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ABSTRACT
Time-sync video tagging aims to automatically generate tags for
each video shot. It can improve the user’s experience in previewing
a video’s timeline structure compared to traditional schemes that
tag an entire video clip. In this paper, we propose a new application
which extracts time-sync video tags by automatically exploiting
crowdsourced comments from video websites such as Nico Nico
Douga, where videos are commented on by online crowd users in
a time-sync manner. The challenge of the proposed application is
that users with bias interact with one another frequently and bring
noise into the data, while the comments are too sparse to compen-
sate for the noise. Previous techniques are unable to handle this
task well as they consider video semantics independently, which
may overfit the sparse comments in each shot and thus fail to pro-
vide accurate modeling. To resolve these issues, we propose a novel
temporal and personalized topic model that jointly considers tem-
poral dependencies between video semantics, users’ interaction in
commenting, and users’ preferences as prior knowledge. Our pro-
posed model shares knowledge across video shots via users to en-
rich the short comments, and peels off user interaction and user bias
to solve the noisy-comment problem. Log-likelihood analyses and
user studies on large datasets show that the proposed model out-
performs several state-of-the-art baselines in video tagging quality.
Case studies also demonstrate our model’s capability of extracting
tags from the crowdsourced short and noisy comments.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining

Keywords
Video tagging; crowdsourcing; topic modeling; temporal and per-
sonalized model

1. INTRODUCTION
Online videos have become indispensable to peoples’ daily lives.

Everyday, millions of people watch online videos for entertain-
ment, news, and education. Traffic created by online video web-
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Figure 1: Videos with time-sync descriptions improve the user’s
experience in previewing and locating video content. We mag-
nified the thumbnails and time-sync description for illustration.
sites such as Youtube, Hulu, and Netflix occupied 56.6% of the
total global consumer internet traffic in 2012 [1]. At the same time,
the volume of online videos is extremely large. On YouTube, over
6 billion hours of video are watched each month and 100 hours of
video are uploaded to YouTube every minute [2]. The huge traf-
fic and volume of online videos have made data management and
indexing, the key parts of video searching, very challenging.

To solve the aforementioned problems, automatic video tagging
techniques have been proposed to generate keywords to represent a
video for fast and accurate video indexing [20, 17]. However, these
techniques can only provide video-level tags, that is, keywords cor-
responding to entire video clips. The problem is that even if the
generated tags can perfectly summarize the video content, users
have no idea how these tags are associated with the video playback
time, which results in a long wait for video buffering, and having to
either slide through the entire video or randomly approximate the
informativeness of the video content.

To this end, time-sync video tagging has been proposed as a new
paradigm. Time-sync video tags are synchronized to a video’s play-
back time, and are therefore well structured in a timeline manner.
Users will be able to better preview and search videos. For exam-
ple, Youku.com, one of the biggest online video websites in China,
has started to provide such a feature on some videos. As shown
in Figure 11, users can preview video content in both thumbnails
and text/tags by indicating the playback time. Also, this textual in-
formation can enrich search results with playback time positions.

1http://goo.gl/FoI6t, accessed 9 July.
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In addition to improving user experience and indexing precision,
time-sync tags and the corresponding video shots also act as an ac-
curate labeled set for extrinsic tasks such as video classification.
All in all, time-sync video tagging offers several advantages com-
pared to traditional video tagging schemes which only tag for the
entire video.

However, generating time-sync video tags automatically usu-
ally requires image to text transformation [19] and subti-
tles/annotations, both of which are either too difficult to realize or
too expensive to obtain. Fortunately, video sharing websites such
as Nico Nico Douga2 and acfuntv3, where users can comment on
playback timestamps, provide opportunities to solve this problem.
In such video websites, comments are overlaid directly over the
video, synchronized to a specific playback time. This allows com-
ments to respond directly to the corresponding video semantics,
in sync with users - creating a sense of shared watching experi-
ence. For simplicity, we call this type of online video as time-sync
commented (TSC) videos. In this paper, our objective is to extract
time-sync video tags for TSC videos using comments only, which
is a new application.

Given the well-structured comments of TSC videos, the learning
problem of time-sync video tagging can be regarded as topic extrac-
tion for each video shot. Nevertheless, extracting tags from TSC
videos is not only a new application but also brings up a new crowd-
sourcing problem. The challenge in TSC videos is that crowd users
with different preferences interact with one another frequently and
bring noise into the data, while the comments are too sparse to
compensate for the noise, i.e., the text content in each video shot
is very short and noisy. More specifically, there are only ten com-
ments for each video shot on average, and each comment normally
contains less than five words. This is because in TSC videos, each
comment is only allowed to stay on the screen for a few seconds,
which restricts users to short comments. Comments are also noisy
because they usually contain information from multiple sources.
As in traditional crowdsourcing problems [22, 23], users may have
their own preferences on topics, which are not necessarily related
to the current video semantics, and therefore introduce user bias
in their comments. Moreover, the shared video watching experi-
ence allows users to interact with one another. In many cases, users
write irrelevant comments such as replying to a previous comment,
which may bury the most valuable information.

Previous methods cannot be applied to solve the short and noisy
issues. Some researchers have taken advantage of the huge number
of real-time comments for big events generated by crowds on social
media applications such as Twitter, which are similar to TSC videos
due to their short and noisy properties. For instance, Chakrabarti et
al. proposed to summarize key tweets for live football video events
[5]. However, the videos they explored were typically live videos
such as big sports games which are important enough for large
number of related tweets in real-time. Extending these schemes to
online video tagging is more difficult because of the lack of view-
ers and comments. More importantly, since these approaches did
not consider knowledge enrichment and user modeling in mining
crowdsourced content, the short and noisy (e.g., user bias and in-
teraction) issues cannot be solved.

