2(ym,n|φm,n)
∏
k

q1(σk|ρk)

where q1 is a Dirichlet, q2 is a multinomial, and {γ1:M ,Φ, ρ1:K}
are the set of variational parameters. We optimize those free pa-
rameters to tight the following lower bound L′ for our likelihood:

log p(T,W |µ,β,α,α ′) ≥Eq[log p(T,W,π1:M , Y,σ|α,α ′, µ,β)]

− Eq[log q(π1:M , Y,σ1:K)]. (3)

Isolating terms containing λ in Eqn (3), we have

Lh =
M∑

m=1

∑
n

Eq(log λ(tm,n))−
M∑

m=1

∫ T

0

Eq(λ(s))ds, (4)

as the partial likelihood on temporal data assuming query-topic dis-

tribution is known. On one hand, we have
∑M

m=1

∫ T

0
Eq(λ(s))ds =∑M

m=1 bm + T
∑M

m=1 µm. Here

bm =
Nm∑

n=1

n−1∑

l=1

r(φm,l,φm,n)(K(tm,n − tm,l)−K(tm,n−1 − tm,l)),

where K(t) =
∫ t

0
κ(s)ds, and we define function r(φm,l,φm,n)=∑

k φm,l,kφm,n,k , which can be viewed as the latent variable that
approximates influence R. On the other hand, in order to update
each Hawkes hyper-parameter µ and β independently, we adopt
the strategy in [34], and break down the log sum Eq(log λ(tm,n))
based on Jensen’s inequality as:

Eq(log(λ(tm,n))) ≥ ηm,nn log(µm) +
n−1∑

l=1

ηm,ln log(βmκ(tm,n − tm,l))

− ηm,nn log(ηm,nn) −
n−1∑

l=1

r(φm,l,φm,n)ηm,ln log(ηm,ln),

where {η} is a set of branching variables constrained by:

ηm,ln ≥ 0, ηm,nn +
n−1∑
l=1

r(φm,l,φm,n)ηm,ln = 1.

Under a coordinate descent framework, we optimize the lower
bound as in Eqn (3) against each variational latent variable3 and
the model hyper-parameter, including both LDA hyper-parameters
and Hawkes hyper-parameters. For variational latent variables, we
have the following process

• update rules for φ’s as:

φm,n,k ∝ exp(
∑

m

(Ψ(γm,k) − Ψ(
∑

k

γm,k))

+
∑

i

∑

v

wm,n,i,v [Ψ(ρk,v) − Ψ(
∑

v

ρk,v)]

+
n−1∑

l=1

fl,n +
Nm∑

l′=n+1

fn,l′ ),

where we define fl,n = φm,l,k(ηm,ln log(
βmκ(tm,n−tm,l)

ηm,ln
)−

βm(K(tm,n − tm,l)−K(tm,n−1 − tm,l)));

• update rules for γ’s as:

γm,k = αk +
∑
n

φm,n,k;

• update rules for ρ’s as:

ρk,v ∝ α′
v +

∑
m

∑
n

∑
i

φm,n,kwn,i,v;

3Here we categorize branching variables η as variational latent
variables.
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• and update rules for η as:

ηm,nn =
µm

µm +
∑n−1

l=1 r(φm,l, φm,n)βmκ(tm,n − tm,l)
,

ηm,ln =
βmκ(tm,n − tm,l)

µm +
∑n−1

l=1 r(φm,l, φm,n)βmκ(tm,n − tm,l)
.

3.2 Learning
We use a variational expectation-maximization (EM) algorithm

[11] to compute the empirical Bayes estimates of the LDA hyper-
parameters α and α′ in our LDA-Hawkes model. This variational
EM algorithm optimizes the lower bound as in Eqn (3) instead of
the real likelihood, it iteratively approximates the posterior by fit-
ting the variational distribution q and optimizes the corresponding
bound against the parameters.

In updating α, we use a Newton-Raphson method, since the ap-
proximate maximum likelihood estimate of α doesn’t have a closed
form solution. The Newton-Raphson method is conducted with a
gradient and Hessian as follows:

∂L′

∂αk

= N(Ψ(
∑

k

αk)−Ψ(αk)) +
∑

m

(Ψ(γm,k)−Ψ(
∑

k

γm,k)),

∂L′

∂αk1
αk2

= N(I(k1=k2)Ψ
′(αk1

)−Ψ′(
∑

k

αk)).

