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ABSTRACT
Over 40% of columns in hundreds of millions of Web ta-
bles contain numeric quantities. Tables are a richer source
of structured knowledge than free text. We harness Web
tables to answer queries whose target is a quantity with
natural variation, such as net worth of zuckerburg, bat-
tery life of ipad, half life of plutonium, and calo-

ries in pizza. Our goal is to respond to such queries with
a ranked list of quantity distributions, suitably represented.
Apart from the challenges of informal schema and noisy ex-
tractions, which have been known since tables were used
for non-quantity information extraction, we face additional
problems of noisy number formats, as well as unit specifica-
tions that are often contextual and ambiguous.

Early “hardening” of extraction decisions at a table level
leads to poor accuracy. Instead, we use a probabilistic con-
text free grammar (PCFG) based unit extractor on the ta-
bles, and retain several top-scoring extractions of quantity
types and numerals. Then we inject these into a new collec-
tive inference framework that makes global decisions about
the relevance of candidate table snippets, the interpretation
of the query’s target quantity type, the value distributions
to be ranked and presented, and the degree of consensus
that can be built to support the proposed quantity distribu-
tions. Experiments with over 25 million Web tables and 350
diverse queries show robust, large benefits from our quantity
catalog, unit extractor, and collective inference.

1. INTRODUCTION
Web search engines enhance “organic” search results with

data from structured knowledge bases (KBs), curated from
diverse sources using information extraction [13] and entity
annotation [5] techniques. With very few exceptions [10,
19, 3, 1], a vast majority of work on extracting typed text
segments, entities, attributes and relations involve discrete
symbols and not measurable quantities1. And yet, the Web
is as rich a source of quantities as it is of symbolic knowledge.
There are hundreds of millions of information-rich HTML ta-
bles on the Web. In our sample, a full 40% of their columns
exclusively contain quantities. On the other hand, quantity-
seeking Web queries are well-served only in verticals like

1“When you can measure what you are speaking about, and
express it in numbers, you know something about it.” —
Lord Kelvin.
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shopping, food and travel where structured databases con-
tain columns that are matched against the query, aggre-
gated, and presented as quantities throughout. With one
mild exception [20], the emerging Web tables literature [17,
4, 7, 11] does not regard quantity extractions as any different
from discrete symbolic value extractions.

1.1 Our goal
Our goal is to bridge the gap between the noisy presen-

tation of quantities in Web tables and open-domain, one-off
quantity-seeking queries. Asking for an attribute of an entity
is a common case, e.g., average revenue of microsoft,
half-life of plutonium and mass of pluto. Note that
we are primarily interested in seeking quantities with uncer-
tainty and imprecision, unlike “cosmic truths” like the num-
ber of primes under 1000, or the value of π. For this reason,
our queries cannot be answered from Wikipedia Infoboxes,
which mostly offer point answers, and without directly accu-
mulating evidence from the Web. To this end, we present a
new, robust, open-domain, quantity search system QEWT.

QEWT is a large system with very many details. Here
we distill three major contributions: a quantity catalog and
a new table column unit annotator based on a probabilis-
tic context free grammar (PCFG), a query response model
based on ranked value distributions, and a new algorithm
for collective consensus inference. Our unit catalog, query
workloads, labeled data, and code are publicly available at
http://www.cse.iitb.ac.in/~sunita/wwt.

1.2 Our contributions
Table column unit annotator. Quantity columns in web
tables are notoriously challenging to extract. Unit expres-
sions may be ambiguous (“m.”) or even missing, syntactic
clues though present might be noisy, and units may not fol-
low clear-cut representations in table headers. We compiled
a quantity catalog QuTree, and designed a new unit anno-
tator for table columns based on probabilistic context free
grammars (PCFGs). The PCFG technique exploits a di-
verse set of clues, including co-occurrence statistics between
quantity types, units and phrases mined from an unlabeled
corpus of table headers.

Quantity response model. In IR, the response is a list of
URLs or documents. In expert or entity search [2], it is a list
of entities. Queries that seek uncertain quantities require a
very different treatment. In particular, extracted quantities
can be distinct from each other for extraneous reasons, or
there may be systematic variations (which isotope of Pluto-
nium, or Microsoft revenue in which year). A more intuitive
uniform output representation is a distribution over quan-
tities. We describe techniques to represent, score and rank
such distributions h, given the query.

Earlier work [3, “QCQ”] is a restrictive special case of
our framework. Each response in QCQ is a single interval,
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and a model was trained to score these using labeled data.
Here we can create distributions and intervals in a query-
driven manner without labeled data. Since our target is
open-domain query answering, we ensure that our response
model can handle data at arbitrary scales and from arbitrary
distributions via a data-driven distance metric.