Some unsupervised methods have been proposed to consider
knowledge sharing across instances in crowdsourced data and
collecting high quality labels by integrating noisy-labels. They
achieved this goal by modeling information such as labeling ability

2http://www.nicovideo.jp/. Nico Nico Douga is the most popular
video sharing website in Japan, with 25 million users (19.6% of
Japnese population) according to the statistics in May, 2012.
3http://www.acfun.tv

[22, 23], by assuming that users’ labeling follows an Independent
Identical Distribution (i.i.d.). Nevertheless, in a TSC video, users
can see previous comments before commenting, which means la-
beling is not independent (commenting can be regarded as labeling
on video semantics). In fact, the dependencies between users’ la-
bels might have strong effects on modeling users’ preferences. In-
tuitively, a user might have a preference on a specific topic if s/he
often comments about it, while users who follow this topic may
be simply responding to the previous comments, not necessarily
indicating the same preference. Ignoring the interactions in com-
ments may lead to inaccurate modeling of users’ preferences, and
fail to remove user bias in topic extraction. Therefore, the typical
i.i.d. assumption does not hold for users’ labeling, and thus previ-
ous methods may not be suitable in TSC videos.

To solve these problems, we propose an unsupervised method to
automatically generate time-sync video tags using crowdsourced
comment data only. More specifically, the technical contribution
of this paper is that we build a novel temporal and personalized
topic model which integrates users’ preferences, users’ interaction,
and the temporal semantics of videos. On one hand, it encodes
the temporal semantics correlation between successive video shots,
which can enrich the short comments of the current video shot.
On the other hand, to recover topics of the current video semantics
accurately, our proposed model removes user interaction and user
bias to address the noisy problem. This is achieved by encoding
semantics dependencies between comments within the same shot,
and utilizing an adaptive variable of each user to denote their latent
preferences that decide their global commenting preferences.

The main contributions of our paper are as follows:
1. We propose a novel time-sync video tagging application for

time-sync commented videos. To the best of our knowledge,
this is the first work on automatic time-sync video tagging
using video comments only.

2. We propose a novel temporal and personalized topic model
for automatic video tagging, which addresses short and noisy
(i.e., user bias and interaction) problems of time-sync com-
ments.

3. We evaluate our proposed model with real-world large
datasets, user studies, and a case study. The results show
that our proposed model outperforms baselines in terms of
tagging quality with similar computational complexity.

2. PROBLEM DEFINITION
In this section, we first present an example video to illustrate

what is a TSC video. Then, we define our problem formally. Af-
ter the definition, we show statistics on TSC videos to give some
insights on the data.

2.1 Illustration of Time-sync Commented
Videos

Two snapshots (with a one-minute gap) of an example video4

are shown in Figure 2. Users can write comments with respect to
the current video semantics (e.g., ‘bento’, ‘shrimps’). Moreover,
users’ views can be affected by previous comments. For exam-
ple, in the first snapshot, user B’s comment “...SHIMPS...” may
help other users (e.g., user A) recognize the unobvious shrimps.
Then, the comment “Eating the shrimps” provided by user D is
probably generated under the co-effect of both previous comments
(“shimps”) and the current semantics (“eating”). Note that users’
IDs can be retrieved by parsing the website. In this paper, we refer
to such videos as time-sync commented (TSC) videos.
4http://live.nicovideo.jp/watch/lv139636921
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Figure 2: Snapshot of an example Time-Sync Commented (TSC) video. Users share their watching experience by providing time-sync
comments that appear on the screen.

Table 1: Notation List
Notation Definition
V Set of videos, containing |V | videos
U Set of users, containing |U | users
v A video, containing |v| shots
s A shot, containing |s| comments
vs Video which contains s
c A comment, containing |c| words
w A word
W Vocabulary set
uc User who commented comment c
sc Shot which contains comment c
pres Preceding shots of s in vs
prec Preceding comments of c in sc
T Number of tags to be generated for each shot
mpres Semantics prior distribution of s, generated by pres
mprec Semantics prior distribution of c, generated by prec
K Number of hidden topics
N Number of comments
M Size of vocabulary
xu u’s preference vector.
λs s’s topic prior distribution vector.
αc Dirichlet prior distribution vector for c’s topic distribution.
β Dirichlet prior for word-topic distribution.
ϕt Word distribution of topic t
πc c’s topic prior distribution base vector
θc c’s topic distribution

2.2 Formal Problem Definition
In this section, we present the problem definition formally. We

have a set of videos V = {v1, v2, . . . , v|V |} of size |V |, and users
U = {u1, u2, . . . , u|U|} of size |U | who have written comments
on these videos V . Each video v ∈ V has a number of shots which
have been segmented previously, v = {s(v)1, s(v)2, . . . , s(v)|v|}
where |v| denotes the number of shots in video v. Shots in a
video are organized according to playback time. For example, s(v)i

means the i-th shot appears in video v and s(v)i+1 is the (i + 1)-
th shot. We denote a set of shots s as pres = {s′|s, s′ ∈ v, s′

appears before s}. Each shot has a number of comments s =
{c(s)1, c(s)2, . . . , c(s)|s|}, where |s| is the number of comments in
shot s. Note that each comment corresponds to a specific times-
tamp in a video, and all comments are organized according to play-
back time. Users may write their comments after seeing the pre-
ceding comments, and the set of preceding comments is denoted

as prec = {c′|c, c′ ∈ s, c′ appears before c}. Each comment c
consists of a set of words c = {w(c)1, w(c)2, . . . , w(c)|c|}, where
w(c)i is the i-th obseved word in c and |c| denotes the number of
words in comment c. Usually, both |s| and |c| are small. For each
comment c, the user is known and denoted as uc. Similarly, we de-
note the shot containing comment c as sc. We also denote the total
number of comments as N and the size of the vocabulary as M for
simplicity.