Similar update rules can be derived for α′.
On the other hand, to obtain the approximate maximimum like-

lihood estimation of Hawkes hyper-parameters, we optimize the
lower bound as in Eqn (3) against each Hawkes hyper-parameter,
and update µ and β independently with closed-form solutions as
follows:

βm =
1

bm

Nm∑

n=1

n−1∑

l=1

r(φm,l,φm,n)ηm,ln, µm =
1

T

Nm∑

n=1

ηm,nn.

Our variation inference algorithm, named LDA-Hawkes, can be
interpreted intuitively in the following way. The label/topic distri-
bution γ in each user’s query sequence is determined by both the
topic prior and the topic assignment of each query. The word dis-
tribution ρ in each topic is determined by both the word prior and
the topic assignment of each word. The probability of a query n
issued by user m belonging to topic k is jointly determined by: (a)
Users’ label/topic distributions; (b) how queries are semantically
clustered; (c) the influence from labels of queries in the past to the
label of the current query; and (d) the influence from the label of
the current query to labels of queries in the future.

In our mean-field variation inference algorithm, the computa-
tional cost of inferring variational variables is O((

∑
m Nm)KC̄),

where C̄ is the average number of words in a query. The compu-
tational cost of the estimation of LDA hyper-parameters is O(K +
V ). The computational cost of the estimation of Hawkes hyper-
parameters is O(

∑
m N2

m), which can be reduced to O(
∑

m Nm)
by controlling the number of influence candidate for each query.
Most queries have only limited number of influence associated,
since for each query, most of the rest queries are far from it, and
there exist many other queries in between. Thus the total computa-
tional cost of our algorithm is O((

∑
m Nm)KC̄ + V ).

4. EXPERIMENTS
We evaluated our LDA-Hawkes model on both synthetic and

real-world data sets, and compared the performance with the fol-
lowing baselines:

• two alternative LDA-based probabilistic models:

Time-Window(TW): This model assumes queries belong to
the same search task only if they lie in a fixed or flexible time
window, and uses LDA to cluster queries into topics based on
the query co-occurrences within the same time window. We
tested time windows of various sizes.

Word-Related: This model assumes queries belongs to the
same search task only if they share at least one word, and
uses LDA to cluster queries into topics based on the co-
occurrences of queries that sharing at least one word.

• two state-of-the-art query clustering approaches:

Session-Similarity[36]: This method evaluated query sim-
ilarity based on both query sessions and query content, and
used those similarity scores for query clustering.

GATE[2]: This is a Greedy Agglomerative Topic Extraction
algorithm. It extracted topics based on a pre-defined topic
similarity function, which considered both semantic similar-
ity and mission similarity. Here mission similarity refers
to the likelihood that two queries appear in the same mis-
sion, while missions are sequences of queries extracted from
users’ query logs through a mission detector.

• and three state-of-the-art search task identification approaches:
Bestlink-SVM [30]: This method identified search tasks us-
ing a semi-supervised clustering model based on the latent
structural SVM framework. A set of effective automatic an-
notation rules were proposed as weak supervision to release
the burden of manual annotation.

QC-HTC/QC-WCC [23]: This series of methods viewed
search task identification as the problem of best approximat-
ing the manually annotated tasks, and proposed both cluster-
ing and heuristic algorithms to solve it. QC-WCC conducted
clustering by dropping query-pairs with low weights, while
QC-HTC considered the similarity between the first and last
queries of two clusters in agglomerative clustering.

Reg-Classifier[18]: This method designed a diverse set of
syntactic, temporal, query log and web search features, and
used them in a logistic regression model to detect search
tasks.

4.1 Synthetic data
Data Generation. Given parameters (M,N,K,α,α ′, µ,β ), the
synthetic data is sampled according to the proposed generative model.
We record the sampled values of Y , and calculate the ground-truth
influence R for evaluating the accuracy of our prediction of in-
fluence among queries. Notice µ and β are both vectors of size
M , where the elements µm and βm are randomly generated in

[0.5µ̂, 1.5µ̂] and [0.5β̂, 1.5β̂] respectively before the simulation.
Vectors α and α′ are of size K and V respectively, where the el-
ement αk and α′

v are generated in [0.5α̂, 1.5α̂] and [0.5α̂′, 1.5α̂′]
respectively before the simulation.