Collective extraction framework. The centerpiece of our
approach is a collective model for extracting quantities from
raw Web tables. Instead of “hardening” extraction decisions
on quantity columns eagerly, we keep around multiple un-
certain values and units, which are finally collectively re-
solved over multiple tables at query time. We depend on a
consensus model that defines a joint distribution h over all
candidate extractions to assign collectively resolved proba-
bilities on the relevance of each snippet and the extracted
unit and value. Another valuable input is from a classifier
that provides a distribution over the target quantity type.
We train the classifier via a novel method of tapping our
huge unlabeled table corpus.

Experimental evaluation. We report on experiments with
350 queries spanning three query benchmarks compiled from
QCQ [3], InfoGather [20] and World Bank data [18]. The
base corpus tables is accessed through the Google API at re-
search.google.com/tables and our corpus of 25 million tables
extracted [11] from a commercial Web crawl of 500 million
pages. Our experimental results can be summarized as:
• Our PCFG-based column annotator is considerably

more accurate than rule-based (82% vs 40%) or sim-
pler baselines (74%). However, it is not nearly perfect.
• As a consequence, choosing locally best extractions

from each table independently gives poor accuracy.
Collective judgment of snippet relevance and extrac-
tions improves answer precision from 28% to 42%.
• Smooth notions of consensus between contributing quan-

tities is important; accumulating counts for point es-
timates (collapsing distribution h to a histogram over
discrete values) causes a 6% drop in precision.
• The quantity type classifier trained from the unlabeled

table corpus provides a 8% boost in precision.

2. SYSTEM OVERVIEW AND ROADMAP
We present an overview of our system QEWT in Figure 1.

The user submits a quantity query q which has two parts.
The first part aq is a sequence of word/s that are a ver-
bal description of the response quantity type (e.g., distance
from sun, speed, annual revenue). The second part eq is a
free-form sequence of words that indicate an entity for which
a quantity attribute is being sought (e.g. Pluto, Concorde,
Microsoft). The query words are submitted to indices over
Web table corpora and a set of tables retrieved. Figure 3
shows sample tables for the query co2 emissions of china

with eq = china and aq = co2 emissions. A snippet gener-
ator module processes the retrieved tables for potential an-
swer snippets and attaches a relevance score to each. Next,
a number/unit extractor parses the noisy snippets to output
an uncertain list of values and units based on a unit ontology.
The uncertain extractions from all tables are collectively re-
solved to get a distribution over the target quantity. Finally
the response as a continuous distribution or ranked quantity
intervals is output to the user. We next present an overview
of the main components.
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Figure 1: System sketch of QEWT.

Table corpus. We use two sources of tables: a commer-
cial crawl of 500 million Web pages, from which we ex-
tracted and indexed 25 million non-decorative HTML ta-
bles, and tables collected per-query via the API provided
by research.google.com/tables. We extract from each table
zero or more top rows as the header for each of its columns,
and selected text from the page embedding the table as the
context as described in [11]. A type interpreter labels table
columns as numeric or textual; in our corpus of 25 million
tables we recognized 40% of the table columns as numeric.
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Figure 2: Fragment of QuTree.

Unit catalog QuTree. Starting from Category:Units of -
measurement in Wikipedia, we created a unit catalog we
call QuTree. It has 44 quantity types such as Length, Area,
Speed, and 750 units. Each quantity type has a canonical
unit, and other units come with conversion factors to/from
the canonical unit. A fragment of QuTree is shown in Fig-
ure 2. Each catalog unit is associated with one or more
full names (e.g., kilometre per hour), one or more symbols
(e.g., kmph, km/h) and an optional list of lemmas to ac-
count for the common variant names of a unit, (e.g., meter-
metre, kmph-kilometre per hour). QuTree also includes the
concept of a “multiplier” to denote dimensionless quantities,
with unit instances like thousand, million and billion, which
capture scales of measurements. QuTree can be downloaded
from goo.gl/542L2Y. It is to quantities what YAGO [14] is
to discrete entities.

Query target type. In the user query, aq is a textual hint
at a quantity type t from the quantity catalog. We must
build an estimate of the distribution Pr(t|q) = Pr(t|aq). For
example, for attribute co2 emissions Pr(t|aq) is expected
to assign high probability to the quantity type mass. In Sec-
tion 3.1 we show how to train Pr(t|aq) via an innovative use
of the table corpus, and without requiring tedious manual
labeling. We will see in Section 6.4 that this signal is very
useful to the collective extractor in finding relevant answers.
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Figure 3: Sample tables responding to query eq =
china and aq = co2 emissions.