Given that comments in each video shot are short and noisy (i.e.,
|s| is small and each c is affected by prec), our task is to extract
tags Ws = {w1, w2, . . . , wT } from each shot s so that the tags
well describe the shot, that is to find:

Ws = max
W ′

s⊂W
P (W ′s|s, uc, P rec, P res),∀c ∈ s. (1)

where W is the vocabulary set, and W ′s is a candidate of Ws.
For reference, the above notations have been listed in Table 1.

2.3 Inspection of Time-Sync Commented
Videos

For better insight into the time-sync comments, we have con-
ducted data inspection of the video comments from acfuntv5, a
typical time-sync commented video website. Statistics of pairwise
Jaccard similarity [14] and the number of Chinese characters in the
comments have been investigated, as shown in Figure 3 and Table
2.

Table 2: Jaccard Similarity for the Average Comment
Statistics Average Comments

Jaccard Similarity
Overall Comments 0.008

Intra-user 0.036
Overall Shots 0.038

Intra-shot 0.065
Comment with

Preceding Comments 0.080

Shot with
Preceding Shots 0.099

The number of Chinese characters is usually small in most com-
ments, i.e., about 15 characters on average (see Figure 3(a)). The
average similarity between a comment and its preceding comments
is much higher than the intra-shot similarity (the average pairwise
5http://www.acfun.tv
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similarity between comments within the same shot), which indi-
cates the tight correlation between a comment and its preceding
comments. Moreover, a large number of comments are very sim-
ilar, e.g., with an average similarity higher than 0.8 compared to
their preceding comments (see Figure 3(f)). These two observa-
tions numerically describe the short comment property and user-
interactions for time-sync comments.
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(b) Number of shots for each
user.
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(d) Similarity between com-
ments for each shot.

(e) Similarity between com-
ments for each user.

(f) Similarity between a com-
ment and its preceding com-
ment(s).

Figure 3: Data Inspection of Time-Sync Comments.

On the other hand, as shown in Table 2, the average intra-user
(i.e., comments by the same user) similarity (0.036) and average
inter-shot similarity (0.099) are much higher than the overall sim-
ilarity (0.008). This observation indicates users’ preferences in
comments and the temporal dependency of video semantics.

3. EXTRACTING TAGS FROM TIME-
SYNC COMMENTED VIDEOS

We propose to exploit knowledge from the preceding video shots
to solve the short and noisy comment problems. On one hand, we
enrich the knowledge in the current video shot by considering its
temporal dependencies. On the other hand, we model user prefer-
ences and interactions to remove content-irrelevant data from each
comment. Specifically, we consider the generative process of a
comment as a probabilistic model, where the words in comments
are observed and the underlying video semantic topics are hidden.
To better infer the hidden topics, we incorporate the above factors

as prior knowledge in generating topics, such that knowledge can
be shared across videos and shots accurately through users.

Topic modeling, which aims to extract semantically valid top-
ics from document collections, is a natural choice for solving the
problem. Before describing our proposed model, we first briefly in-
troduce Latent Dirichlet Allocation [4], the most well-known topic
model which has been successfully applied in text analysis tasks
such as tag recommendation [13].

3.1 Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) assumes words in a docu-

ment/comment (for simplification, hereafter referred to as com-
ment) are generated by some hidden topics. For example, a
comment containing “soccer”, “NBA”, “Kobe Bryant” is probably
about sports while “predicting” and “LDA” are probably about ma-
chine learning. LDA aims to infer hidden topics of a given com-
ment. For instance, what topic or mixture of topics would “soccer”
and “predicting” be about? Are they about sports, machine learn-
ing, or both? More specifically, LDA represents the mixture of
topics as a probability distribution over topics. Note that LDA is an
unsupervised method, and the topics are latent variables.

3.2 Temporal and Personalized Topic Model
In this section, we introduce our proposed temporal and person-

alized topic model (TPTM). Consider when user u writes comment
c on video shot s. On the one hand, both user u’s preference and
video shot s’s semantics determine the prior knowledge of com-
ment c’s topics, making the process personal. On the other hand,
since user u can see the preceding comments in sc when generating
comment c, c is also affected by its preceding comments. More-
over, preceding shots are semantically similar to current shots with
high probability. The temporal dependencies between comments
and the similarity between shots’ semantics make the process tem-
poral.

Formally, we denoteMN () as a sampling process with respect
to Multinomial distribution,D(α) andD(β) as sampling processes
with respect to a Dirichlet distribution with parameter α for per-
comment topic distributions and β for per-topic word distributions.
The generative process of TPTM is as follows, and the correspond-
ing graphical model is shown in Figure 4:

1. For each user u

(a) Generate u’s preference vector
xu ∼ N (0, σuIK), xu ∈ RK

2. For each video v

(a) For each shot s ∈ v
i. Generate s’s topic prior distribution vector
λs ∼ N (mpres , σsIK), λs ∈ RK

3. For each topic t

(a) Generate the word distribution for topic t
ϕt ∼ D(β)

4. For each comment c ∈ s, where c is commented by uc
(a) Let c’s topic prior distribution base vector be

πc = λsc � xuc +mprec

(b) Let c’s topic prior distribution vector be
αc = lgt(πc)

(c) Generate c’s topic distribution
θc ∼ D(αc)

(d) For each observed token wj ∈ c
i. Generate zcj ∼MN (θc)
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Figure 4: The graphical model of our temporal and personalized topic model (TPTM). For simplification, we only show a simple
example where a user uc writes a comment c on a shot sc. In the exact model, a shot can contain multiple comments while a user can
write multiple comments on multiple shots and videos.