Our synthetic data are simulated with two different settings:

• Small: M = 100, N = 120, K = 10, µ̂ = 0.01, β̂ = 0.5,
α̂ = 0.1, α̂′ = 0.1. Simulations were run 1,000 times using
the pre-generated parameters µ, β;

• Large: M = 10,000, N = 10,000, K = 50, µ̂ = 0.01,
β̂ = 0.5, α̂ = 0.1, α̂′ = 0.1. Simulations were run 10 times.

To test the robustness of our method, we add two types of noise
to the original synthetic data:

Event Noisy: We generate additional 10% of total number of
queries randomly in the time window of each already sampled query
sequence, and add them to the sequence;
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Intensity Noisy: Instead of using λ(t) to simulate the query
occurrence at time t, we use a noisy value λ′(t), which is obtained
by adding Guassian noise on λ(t):

λ′(t) = max(0.1e + 1, 0)λ(t), e ∼ N (0,σ). (5)

The default value of σ is set to be 1.

Inference and Estimation. Table 1 evaluates both training like-
lihood, and the accuracy of our proposed variational inference al-
gorithm in parameter estimation and latent variable inference on
the synthetic data. We can find that, on the small synthetic data,
LDA-Hawkes can recover the Hawkes parameters µ and β very
well, which represent users’ personal temporal patterns of query
submission. Meanwhile, based on the inferred query-topic mem-
bership Ŷ , we predict the influence R̂ among queries, and compare
with the ground-truth influence R to evaluate the accuracy of our
influence prediction through:

ProcR =
∑
m

1
Nm(Nm − 1)/2

Nm∑
n=1

Nm∑
n′=n+1

I(Rn,n′ = R̂n,n′).

Results in Table 1 show that LDA-Hawkes can accurately predict
influence. We also find an interesting phenomenon that the accu-
racy of our estimated Hawkes parameters and the accuracy of our
predicted influence are highly correlated, since given different pre-
dicted influence R̂, the optimal parameters µ and β that maximize
the likelihood of Hawkes processes on a query sequence can be
very different. On the large synthetic data, LDA-Hawkes’s perfor-
mance on parameter estimation becomes worse, while the accuracy
of influence prediction also decreases. Due to the shapely increased
data size, the combination of textual and temporal information be-
comes more complicated, which makes influence prediction more
difficult, and further affects the learning of users’ personal tempo-
ral patterns. On both noisy data sets, LDA-Hawkes’s performances
in both inference and estimation become worse.

4.2 Real-world Data
We also conducted extensive experiments on two real-world data

sets. The first data set is adapted from the query log of AOL search
engine [4]. The entire collection consists of 19.4 million search
queries from about 650,000 users over a 3-month period. We cleaned
the data by removing the duplicated queries which were submit-
ted consecutively within 1 minute. We randomly selected a sub-
set of users who submitted over 1,000 queries during this period,
and collected their corresponding search activities, including the
anonymized user ID, query string, timestamp, the clicked URL. As
a result, we collected 1,786 users with 2.2 million queries, and their
activities span from 18 days to 3 months. The second data set is
collected from Yahoo search engine, from Jan 2013 to September
2013. Similarly, we cleaned the data and randomly selected a sub-
set of users who submitted over 3,000 queries during this period.
As a result, we collected 1,475 users with 1.9 million queries, and
their activities span from 54 days to 9 months.

Model Fitness. Table 2 shows the log predictive likelihood on
events falling in the final 10% of the total time of query data. To
avoid overfitting issues, we adopt a k-fold cross validation strategy,
and select the optimal number of topics K. According to Table
2, LDA-Hawkes fits both synthetic and real-world data better than
TW and Word-Related. This illustrates that a Hawkes process can
better utilize the temporal information in benefiting LDA’s learning
of textual data than simply considering the co-occurrence of queries
within a time session or queries sharing at least one same word.
The larger a time-window TW uses, the worse its performance will
be. Time-window based LDA models generally perform better than

Figure 4: Q-Q plot of the predictive query sequence simu-
lated with inferred Hawkes parameters versus the real query
sequence.

Word-Related. Word-Related performs the worst, which illustrates
that using lexicon-similarity only is far from enough for grouping
semantically related queries. On both noisy data sets, the perfor-
mances of all models become worse. However, the decrease of
the performance of LDA-Hawkes is smaller than that of TW and
Word-Related, which demonstrates the robustness of our proposed
model.