Snippet relevance. The index search returns a set of can-
didate tables that match the query keywords q in the header,
context, or body. On each candidate table, we use a snip-
pet generation module to match eq to a row header, aq to
a column header, and identify candidate cells for quantity
extraction. Observe from Figures 3 and 4 the challenges of
identifying potentially relevant rows, e.g.,“China”vs.“China
(mainland)”, and relevant columns, e.g. multiple columns
might be relevant and column headers may not match aq at
all as shown in Figure 4. Therefore, relevance of a snippet
is uncertain. We use a random variable Rs to denote the
uncertainty in the relevance of a snippet s and associate a
score rs ∈ [0, 1] to denote Pr(Rs = 1). We will describe
snippet generation and relevance score assignment further
in Section 3.2.

Number and unit extraction. From each snippet s, we ex-
tract a float value from the table cell, and annotate it with
a unit from QuTree based on signals in the column header
and the table cell. Note that a unit node in QuTree be-
longs to exactly one quantity type, so a unit annotation also
gives its quantity type. Both these tasks are highly chal-
lenging because of the extreme diversity of writing down
quantities on the web: multipliers expressed separately in
the column header, locale-dependent use of commas, peri-
ods, and spaces, scientific notation, etc. can confound any
simplistic local extractor. Unit extraction from headers has
its own challenges of dealing with drastic formatting dif-
ferences in both column headers and cell quantities E.g.,
one column header may say “Total Emissions (1000’s tons
carbon)” whereas another may say “(billion metric tons of

CO2)” — these are different, whereas yet another table say-
ing “CO2 emissions (kt)” is comparable to the second case.
In Section 5 we present our design of a parser based on a
context free grammar and a rich feature set. The output of
this step is a weighted list of possible extractions of values
and units from each snippet.

Collective inference. The candidate extractions are inputs
to the centerpiece of QEWT: a novel collective inference pro-
cedure that simultaneously estimates the relevance of each
snippet and each of its possible extractions, and the target
quantity type basing its judgement on a global estimate of
the distribution of values around the quantity. We describe
this in Section 3.5.

Answer representation. As challenging as robustness to
input variation is the issue of answer representation. The
vast body of work on search has to rank discrete items such
as URLs (pages) [8] or entities [2]. Here our true response
is an uncertain quantity, but how best is this shown to the
user? Rather than take an inflexible stand, QEWT sup-
ports three different types of answer formats each of which is
suited for a different kind of quantitative queries. QEWT’s
internal response representation is a quantity distribution,
but QEWT can provide simplified digests in the form of
ranked value intervals [3], or degenerated to ranked point
values (in case the query has little or no uncertainty, such
as physical constants, or are categorical queries in disguise,
such as the number of USB ports in a laptop).

3. COLLECTIVE CONSENSUS INFERENCE
As shown in Figure 1, the collective inference module,

which we describe in this section, mediates between the type
distribution, snippet relevance uncertainty, and the uncer-
tainty of snippet unit and value extractions. Section 3.1 is
about estimating the target type of the query. Section 3.2
discusses scoring snippets wrt the query. Section 3.3 de-
scribes how a single snippet can lead to many possible ex-
tractions of a unit and value, and how to score these ex-
tractions. Section 3.4 deals with the design of distributions
for consensus inference. Finally, Section 3.5 describes the
consensus inference algorithm itself.

3.1 Query target quantity type Pr(t|q)
Given query q = (aq, eq), its target quantity type, which

is uncertain, is modeled as a distribution Pr(t|aq). A good
estimate of Pr(t|aq) is vital for generating relevant responses.

3.1.1 Dictionary match
A baseline method may look for matches of the attribute

words with type and unit names/lemmas in our quantity
catalog. It may correctly find the target type of queries
like length of nile or year of crash. But many queries
like usa co2 emissions, walton net worth, miami rain-

fall, and ebay revenue have no match in the catalog, lead-
ing to loss of recall. Surprisingly, there is also precision loss.
E.g., query fan speed which matches well the type speed in
QuTree but misses the correct target type frequency.

3.1.2 Data-driven approach
Ideally, we would like to recognize that query word rev-

enue targets type money amount and that distance, length,
height and width all target the type length (dimension).