ii. Generate wj ∼MN (ϕzcj )

where � denotes element-wise multiplication, and lgt(y) =
log[1 + ey]. mpres is defined as the average temporal semantics
of pres, the preceding shots of shot s, acting as prior distribution
of s’s semantics. As shots that are closer in sequential order tend
to be more similar in semantics, we assume a semantic similarity
between shot s and shots in pres subject to an exponential decay,
which is formally defined as:

mpres =

∑
s′∈pres exp−γs∆(s,s′) λs′∑
s′∈pres exp−γs∆(s,s′)

(2)

where ∆(s, s′) is the absolute difference in appearance order be-
tween s and one of its preceding shots s′, γs is the decay rate. Sim-
ilarly,mprec is defined as:

mprec =

∑
c′∈prec exp−γc∆(c,c′) πc′∑
c′∈prec exp−γc∆(c,c′)

(3)

We observed that bothmpres andmprec are essential for deal-
ing with the short and noisy comment challenges. mprec explic-
itly models the user interaction by encoding semantic dependencies
between comments within the same shot, which peels off co-user
interference and makes the extracted video topics less noisy. Also,
on the one hand, videos are connected via the common users, where
knowledge can be implicitly propagated via modeling users’ latent
preference xu adaptively; on the other hand, modeling temporal
dependency between shots (i.e.,mpres ) encodes semantics gained
from preceding shots. Such knowledge propagation enriches the
current shot semantics and therefore addresses the short comment
problem.

3.3 Inference
The inference of TPTM has two steps: 1) infer the topic distri-

bution for each comment; 2) extract the most probable words for
each shot. The first step can be achieved by maximizing the joint
distribution P (z, λ, x, θ, ϕ). In the second step, to extract the most
probable words of a shot s, we generate topics from the topic dis-
tribution Ts of s obtained by averaging each comment c’s topic
distribution θc, where c ∈ s. Then, tags of shot s are extracted by
picking the most probable words.

Observe that for each comment c, if αc is fixed (i.e., πc is fixed),
the model is equivalent to multiple independent LDAs, where each
comment has a different prior distribution for each topic. There-
fore, we can perform a collapsed Gibbs sampling by integrating
out θ and ϕ, and sampling z. After integrating out θ and ϕ, the
complete likelihood P (z, λ, x) is given by:

P (z, λ, x) =P (z|λ, x)P (λ)P (x)

=
∏

c:c∈sc,sc∈v,v∈V

{
Γ
(∑

t lgt(xuctλsct +mprect )
)

Γ
(∑

t lgt(xuctλsct +mprect ) + nc
)

∏
t

Γ
(
lgt(xuctλsct +mprect ) + nt|c

)
Γ
(
lgt(xuctλsct +mprect )

)
∏
t

1
√

2πσs
exp

(
−

(λsct +mpresct )2

2σ2
s

)
∏
t

1
√

2πσu
exp

(
−
x2
uct

2σ2
u

)}
(4)

Here we maximize P (z, λ, x) with respect to z, λ, and x re-
spectively. A Gibbs sampler as described in [11] is used to sample
z, and λ and x are updated using gradient descent. As for λ, the
derivative of the log of equation Equation (4) with respect to λst
given shot s and topic t is:

∂P (z, λ, x)

∂λst
=−

λst +mprest
σ2
s

+
∑
c:sc=s

{
xuctdlgt(xuctλst +mprect )

×
[
Ψ
(∑

t

lgt(xuctλst +mprect )
)

−Ψ
(∑

t

lgt(xuctλst +mprect ) + nc
)

+ Ψ
(
lgt(xuctλst +mprect ) + nt|c

)
−Ψ

(
lgt(xuctλst +mprect )

)]}

(5)

where dlgt(y) := ∂lgt(y). Similarly, the derivative with respect
to xut given user u and topic t is:
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∂P (z, λ, x)

∂xut
=−

xut

σ2
u

+
∑

c:uc=u

{
λsctdlgt(xutλsct +mprect )

×
[
Ψ
(∑

t

lgt(xutλsct +mprect )
)

−Ψ
(∑

t

lgt(xutλsct +mprect ) + nc
)

+ Ψ
(
lgt(xutλsct +mprect ) + nt|c

)
−Ψ

(
lgt(xutλsct +mprect )

)]}
(6)

where mprect can be regarded as a constant given user uc since
prec does not contain comments written by uc (according to our
definition). Finally, the updating equations for λst and xut are:

λst ← λst − η
∂P (z, λ, x)

∂λst
(7)

xut ← xut − η
∂P (z, λ, x)

∂xut
(8)

where η is the learning rate. The inference procedure, inspired
by [15], is as follows: fixing λ and x, the model is equivalent to
multiple independent LDAs where the standard LDA Gibbs sam-
pler is used to sample z and ϕ. After several iterations of sampling,
we alternatively update λ and x using Eq (7) and Eq (8). The im-
plementation details is described in Section 4.2.

After inference, we can obtain the topic distribution Tst of each
shot s given a topic t:

Tst =

∑
c∈s θct

|s|
(9)

Then, the T most probable words can be extracted from shot s.
The probability of choosing a word is defined as:

P (w|s) =
∑
t

Tst ∗ ϕtw (10)

Framework. The complete algorithm of our proposed temporal
and personalized model is shown in Algorithm 1. Overall, it is
an iterative process. In each iteration, Gibbs sampling is used to
infer lower level variables such as the topic distribution θ, word
distribution for topic ϕ, and topic z, which is identical to LDA. For
every 200 iterations, higher level variables such as user preference
x and video shot semantics prior distribution λ are updated in turn
with respect to the joint distribution P (z, λ, x) using Eq. (7) and
Eq. (8). Then the temporal semantics prior distributionsmpres and
mprec are updated.