In addition, another experiment is conducted to study how well
the proposed model can fit the temporal data of query logs. Fig-
ure 4 shows the Q-Q plot of the predictive query sequences based
on Hawkes parameters inferred from AOL versus the real query se-
quences in AOL. If the distribution of the timestamps of the predic-
tive query sequences and that of the real query sequences are sim-
ilar, the points in the Q-Q plot will approximately lie around the
diagonal. If these two distributions are linearly related, the points
in the Q-Q plot will approximately lie on a line, but not necessarily
on the diagonal. From Figure 4, we can find that LDA-Hawkes fits
the temporal data of real-world query logs very well.

Query clustering. Along with search task identification, the pro-
posed model simultaneously clusters queries into topics, and au-
tomatically labels identified search tasks. According to our defini-
tion of search tasks, the performance of their identification depends
heavily on the accuracy of per-query topic prediction. Moreover,
whether our identified search tasks are labeled appropriately de-
pends on how well our inferred topics match real-world semantic
concepts. Thus the performance of identifying and labeling search
tasks mainly depends on how we cluster query words into differ-
ent topics. In this series of experiments, we evaluate the quality
of obtained query clusters/topics, which depends on their purity,
or semantic coherence. Since no ground truth about the correct
composition of a topic is available, we assess purity by the average
similarity of each pair of queries within the same topic as:

Purity =
1

K

∑
k

∑
qi,qj∈tk

Sim(qi, qj)

Nk(Nk − 1)/2
× 100%,

where Nk is the number of queries in topic k.
We evaluate the query similarity based on their categorical labels

from the Open Directory Project (ODP)4, which has been widely
used to measure the semantic relations between queries [5, 12]. The
ODP , also known as DMOZ, is a human-edited directory of more
than 4 million URLs. These URLs belong to over 590,000 cate-
gories organized in a tree-structured taxonomy where more general
topics are located at higher levels. Users can issue queries in ODP
and use the returned categories to categorize those queries. For in-
stance, the URL {tech.groups.yahoo.com/group/amrc-l/} belongs

4http://www.dmoz.org/
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Table 1: Inference and Estimation of LDA-Hawkes on Synthetic data

Data set 1
M

∑
m | µ̄m−µm

µm
| 1

M

∑
m | β̄m−βm

βm
| PrecR log likelihood

Small Synthetic 0.058 0.204 0.9175 -92.38
Small Event Noisy 0.083 0.317 0.8847 -95.02

Small Intensity Noisy 0.101 0.362 0.8675 -96.80

Large Synthetic 0.174 0.381 0.8573 -115.29
Large Event Noisy 0.202 0.413 0.8291 -119.38

Large Intensity Noisy 0.219 0.436 0.8107 -122.25

Table 2: Log Predictive Likelihood on Both Synthetic and Real-world Data
Model/Data set LDA-Hawkes TW(5 min) TW(1 hour) TW(1 day) TW(1 week) Word-Related

Small Synthetic -110.32 -121.87 -124.08 -137.21 -168.40 -504.83
Small Event Noisy -122.83 -135.23 -139.37 -152.15 -184.50 -536.21

Small Intensity Noisy -127.36 -139.21 -146.59 -159.42 -192.23 -543.19

Large Synthetic -163.84 -177.48 -182.43 -198.20 -239.04 -846.14
Large Event Noisy -179.34 -193.05 -200.13 -221.49 -263.91 -880.04

Large Intensity Noisy -184.27 -198.30 -207.23 -228.91 -270.92 -889.36

AOL -153.12 -165.03 -169.83 -184.27 -221.32 -815.42
Yahoo -192.36 -217.32 -222.95 -236.03 -275.74 -896.17

to Top/Arts/Animation/Anime/Clubs_and_Organizations, while the
URL {http://valleyofazure.tripod.com/} belongs to another direc-
tory Top/Arts/Animation/Anime/Characters. Hence, to measure how
related these two queries are, we can use a notion of similarity be-
tween the corresponding categories provided by ODP. In particular,
we measure the similarity between category Ci of query qi and cat-
egory Cj of query qj as the length of their longest common prefix
P (Ci, Cj) divided by the length of the longest path between Ci

and Cj . More precisely, we define this similarity as:

ODP Similarity

Sim(qi, qj) = |P (Ci, Cj)|/max(|Ci|, |Cj |),

where |C| denotes the length of a path. For instance, the similar-
ity between the two queries above is 3/5 since they share the path
“Top/Arts/Animation” and the longest one is made of five directo-
ries. We evaluate the similarity between two queries by measur-
ing the similarity between the most similar categories of the two
queries, among the top 5 answers provided by ODP.