This form of association between (potential query) words
and quantity types is evident in a fraction (but still a large

713



absolute number) of tables, with column headers like“Width
in inches”, “co2 emissions in kiloton”, “Average rainfall in
inches”, “Fan speed (rpm)”, and “Annual revenue ($ mil-
lion)”. To take advantage of these headers, they must be
mapped to types, which is, in general, a highly nontrivial
job (see Section 5). However, starting from over 25 mil-
lion tables, we could find 1.1 million headers which could
be mapped with high precision (99%) to types, using sim-
ple rules discussed in Section 5.1, and restricting to headers
with an exact and unique match with a unit in QuTree.

We thus get (automatically) labeled instances with ob-
served features consisting of the words xk in the header not
included in the unit, and a quantity type tk derived by gen-
eralizing its extracted unit. E.g., from the header text “An-
nual revenue ($ million)” we extract an instance with bag
of words x = {annual, revenue} and type money amount.
These labeled instances are used to train a logistic regres-
sion classifier for Pr(t|q). 3-fold cross validation gave 94%
accuracy, higher than using PMI models [16]. If the posterior
entropy was large (e.g., for a query on refractive index),
we prefered the “dimensionless” type in favor of other types.

3.2 Snippet match with query
Each table retrieved from the index generates one or more

snippets. We represent the uncertainty of relevance of a
snippet s to q by Rs,q, or Rs if q is fixed. The uncertainty
of relevance is reflected in a score rsq or rs ∈ [0, 1]. Based
on query q, the local evidence in favor of relevance (Rs = 1)
is rs, and the local evidence in favor of irrelevance (Rs = 0)
is 1− rqs.

Given query q = (aq, eq) and a candidate table T , we
describe how we match these two parts of the query to gen-
erate one or more snippets from T . We view web tables as
vertical stores of entity and their attributes2. Accordingly,
a candidate snippet is generated by matching eq to a row r
in a column ce and matching aq to a different column ca and
generating the snippet from cell (r, ca). For most queries,
we find a single snippet per table but sometimes the entity
eq could match multiple rows of a table, or aq could match
multiple columns of T . For example, in Figure 3 the first
three web tables generate a single snippet for query co2

emissions of china. In contrast, for the query refrac-

tive index of flint glass, in Figure 4, the second table
matches the entity “flint glass” in the last two rows whereas
the first web table provides the attribute “Refractive index”
in three different forms over columns 2, 3, and 4. We next
elaborate on our method for generating such snippets.

Refractive index under different light 

wavelengths

Web Table 1 Web Table 2

Figure 4: Snippet match with query.

The candidate tables are required to match all high-IDF
terms in the query in either the body, header, or context.

2We omit a discussion of horizontal tables for simplicity [6].

This ensures that our candidate snippets are minimally rele-
vant. Thereafter, we separately measure the similarity score
sim(eq, r, ce, T ) of entity eq to cell (r, ce) and similarity score
sim(aq, ca, T ) of attribute string aq to column ca’s header.
These match scores are custom designed to depend on matches
beyond the immediate cells to include T ’s context, title, and
other parts of its body. In [11] we presented the design of
a segmented similarity function that shows how to measure
the relevance of a table’s column to a query keyword while
combining column-specific match with matches from the rest
of the table. We use this segmented similarity function as
the match function: sim(eq, r, ce, T ) and sim(aq, ca, T ).

The snippets from a table are generated as follows. We
first find the (r, c) with the best value of sim(eq, r, c, T ).
Call it (r∗, c∗e). Fix c∗e as the entity column. We then find
the column c that is numeric and has maximum similarity
sim(aq, c, T ). Call it c∗a. Next, as snippets we select those
cells rs, cs for which:

sim(eq, rs, c
∗
e , T ) ≥ max(sim(eq, r

∗, c∗e , T )− ε, σ)

sim(aq, cs, T ) ≥ max(sim(aq, c
∗
a, T )− ε, 0)}

This criteria makes sure that we select all snippets s =
(rs, cs) whose match is close enough (within ε) of the best
possible match from T , provided the entity match is at least
σ. In our experiments we used 0.2 for both ε and σ. The
reason we have a minimum match threshold for entities and
not for attributes is because the number of numeric columns
in a table is typically much smaller than the number of rows.
We depend on the global consensus model to prefer the
columns that are correct. We use the entity and attribute
match scores to assign the relevance score of a snippet as
rs = (sim(aq, cs, T ) + sim(eq, rs, c

∗
e , T ))/2.

3.3 Possible extractions from snippet
We model each snippet s as extracting exactly one value

and one unit (therefore, type). However, given the noise in
extraction, we model the extracted value and type as uncer-
tain, but drawn from a finite, usually small set of alternative
extractions. This set of possible extractions is indexed by j.
For example, consider the web table in Figure 1 obtained in
response to query height of washington monument.