Time complexity. The time complexity of Gibbs sampling
for lower level variables is O(NMK) for each iteration. The
complexity of updating λ and x for each iteration are both equal
to O(NK). For updating mpres and mprec , the upper bounds
are O(N2K) and O(

∑
v∈V |v|

2K), respectively. Actually, these
bounds can be much tighter in our problem setting. Since the aver-
age number of comments |s| for each shot s and the average num-
ber of shots |v| for each video v is about 10 (see Table 3), and both
mprec and mpres are close to 0 when ∆ ≈ 10 (according to Eq.
(2) and Eq. (3)), the complexity of updating mprec and mpres can
be further bounded as O(10NK) < O(NMK). Therefore, the
complexity of TPTM is O(NMK).

4. EXPERIMENTS
We empirically answer the following questions in this section:

1) Does the proposed temporal and personalized model generate
better tags for video shots? 2) How do the model parameters (e.g.,
the number of topics K and the decay rate γ) affect the model per-
formance? To answer these questions, we first introduce the data
we used. We then compare the performance of our method to some

Algorithm 1 Temporal and Personalized Topic Model
1: Input Videos V ; each video v ∈ V contains shots; each

shot s ∈ v contains comments; each comment c corresponds
to a specific playback timestamp, with observed words and a
known user uc ∈ U . Number of topics K.

2: Output Time-sync tags of each shot s.
3: Given a topic t, initialize the topic prior distribution of shot
λst ∼ N (0, σ2

s), initialize the user preference vector xut ∼
N (0, σ2

u).
4: for i = 1 to #sampling iterations do
5: if i is the odd multiples of 200 then
6: Update λst using Eq. (7).
7: else if i is the even multiples of 200 then
8: Update xut using Eq. (8).
9: end if

10: if i is the integer multiples of 200 then
11: Update mpres and mprec using Eq. (2) and Eq. (3).
12: end if
13: Sample topic of each given observed token in c.
14: end for
15: for each shot s do
16: Extract time-sync tags using Eq. (10).
17: end for

state-of-the-art methods. We use log-likelihood as the evaluation
metric for both 1) and 2), which is described in detail in Section
4.3. Moreover, we conduct human evaluation and a case study to
show the quality of the tags generated by our method.

4.1 Data Description
Our data was retrieved from a Chinese TSC video website6. We

use two datasets for experimental studies: comments for videos
uploaded in the music section7 and the fun section8 snapshot on
Oct 2012, with 9,992 videos and 10,187 videos, respectively. To-
kenizing and stemming of the raw comments were done by a Chi-
nese natural language processing toolbox, ICTCLAS9. However,
since comments in TSC videos contain a large amount of internet
slang, the resulting tokens missed many meaningful words, and had
a large number of single Chinese characters due to incorrect tok-
enization. Although some single characters have their own merits,
most had negative impact according to our experiments. Therefore,
to best recover the internet slang, we applied a bigram concatena-
tion of the previous results and obtained a new vocabulary. All
single characters were then deleted and about 300,000 words re-
mained. Next, we segmented each video according to the number
of comments over playback time. We used a peakfinder10 to find
the peaks and troughs of the comments density, and then segment
the videos into shots. Each shot contained at least eight comments,
and each video contained at least one shot. Videos not satisfying
these requirements were filtered out11. Finally, there were 6922
videos, 46,078 shots, 420,125 comments, and 150,838 users for
music videos; 9492 videos, 68,069 shots, 683,759 comments, and

6http://www.acfun.tv/
7http://www.acfun.tv/v/list58/index.htm
8http://www.acfun.tv/v/list60/index.htm
9http://www.ictclas.org/index.html

10http://www.mathworks.com/matlabcentral/fileexchange/25500-
peakfinder

11For videos without comments where our approach (text-based)
is not applicable, content-based approaches such as [9] can be
adopted.
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Table 3: Summary of data.
Type Number Average Number

Data: Music Videos
Videos 6922 -
Users 150,838 -
Shots 46,078 6.7 per video
Comments 420,125 9.11 per shot

Data: Fun Videos
Videos 9492 -
Users 231,914 -
Shots 68,069 7.3 per video
Comments 683,759 10.04 per shot

231,914 users for fun videos12. 14% of the users published more
than 3 comments, and these users occupied 60% of all comments.
This means that there are many long-tail users, which makes the
problem even more challenging. The data is summarized in Table
3.

4.2 Experimental Setup
For comparison purposes, we introduce two baselines: LDA

and Sembler [23]. Sembler has been proposed to integrate crowd-
sourced labels for tasks with temporal content such as name entity
recognition (NER) and part of speech tagging (POS). For imple-
mentation, we mimic Sembler by modifying TPTM to ignore the
dependencies between users. Note that Algorithm 2 described in
[23] was not adopted because the labeling space in our problem
setting is exponential to the vocabulary size, which makes it com-
putationally intractable to generate valid sequential labelings. Also,
we did not introduce Dynamic Topic Models (DTM) as baselines
due to two reasons: 1). DTM models the dynamics of the prior
β, which is not applicable for our problem setting as each video
shot can be commented at different time stamps; 2). DTM is also
a simplified version of Sembler in modeling α by ignoring the user
preference xu.

The model parameters of each baseline are described as follows:
In LDA, each comment was treated as an independent document,
and the prior parameter α was fixed at 0.5. In Sembler, videos are
considered temporal while users’ labelings are assumed to follow
an independent identical distribution (i.i.d.). That is, comments are
assumed to be independent of preceding comments. More specif-
ically, we set mprect = 0 for each comment c and topic t. In
TPTM, dependencies between shots and between users’ comments
are modeled. We implemented these three models based on a Gibbs
Sampler, with the number of sampling iterations set to 1000, αc for
each comment initialized to 0.5, and β to 0.1. In TPTM, we alterna-
tively optimized λ and x using Eq. (7) and Eq. (8) (see Algorithm
1). In Sembler, only λ is optimized five times. The learning rate in
both TPTM and Sembler is defined as η = 0.1

2i%10 , where i is the
current iteration number. γs and γc were both set to 1.