Figure 5 compares the purity of topics detected by LDA-Hawkes,
alternative probabilistic models, and state-of-the-art query cluster-
ing approaches on AOL and Yahoo data sets. We can find that
LDA-Hawkes outperforms all compared approaches. It improves
over the second best method by up to 10%. Gate and TW(5
min) take the second place, both of them are slightly better than
Session-Similarity and TW(1 hr), which again demonstrates
that a small time window better benefits the LDA model in de-
tecting semantically related queries. Word-Related performs sig-
nificantly worse than other methods, which shows that consider-
ing only the co-occurrence of queries sharing words is very lim-
ited. Meanwhile, we find that compared with TW, LDA-Hawkes,
Session-Similarity, and Gate perform relatively better on
Yahoo data set, which implies that LDA-Hawkes works for various
real-world query logs. Notice that the absolute value of topic pu-
rity is not very high, since the ODP categories are fine-grained, the
categories of queries from the same search task are very likely to
be different, but share paths, i.e., have common prefix.

Search Task Identification. To justify the effectiveness of the pro-
posed model in identifying search tasks in query logs, we employ
a public AOL data subset5 with 554 annotated search tasks. This

5http://miles.isti.cnr.it/ tolomei/?page_id=36.
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Figure 5: Query Clustering measured by Topic Purity. This
metric relies on ODP Similarity to evaluate the pairwise simi-
larity between queries.
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Figure 6: Performance Comparison of Search Task Identifica-
tion measured by F1 Score.

subset contains 13 users with around 110 queries per user. We also
recruit eight editors to annotate 1150 search tasks in a randomly
chosen subset from the Yahoo data, which contains 100 users with
around 50 queries per user. We measure the performance by a
widely used evaluation metric,
F1 score

F1 =
2 ∗ ppair ∗ rpair

ppair + rpair
,

where ppair denotes the percentage of query-pairs in our predicted
search tasks that also appear in the same ground-truth task, while
rpair denotes the percentage of query-pairs in the ground-truth
tasks that also appear in the same predicted task.

738



Figure 6 compares the proposed model with alternative prob-
abilistic models and state-of-the-art search task identification ap-
proaches by F1 score. Here among TW models with various time-
window sizes, we only include the "5 min" sized Time-Window in
comparison, since it performs the best in both model fitness and
query clustering. From Figure 6, we find that LDA-Hawkes per-
forms the best among all compared approaches, and outperforms
the second best approach by over 5%. Furthermore, LDA-Hawkes
outperforms baselines in terms of both accuracy and recall. TW and
Word-Related perform the worst since their assumptions on query-
relationship within the same search task are too strong. Moreover,
LDA-Hawkes’s advantage over Bestlink-SVM and Reg-Classifier
illustrates that employing self-exciting point processes like Hawkes
to utilize the temporal information in query logs can be a better
choice than incorporating temporal information in features. The ad-
vantage over QC-HTC and QC-WCC demonstrates that appropriate
usage of temporal information in query logs can even better reflect
the semantic relationship between queries, rather than exploiting
it in some collaborative knowledge. The advantage of the perfor-
mance of LDA-Hawkes over other baselines on Yahoo query log is
greater than that on AOL. One possible reason is that the average
length of search tasks in Yahoo is larger than that in AOL, which
results in more influence occurrences, and enables LDA-Hawkes to
better learn the temporal patterns of users.
Case Study of Identified Search Tasks. In this part, we try to
show a few examples that LDA-Hawkes identify and label search
tasks in Yahoo query log, so as to illustrate the validity of our iden-
tified search tasks and their labeling. From Figure 7, we can find
that both the word co-occurrence and temporal gap play a important
role in predicting influence among sequential queries. Although
chances are very small that queries “aircract carrier” and “aircraft
carrier” will co-occur, we predict an influence between them, since
they are temporally close. On the other hand, query-pair “tibet”
and “ryukyu islands”, and query-pair “aircraft carrier” and “battle-
ships us” are not consecutive, however, we predict that influence
exist between those pairs of queries, as they co-occur in quite a
few number of users’ query sequences. Thus we may conclude
that the existence of influence demands both temporal and sematic
closeness. Queries linked by influence belong to the same search
task since the user’s information need is not satisfied by the former
query, which makes the user additionally issue the later semanti-
cally related query, whose occurrence violates that user’s regular
query submission propensity. The figure also shows that LDA-
Hawkes is able to assign the same label to different search tasks
which are semantically related, despite that the temporal gap be-
tween them are very long.