Height (m) Year Building
168,7 1884 Washington Monument
95,8 1899 Old Post Office
91,5 1990 Washington National Cathedral
87,6 1892 United States Capitol
39,2 1943 Jefferson Memorial

Table 1: An example web table for query height of

washington monument.

We get one snippet from this table at the cell (1,1), but we
have uncertainty over its value: does 168,7 equal 168.7, or a
list of two numbers 168 and 7. This gives rise to two possible
values: 168.7 and 168? Also, from the header Height (m),
the unit parser extracts three possible units: meter, million,
and mile. So, we consider all six combinations of unit and
value as possibilities for j. Each j is attached with a score
gsj that we generate as follows: First, parse the value in the
cell based on different locale specific parsers and get the set
of successful parses of the value vs1, . . . , vsn. Second, use
the CFG unit parser described in Section 5 to get a list of
units along with their scores: (us1, w1), . . . , (usm, wsm). The
set j consists of the mn possible cross product of value,unit
combination where each j is associated with: a value vsj , a
unit usj and therefore its type tsj , and a confidence score
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gsj =
wsj

n
≥ 0. (Note that a specific extraction j has an

extracted unit, and each unit maps to a unique quantity
type. For convenience, we can convert a specific extraction
to some canonical unit that we associate with the quantity
type.) Summarizing, for each snippet s, there are two hidden
random variables:
• Rs ∈ {0, 1}, the snippet relevance bit.
• Js, an extraction index. If Rs = 0, then Js = ⊥

is undefined. Otherwise, Js tells us what value and
unit/type s contributes to the global consensus.

3.4 Value distribution h

In abstract terms, a quantity query should be answered
with a type (unit) and a value distribution h. For each
potential response type τ , we will build a distribution hτ (v),
with the usual constraint

∫
• hτ (•)d• = 1.

hτ will be estimated from a set of values {vi}, but, based
on the previous sections, each value vi is associated with a
probability πi that the value should actually contribute to
hτ . This is expressed with the notation hτ (•|{(vi, πi)}).

Simple parametric distributions are not a good choice for
h, given that we have to deal with numbers of arbitrary
scale, coming from arbitrary domains, with a high level of
extraction noise. Therefore, we focus on non-parametric dis-
tributions. We briefly mention two standard forms of hτ for
the sake of completeness.

3.4.1 Kernel density
A natural option is a kernel density estimate:

hτ (•; {vi, πi}) =
1

Z

∑
i

πi√
2πσi

e(•−vi)
2/2σ2

i , (1)

where σi is a kernel width parameter that may be the same
for all i as a special case, and Z =

∑
i πi. A problem that

we faced with a fixed width is that they do not adapt well to
numbers of arbitrary scales. Consider the query that seeks
to find the half-life of Plutonium. Plutonium has many iso-
topes with extremely diverse half-lives: 14, 88, 6560, 24100,
and 376000 years. Naturally these are stated approximately,
with errors that are commensurate with the magnitude of
the quantity being expressed. We associated a different
width σi around each data point that increases with the
scale of the point vi as max(10% of vi, minimum non-zero
gap between numbers).

3.4.2 Wavelet
Another popular non-parametric density estimator is based

on Wavelets. Wavelets are believed to outperform kernel
density estimators at representing discontinuities and local
variations, features rampant in our data. We use the Haar
wavelet as our basis function. Due to lack of space, we re-
fer the reader to standard textbooks on the topic and omit
further details.

3.5 Consensus inference algorithm
3.5.1 Intuition

Now we are in a position to verbally express how collective
consensus is formed, given a query. We will state that var-
ious scores “should be large”, with the understanding that,
in a collective scheme, we want some sort of aggregate (say
their product) to be large. We will then translate this de-
scription into a formal model.
• If τ is a top-scoring response quantity type, then Pr(τ |q)

should be large.

• Suppose we choose specific values for all snippet rele-
vance variables Rs. Then the score of that configura-
tion is ∏

s:Rs=1

rs
∏

s:Rs=0

(1− rs), (2)

and this should be large.
• If a snippet is irrelevant, no specific extraction needs

to be chosen for that snippet. If snippet s is relevant,
we need to pick one extraction Js = j, for which tsj =
τ (i.e., the extracted type matches the query target
type), and gsj is large.
• Consider now all relevant snippets s and their cho-

sen extractions Js. These induce a multiset of val-
ues {v}. If we are to propose value distribution h to
the user, we want the density at {v} to be large. As-
suming iid extraction events3, this can be written as∏
s:Rs=1 h(vs,Js).