We observe that the computational time increases linearly with
larger data size for all three methods. For TPTM on full music
video data, every 200 iterations of Gibbs sampling and one iteration
of optimizing λ or x take about 1.5 hours in our computer, which
has 16G of memory and a 3.2 Gz CPU, while LDA takes about
1 hour. All three methods converge within 600 Gibbs sampling
iterations.

Table 4 shows the top words for four music video topics13. The
first topic is about the background music of videos; the second de-

12We have made the data publicly available at
http://www.cse.ust.hk/~bwuaa/TSC/TSC.zip.

13These words were manually translated to English by the authors.

scribes the video structure14; the third topic refers to comments on
music videos concepts; the fourth is about the well-known song
‘Gangnam Style’.

4.3 Performance Analyses
We examined the held-out log-likelihood P (c′|α,ϕ) of the three

methods, where c′ is the held-out comment set, and α and ϕ are
obtained in the training process. The higher the held-out log-
likelihood, the better the model predicts the topic distribution of
the held-out data [21]. We used the first half videos for the training
set and the second half for the held-out set. More specifically, if a
video was commented on only by new users (i.e., users who did not
write comments in the training set), no prior knowledge of personal
information was available for these new users. Therefore, we only
considered the 108,364 users who provided comments in both the
training and held-out sets. The results are a ten run average.

As shown in Figure 5(a), both TPTM and Sembler achieved
higher held-out log-likelihood as compared to LDA, which shows
the benefits of modeling user preferences and the temporal depen-
dencies between video shots. Moreover, on average, the initial log-
likelihoods of TPTM and Sembler are already notably better than
or close to the converged log-likelihood of LDA, which indicates
the accurate estimation of α by the first two methods. Further-
more, TPTM, exploiting temporal dependencies and user interac-
tions, shows superior performance compared to Sembler.
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Figure 5: Held-out log-likelihood analyses
Log-likelihood with respect to the number of topics K is shown

in Table 5. We trained TPTM by 25, 50, 75, 100 topics respectively
with the best at 25. TPTM outperforms both Sembler and LDA
consistently and significantly, which shows the power of modeling
temporal and personalized factors in TPTM. We also observe that in
both datasets, log-likelihood decreases when the number of topics
increases. This may be due to the data we used. For example, music
video users mainly appreciated hot songs and therefore topics were
limited. For fun videos, although the semantics of different videos
vary, the main topics may be limited to only a few such as daily life
and pets. In practice, K can be optimized using cross-validation or
non-parametric methods.

We also studied γc which decides how much a comment is af-
fected by its preceding comments. We tested γc from 0.1 to 0.9, and
the result is shown in Figure 5(b). When γc was set to 0.3, TPTM
performed the best. Referring to Equation 3, when γc = 0.3, the
temporal effect of the current comment semantics decays by 25%
after one comment, and 78% after five comments.

4.4 User Study
We have also conducted a set of user studies (Figure 6) to eval-

uate the quality of tags generated by TPTM compared to Sembler

14For example, ‘high energy’ is a Chinese internet slang often used
to forecast the coming eye-catching video event.
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Table 4: Top words for four selected topics for each model (K = 100).
Method Topic 1 Topic 2 Topic 3 Topic 4

TPTM
‘BGM15’,
‘Tacata’,

‘download’

‘high energy’,
‘high energy ahead’,

‘low energy’

‘divine tune’,
‘good’,
‘jazz’

‘style’,
‘oba’,

‘gangnam’

Sembler
‘music’,
‘miku’,
‘dating’

‘high energy’,
‘high energy ahead’,

‘low energy’

‘divine tune’,
‘hungry’,

‘awesome’

‘style’,
‘oba’,

‘pickled vegetables’

LDA
‘BGM’,
‘train’,

‘translation’

‘ice’,
‘high energy’,
‘low energy’

‘divine tune’,
‘little hero’,
‘monster’

‘oba’,
‘I cry’,

‘gangnam’

Table 5: Held-out log-likelihood performance (×10e7) with different number of topics K.
XXXXXXXXMethod

K 25 50 75 100

Data: Music Videos
TPTM -2.269 ± 9e-5 -2.2816 ± 5e-5 -2.2884 ± 3e-5 -2.2939 ± 5e-5

Sembler -2.2714 ± 8e-5 -2.2826 ± 8e-5 -2.2892 ± 2e-5 -2.2948 ± 6e-5
LDA -2.2746 ± 9e-5 -2.2859 ± 6e-5 -2.2925 ± 3e-5 -2.2974 ± 5e-5

Data: Fun Videos
TPTM -3.8995 ± 3e-5 -3.9227 ± 4e-5 -3.9359 ± 4e-5 -3.9448 ± 4e-5

Sembler -3.9021 ± 4e-5 -3.9242 ± 4e-5 -3.9370 ± 4e-5 -3.9460 ± 4e-5
LDA -3.9084 ± 3e-5 -3.9302 ± 3e-5 -3.9424 ± 3e-5 -3.9511 ± 4e-5

and LDA. Three labelers evaluated the randomly selected 673 shots
from the music videos.

Figure 6: User study interface.