5. RELATED WORK
Search query logs have been extensively studied to improve the

search relevance and provide better user experience. There has
been a large body of work focused on the problem of identifying
search tasks or sessions from sequences of queries. Many of these
methods use the idea of a “timeout” cutoff between queries, where
two consecutive queries are considered as two different sessions or
tasks if the time interval between them exceeds a certain threshold.
Often a 30-minute timeout is used to segment sessions [9, 22, 30].
In addition, other timeout thresholds have been proposed, from 1
to 120 minutes [15, 18, 23]. However, the experimental results of
these methods indicate that the timeouts, whatever their lengths,
are of limited utility in predicting whether two queries belong to
the same task, and unsuitable for identifying session boundaries.
Beyond that, Wang et al. [30] and Hua et al. [17] treated the time
intervals between queries as pairwise features in their models. But

Figure 7: Case Study: Purple arrow line denotes the influ-
ence identified by the proposed model, rounded rectangle de-
notes the identified search tasks, rectangle denotes the labels
our model assigns to search tasks.

no previous work has explicitly exploited the temporal informa-
tion directly in their models. In our work, we directly integrate the
temporal information into our model, rather than highly relying on
different timeouts, for identifying search tasks.

There have been attempts to extract in-session tasks [28, 18, 23],
and cross-session tasks [18, 19, 1, 30] from query sequences based
on classification and clustering methods. Jones and Klinkner [18]
proposed to learn a binary classifier to detect whether two queries
belong to the same task or not, which organized and segmented
query sequences into hierarchical units. Moreover, Kotov et al. [19]
and Agichtein et al. [1] studied the problem of cross-session task
extraction via binary same-task classification, and found different
types of tasks demonstrate different life spans. Another suitable
mechanism for identifying sessions or tasks may rely on unsuper-
vised learning approaches, i.e., query clustering algorithms, espe-
cially when no labeled training set is available. The intuition for us-
ing query clustering is based on the assumption that if two queries
belong to the same cluster, then they are topically related. Cao
et al. [9] proposed a clustering algorithm for summarizing queries
into concepts throughout a click-through bipartite graph built from
a search log. Lucchese et al. [23, 24] and Hua et al. [17] exploited
the knowledge base for detecting semantically related query pairs
that are not similar from a lexical content point of view. In addition,
Wang et al. [30] proposed a semi-supervised clustering method for
identifying cross-session tasks. Different from these existing meth-
ods, our paper assumes that queries belonging to the same search
task are linked by influence. Moreover, instead of focusing on
the query sequence of each single user, we take into account the
query sequences issued by different users simultaneously in a uni-
fied framework, such that our model can identify and label coherent
search tasks across users.

Our proposed model is closely related to point processes, which
have been used to model social networks [8] and natural events [37].
People find self-exciting point processes naturally suitable to model
continuous-time events where the occurrence of one event can af-
fect the likelihood of subsequent events in the future. One impor-
tant self-exciting process is Hawkes process, which is first used to
analyze earthquakes [25, 37], and then widely applied to many dif-
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ferent areas, such as market modeling [13, 3], crime modeling [29],
terrorist [26], conflict [35, 21], and viral videos on the Web [10].
A novel Hawkes model was also proposed to model both temporal
and textual information in viral [34]. To solve such models, an EM
algorithm is generally adopted to estimate the maximum likelihood
of Hawkes process [20].

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented a probabilistic model to inte-

grate the LDA model with Hawkes processes for identifying and la-
beling search tasks. Basically, Hawkes processes utilize their self-
exciting properties to identify search tasks if influence exists among
a sequence of queries for individual users, while the LDA model
exploits query co-occurrence across different users to discover the
latent information needed for labeling search tasks. By leverag-
ing the temporally weighted query co-occurrence, our model not
only guarantees sound performance by making full use of both tex-
tual and temporal information of the entire query sequences, but
also enables the labeling of the identified search tasks since seman-
tically related queries are clustered together through query links
determined by co-occurrence. We have applied the proposed LDA-
Hawkes model to analyze search tasks on both AOL and Yahoo
query logs, and compare with several alternative approaches. Ex-
perimental results show that the improvements of our proposed
model are consistent, and our LDA-Hawkes model achieves the
best performance. In future work, it would be interesting to con-
sider other information, e.g., click-through data, into this frame-
work, and investigate the performance of LDA-Hawkes in other
domains.
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