• If h were an arbitrary distribution of unlimited com-
plexity, it could support an arbitrary set of extracted
values, no matter how disparate from each other. There-
fore h needs to be regularized, and there needs to be
consensus among the values claimed to be contributing
to h.

In the rest of this section, we fill in the details of the above
framework.

Inputs: Pr(t|q); for all snippets s, rs and tsj , vsj , gsj for
all candidate extractions j.
Evolving variables: řs, ǧsj
initialize hidden variables ǧsj ← gsj rs Pr(tsj |q)
for iterations i = 1, 2, . . . do

for each snippet s do

let h
\s
τ (•) be a value distribution estimated from all

snippets except s, using weights ǧsj
for each candidate extraction j do

φsj ← gsj rs Pr(tsj |q)h\stsj (vsj) {consensus}
end for
φs⊥ ← 1− rs
D ← φs⊥ +

∑
j φsj

řs ← (1/D)
∑
j φsj

for each j do
ǧsj ← φsj/D

end for
end for

end for

Figure 5: Collective inference pseudocode.

3.5.2 Iterative update algorithm
Each snippet s that potentially contributes information to

the response of a query has the associated hidden variables
Rs and Js. The collective inference algorithm will build
estimates of the posterior distributions over Rs, Js through
the procedure shown in Figure 5. Specifically, let řs ∈ [0, 1]
be the posterior probability of relevance of snippet s. If the
snippet is relevant, then the probability of extraction j being
valid is ǧsj , with

∑
j ǧsj = 1 for each s. We also maintain, for

all possible response types τ , the value distributions denoted
hτ (•).

The consensus update φsj ← gsj rs Pr(tsj |q)h\stsj (vsj) can

also be interpreted as a “leave-one-out” validation of vsj in

3Multiple extractions from a table are not iid. QEWT han-
dles them, but we skip discussing them for simplicity.
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the backdrop of other contributing values, as explained be-
low. (Think of index i here as 〈s, j〉.) If vi is dropped while

making the estimate hτ , we will write it as h
\i
τ (•|{(vi, πi)}).

A natural notion of consensus among {(vi, πi)} can be ob-
tained by dropping each (vi, πi) in turn, forming the esti-

mate h
\i
τ (•|{(vi, πi)}), and evaluating h\i(vi, {(vi, πi)}). It

tells us how strongly vi itself is supported by the rest of the
observed values.

The lines after the consensus are to update řs and ǧsj to
normalized posterior probabilities. After (sufficient) conver-
gence, we are left with these posterior probabilities, from
which we construct hτ on all values (with their posterior
probabilities). The resulting hτ and/or values with their
posterior probabilities are then sent to the answer interval
representation module, described next.

4. INTERVAL REPRESENTATION
Expressive densities described in the previous section give

us a great deal of power to fit the extracted values. How-
ever, the user may wish to view something simpler than
such a general density. Following QCQ [3], we propose ap-
proaches to present ranked intervals as the query response.
We associate each interval I with a lower limit `I and up-
per limit uI and a pI that denotes the probability that the
answer lies within [`I , uI ]. The final answer is a set I of
non-overlapping intervals I1, . . . , Ik such that

∑
I∈I pI = 1.

A baseline approach would be to cluster the relevant val-
ues, but the relevance of a value is not known for sure, and
the number of clusters is also unknown. Therefore, we need
more sophisticated methods.

For this part snippet boundaries are not relevant, so we
denote our input as a set of (vi, πi) pairs where a i corre-
sponds to some sj and πi = ǧsj .

4.1 Uniform density mixture
I can also be thought of as a mixture of uniform distri-

bution with density

hI(v) =

∫
v

∑
I∈I

pI
uI − `I

δ(v ∈ [`I , uI ])dv (3)

Thus, one method of obtaining I is to approximate a more
expressive density (Section 3.4) to a mixture of uniform dis-
tributions. Let h(•|{(vi, πi)}) be a density (such as a Ker-
nel density). We find our desired intervals I1, . . . , Ik such
that within each I = [`I , uI ], the error of approximating
density h by a constant is within a tolerance ε while min-
imizing the number of such intervals. We measure error
in terms of KL divergence between h and hI ; this makes
the error per interval as

∫ uI

v=`I
h(v) log h(v) dv− pI log pI

uI−`I
where pI =

∫ uI

v=`I
h(v) dv. We allow intervals to be single

points `I = uI , and assign an error of 0 for such intervals.
Since we restrict the interval boundaries to values in V ,

we can easily find the optimal set of intervals in O(|V |)2
time using a simple range segmentation algorithm.

4.2 MDL-intervals
One problem with the above method is the difficulty of

finding one tolerance ε to fit all query types. We next present
a method based on the minimum description length (MDL)
principle [12] that is more adaptive to per-query variations
in value distributions.