As illustrated in Figure 6, shots were played one by one and the
corresponding tags generated by the three methods were displayed
on the right-hand-side. Specifically, the order of the three sets of
tags were random for each shot. The number of tags in each set was
at most ten and the tag order represents its ranking and relevance.
Labelers were asked to choose the best set of tags by clicking on
one of the three radio buttons in the right-hand-side. One of the
methods then received a single vote for each shot. The results listed
in Table 6 show that TPTM received 28% more votes than the other
methods. Fleiss’ Kappa [10], a measure of inter-rater reliability,
was then evaluated. The Fleiss’ Kappa of the votings was 0.20 with
a p-value at 10−4, which can be interpreted as fair but statistically
significant agreement among the labelers.

Table 6: Results of user study.
Method A B C Overall
TPTM 267 275 240 782
LDA 207 192 209 608

Sembler 179 186 204 569

4.5 Case Study
We randomly picked a video16 and examined its time-sync tags.

As listed in Table 7, we extracted six shots of the tags from the
video and listed the corresponding snapshots in the first row. Words
below the snapshots are generated by the three methods. Note that
words are in descending order of relevance, and words in bold are

16http://www.acfun.tv/v/ac268521

manually labeled as meaningful tags. In general, all three methods
generated some meaningful words from the short and noisy com-
ments. TPTM provided a more reasonable rankings for these tags.
Moreover, TPTM captured more valuable words given the short
and noisy content, such as ‘good looking’ in shot 2, ‘princess’ in
shot 4 and ‘American’ in shot 6. More specifically, the mean aver-
age precision at ten tags (MAP@10), a standard evaluation metric
of ranking, was calculated. TPTM achieved 0.187, which is 30%
higher than Sembler and LDA (0.146 and 0.144 respectively).

5. RELATED WORK
Traditional video tagging techniques generate tags for an en-

tire video clip [17, 20]. Some content-based methods for time-sync
tagging have been proposed (e.g., Feng et al. designed a model to
generate time-sync tags by predicting tags for extracted keyframes
[9]). However, content-based methods rely on a large amount of
human-labeled data, which is difficult to acquire in real-world ap-
plications because the types of videos vary widely and human labor
is expensive. Some researchers have turned to the cheap or free data
acquired from the internet. For example, Xu et al. and Chiu et al.
used web-casting text to detect events in broadcast videos [24, 6].
Chakrabarti et al. [5] summarized live sports videos events using
user-generated information in social networks, the output of which,
however, are multiple key tweets instead of a few tags. Also, the
above methods mainly focused on big events such as sports games,
which cannot be extended to daily online videos. Davis et al. de-
signed a system to study time-sync tagging by social network users
[8]. However, their data was acquired from an experimental sys-
tem, which is not scalable. To the best of our knowledge, no previ-
ous work has been done on text based time-sync video tagging, and
none has solved the short and noisy comment problem of crowd-
sourced content.

Crowdsourcing is a process that involves outsourcing tasks to
a distributed group of people, which is normally much cheaper
than hiring experts. Machine learning and data mining researchers
have been using crowdsourcing services (e.g., Amazon Mechani-
cal Turk) to solve the lack of labeled-data problem for applications
such as sentiment classification [18] and Name Entity Recognition
[23]. However, crowdsourced labels need to be cleaned before uti-
lization because labels from the crowd are usually contaminated by
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Table 7: Example of time-sync video tagging. Description of the six segments: 1) At the beginning of the video, Taylor Swift showed
up as an office lady. 2) Taylor Swift is working in an office. 3) A man is playing card games in the computer. 4) Taylor Swift is taking
the elevator. 5) Taylor Swift is recalling the moments with her boyfriends using a Sony tablet. 6) Taylor Swift picks up her soldier
boyfriend at the airport.

31.3”-45.9” 105.8”-116.0” 149.8”-153.4” 161.0”-172.0” 178.4”-190.8” 235.7”-241.6”

Shots MAP@10

TPTM

‘subtitles’
‘+1’
‘like’

‘„’
‘mine’

‘love her’
‘you’

‘really’
‘big love’
‘my love’

‘......’
‘divine tune’

‘like’
‘ah..’

‘holy cow’
‘the’
‘MV’

‘sister’
‘pressure’

‘good looking’

‘have to’
‘game’

‘to’
‘have to be’
‘just now’
‘memory’

‘computer’
‘on the screen’

‘what’
‘and’

‘mine’
‘you’

‘sister’
‘have to’

‘ah,’
‘it’s me’
‘again’
‘a little’
‘singer’

‘princess’

‘you’
‘the’

‘I love’
‘in fact’
‘yours’
‘my’

‘love you’
‘truth’
‘ads’

‘expression’

‘feeling’
‘girl’

‘have to’
‘bastard’
‘all are’

‘ads’
‘beautiful’

‘is?’
‘man’

‘American’

0.187

Sembler

‘subtitles’
‘+1’
‘like’

‘„’
‘mine’

‘no’
‘really’
‘think’
‘OK’
‘you’

‘......’
‘holy cow’

‘divine tune’
‘like’
‘the’
‘MV’

‘sister’
‘I like’

‘pressure’
‘ah..’

‘have to’
‘game’

‘to’
‘just now’

‘have to be’
‘computer’
‘memory’

‘on the screen’
‘what’
‘and’

‘mine’
‘again’
‘you’

‘sister’
‘ah,’

‘it’s me’
‘have to’
‘a little’
‘people’
‘singer’

‘you’
‘I love’

‘the’
‘yours’
‘in fact’
‘truth’

‘love you’
‘my’

‘expression’
‘ads’

‘feeling’
‘girl’

‘all are’
‘have to’

‘is?’
‘man’

‘is,’
‘ads’

‘bastard’
‘beautiful’

0.146

LDA

‘+1’
‘subtitles’

‘like’
‘„’

‘mine’
‘really’
‘you’

‘I will’
‘I love’

‘love her’

‘......’
‘divine tune’

‘like’
‘holy cow’

‘sister’
‘the’

‘pressure’
‘ah..’
‘MV’
‘great’