Assume we have a set Sq of values sampled from all rows
of the snippet columns for query q. For example, in Fig-
ure 3 the set Sq will be sampled from all distinct co2 emis-

sion values over all countries. Our goal is to find intervals
I = I1, . . . , Ik to represent the point answers V = {(vi, πi)}.
Note that each vi ∈ Sq. Using MDL, we interpret this as a
compression problem from a hypothetical sender of V to a
receiver, with the intervals serving as a compression model
for V . We assume Sq is known to both parties. The cost
of sending V has two parts: the cost of the model, which in
our case is the set of intervals, and the cost of sending the
data V given model.

The cost of sending the data V given intervals I = I1, . . . Ik
is the sum of the cost of data in each interval. Let SI denote
the set of numbers from Sq that lie in interval I = [`I , uI ], pI .
As per I, all values within [`I , uI ] have probability rI = pI

|SI |
of being relevant. Each entry vi in V is relevant with prob-
ability πi, thus the expected number of bits for sending vi
is: −πi log rI − (1 − πi) log(1 − rI). Other values in SI are
irrelevant and require − log(1− rI) bits each. Summing up,
data cost over all intervals is−

∑
I∈I1,...Ik

∑
vi∈I −πi log rI+

πi log(1− rI)− |SI | log(1− rI).
The model cost is the cost of sending the parameters rI

and the boundary [`I , uI ]. Following MDL, we encode rI
by finding a good fit distribution p(rI), and setting the
cost as − log p(rI). Since rI is between 0 and 1, a natural
choice is the Beta distribution whose density is Pr(p;m,n) =

1
B(m,n)

pm−1(1 − p)n−1 where B(m,n) is the Beta function

and m,n are parameters. We need to choose m,n so as to
minimize the cost of sending rIs over all intervals and all
queries. Since Sq is typically larger than V , we choose the
prior parameters as m = 1, n = 2 so that smaller values of
rI get lower cost. The set of intervals that minimize the sum
of data and model cost can be found in O(|V |2) time using
the same segmentation algorithm as in Section 4.1.

5. UNIT EXTRACTOR
So far we have abstracted the role of the extractor that

finds likely units from table columns. Given the noise in
tables bearing quantities, the module that annotates table
columns with units needs to be fairly sophisticated.

Problem statement. Given a numeric table column with a
textual header x our goal is to extract the units (if any) from
x that associate with the numbers in the column. Figure 6

Metre|footBritish pound [million]Year

Unit listUnit with multiplierAtomic unit

Pass Elevation (m/ft)

Tonale pass 1884 (6181)

Colle Maniva 1669  (5476)

. . . . . .

Metre|foot

Storage Energy density 

Mega joule/Kilogram

Year 
ended

Net profit/(loss) 
(£m)

2012 143

2011 40

. . . . . .

British pound [million]Year

Ratio unit

Ratio with new unit
Storage Energy density 

by mass in 
MJ/Kg

Liquid 

hydrogen

143

Energy from 

the sun

645,000,000

. . . . . .

City Density (inh. 
Per km2)

Macau 19796

Mumbai 20694

. . . . . .

Inh. /square kilometre

Ratio with new unit

Figure 6: Example unit annotations (in yellow) on
table columns.

shows some example unit annotations to table columns. As
shown, we handle four types of unit occurrences:
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• atomic units like year and meter that have exact match
with a unit node in our quantity ontology QuTree,
• units with multipliers (e.g. million pounds),
• compound units formed by taking a ratio or product

of two units (e.g. mega joule/kilogram), and
• a list of units (e.g. metre|foot).

5.1 An initial rule-based extractor
We initially attempted to extract based on a set of intu-

itive rules capturing various lexical clues and matches with
the unit catalog, since all previous work on quantities have
relied on rule-based unit extractors [3, 20].

Let the term match refer to the longest sequence of to-
kens in a header x that matches a unit name, symbol, or
lemma in QuTree. Annotating a unit based purely on a
match leads to many false positives because there are sev-
eral words like “in”, “at”, “last”, “s”, “stone”, “point” that
are unit names/symbols but are commonly used as non-unit
words. Therefore, we defined rules that require additional
evidences for a match in x to be tagged a unit:

1. after-in: A match after in is a unit e.g. “Price in $”,
“Distance in km”, “Wind velocity in miles per hour”.