‘have to’
‘game’

‘to’
‘just now’

‘have to be’
‘memory’

‘computer’
‘on the screen’

‘what’
‘and’

‘mine’
‘have to’

‘you’
‘sister’
‘again’

‘ah,’
‘a little’
‘it’s me’
‘people’
‘singer’

‘you’
‘the’

‘I love’
‘yours’
‘truth’

‘in fact’
‘my’

‘love you’
‘expression’

‘ads’

‘feeling’
‘girl’

‘all are’
‘have to’
‘man’
‘is?’
‘ads’

‘bastard’
‘beautiful’

‘is’

0.144

errors and bias. Several approaches have been proposed recently
for label by emphasizing labels provided by high quality labelers
cleaning[3, 22, 23]. For example, Welinder et al. [22] designed a
probabilistic graphical model to evaluate skill and knowledge for
each image annotator, as well as quality for each image. Sembler
[23] was proposed to improve the quality of the collected labels in
a sequential labeling problem by modeling users’ abilities and se-
quential dependencies of instances. In summary, most traditional
methods infer the true label for a given instance by modeling both
user ability and the question difficulty, assuming that users answer
questions independently. However, user labeling does not follow
the i.i.d. assumption in TSC videos due to users’ interaction in the
shared watching experience. Therefore, traditional methods may
fail to accurately remove users’ bias. Although Das et al. ad-
dressed the user interaction problem in a crowdsourcing setting [7],
only single-real-value label space and explicit social network were
considered. These are not applicable to a video tagging/topic ex-
traction problem. Ritter et al. modeled twitter dialogues, another
type of interacting short message, by assuming fixed topics, and
homogeneous users [16]. Their model, however, is essentially a
similar, simpler version of Sembler and TPTM for a different pur-
pose (discovering dialogue acts).

Time-sync commented videos have been exploited by Yoshii et
al.. The authors developed an automatic music commentator us-
ing TSC videos [25]. Their method, however, failed to work in
our problem setting because once their model is trained, the most

probable words for each hidden state are fixed. This limits the vo-
cabulary of generated comments or tags, which can be observed
from their online demo17. Moreover, they did not address the short
and noisy comment problems.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have exploited crowdsourced texual data from

time-sync commented video websites for automatic time-sync
video tagging, which is a new application. Based on the challenge
that time-sync comments in each video shot are short and noisy,
we proposed a novel temporal and personalized topic model which
enriches knowledge of short comments across videos and shots by
collectively exploiting multiple users’ preferences. It also peels off
user interactions in time-sync comments to address the noisy com-
ment problem. Held-out log-likelihood analyses and user studies
show that our proposed model outperforms state-of-the-art base-
lines. Case studies have also been conducted to demonstrate our
proposed model’s capability in mining short and noisy comments.

Discussion. According to Section 3.3, to train the model (i.e.,
to infer variables such as user preference x and the topic distri-
bution of a shot T ), we need to scan through all the data. This
can be a problem in tagging online videos where video collections
are large scale and growing, which makes the training process very
slow. Our model can be easily modified into an online and paral-

17http://staff.aist.go.jp/k.yoshii/commentator/index.html
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lel scheme to handle large scale data. For updating the lower level
variables (e.g., θ and ϕ), parallel and online LDA have been pro-
posed for efficient topic inference [12]. And for updating higher
level variables (e.g., λ and x), the user preference x is the only
factor learned from the old data that relates to topics of the new
videos. Therefore, we only need to load user preference x learned
in the old data to absorb new data, which makes online updating
trivial. Again, since variables such as λ, mpres , and mprec only
depend on the corresponding video, the updating process can be
easily partitioned with respect to each video, that is to update mul-
tiple videos in parallel. The online and parallel scheme is essential
for handling large scale data (though the details are not elaborated
here due to page limits). In addition, although our proposed model
is specifically designed for time-sync tagging of online videos, it
can also serve as a basic technique for other applications such as
time-sync tagging of news video and movies with the help of sub-
titles or speech-to-text transcription. Moreover, our proposed pure
text-based model can also be applied to many tasks other than video
tagging such as event summarization based on social networks.

Future Work. In the future, we can extend our work as follows:
1) By building internet slang collections to improve tokenization.

According to Table 7 and our observations, the quality of the gener-
ated tags heavily depends on pre-processing such as tokenization.
However, to the best of our knowledge, no large internet slang col-
lections are available. Although we have not analyzed TSC from a
linguistic point of view due to the limits of time and our knowledge,
we consider it the most important area for future work.

2) By designing a unified model incorporating video segmen-
tation. Video segmentation is essential to the user-experience of
time-sync tagging. However, to simplify the problem, video seg-
mentation has been conducted by a simple segmentation scheme
as a part of data pre-processing in this paper, which is not satis-
factory in terms of quality. In the future, we can incorporate video
segmentation as a latent factor, and infer better segmentation simul-
taneously considering the semantics of the comments .

3) By improving tagging quality by knowledge transfer among
multiple data sources. In this paper, connection between different
TSC video sources was not considered. In fact, videos in different
sections can be very different in terms of both video semantics and
users’ comments. For example, videos in the music section usually
consists of multiple short clips, while videos in the movie section
are likely much longer in terms of per-video duration. The under-
lying topics are probably different as well. It would be interesting
to investigate how users comment in different sections.

4) By extending our results to extrinsic tasks such as video scene
classification and object recognition. The automatic time-sync tag-
ging approach proposed in this paper is actually a crowdsourced
label collection and integration process. Therefore, a natural exten-
sion is to use the generated tags and the corresponding video shots
as labeled pairs for extrinsic tasks. On the other hand, the quality
of the generated tags can also be evaluated by existing ground-truth
measures of extrinsic tasks.
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