2. bracketed: A match within brackets is a unit e.g
“Net profit ($)”, “CO2 emissions (kiloton)”

3. type-name: A match tied to a unit U whose par-
ent type name appears in the header is unit U . E.g.
“Length of race, m” is annotated U=Metre and“Cruise
Speed, mph.” is annotated Miles per hour
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Figure 7: An example parse for the column header
Wind speed (mph / km/h). SimpleUnit is abbreviated
to SU, and unary nodes like CUnit and AtomUnit
have been deleted for compactness.

Header ::= Words? Unit-List Words?
Unit ::= CUnit | Multiplier Msep CUnit |

CUnit Msep Multiplier | Msep Multiplier
Msep ::= Empty | of | in
CUnit ::= SimpleUnit | SimpleUnit UnitOp SimpleUnit
UnitOp ::= Empty | per | ’/’ | ×
SimpleUnit ::= AtomUnit | Multiplier AtomUnit
AtomUnit ::= Unit in QuTree | New word
Multiplier ::= Multiplier Unit in QuTree | Number

Figure 8: Grammar used by the CFG

On deploying these rules on our table corpus we were sur-
prised by their large number of errors. For example, the rule
after-in wrongly labels the header “Scores in last match”
as unit Last (a unit of Volume), and cannot disambiguate
between units Carat, Knot, and Kiloton in header “Ca-
pacity in kt” since “kt” is a symbol for each of these three
units. The rule bracketed wrongly labels word “dec” in
header “Population (Dec 2006)” as unit Decade. Also, it
cannot differentiate between units in headers “duration(s)”
and “year(s)” where the unit annotation of the first should
be Seconds but the second should have no unit. The rule
type-name wrongly annotates header“Length of song(m:s)”
as Meter whereas the correct annotation for “m” is Minute.
The rule is particularly bad for compound units, for example

in “Energy density by volume (MJ/L)”, volume helps anno-
tate L as Liter. Rules for compound units are not easy
because they require simultaneous labeling of many differ-
ent parts of the headers. Finally, these set of rules have
poor recall, for example, the header “CO2 Emissions 2000
thousands of metric tons of carbon” from the third table in
Figure 3 is not covered by any of the three rules.

We therefore explored alternative models that combine
multiple soft evidence from additional resources and are
more expressive in their modeling of compound units and
other unit patterns like multipliers. The rampant ambiguity
of a mention with language words and a unit and with other
units, implied that just depending on clues derived from the
header string may not be adequate. Further, since the sys-
tem of derived units is based on a well-defined grammar,
it seemed natural to use a grammar to drive the extrac-
tion. Feature-based context free grammars seemed perfect
for the task. Regular grammars cannot capture patterns
that encourage alternative units to be of the same type, as
in “Meters per second (m/s)”.

5.2 Feature-based context free grammar
In this approach we use a discriminative Context Free

Grammar (CFG) with scores attached to each possible pro-
duction in the grammar [15]. In Table 8 we show the CFG
(without scores) for unit extraction from table headers. The
grammar supports all four different types of compound units
illustrated in Figure 6. In Figure 7 we present an example
parse tree for the header: “Wind speed (mph / km/h)” that
this grammar supports.

In general, the grammar allows many possible parses of a
header x. Each parse-tree has a score that is additive over
each of the productions in the tree. A production P of the
form: R ::= R1R2 is scored as:

score(P ) = w.f(P,x, i, j, k) (4)
where (i, j) and (j + 1, k) are the text spans in x that R1

and R2 cover, respectively. When R2 is empty (j = k),
we have a unary production. The feature vector f can be
used to capture various clues that help identify units. We
list the set of features we used in sections 5.2.1,. . . 5.2.5.
The weight vector w corresponding to the features could
be trained using the discriminative framework of [15], but
since the number of features in our case was small (seven)
and easily interpretable, we fixed their values manually.

The task of annotating units in an input x reduces to the
task of finding the tree of production with the highest sum
of scores, and outputing the list of units under the “Unit”
nodes in the tree. Since we have scores, as against hard
rules, we can output multiple extractions each weighted with
a score. The well-known Inside-outside algorithm [13, 9] for
inference in PCFGs can be easily extended to output the
top-K highest scoring extractions in polynomial time.

We next list the features used in f(P,x, i, j, k). We first
list the features for leaf-level productions where R is a unit
name U which could be either a Multiplier or an AtomicUnit,
and finally in Section 5.2.5 present features for other internal
nodes of the parse tree. We will use the short form xij to
denote the token subsequence xi . . . , xj of x.

5.2.1 Matches with the Unit Catalog
The TF-IDF similarity of xij to various parts of unit U ′s

entry in QuTree, including U ’s name, lemmas, and symbol is
an important feature for productions that tag xij as a unit
name. Another feature analogous to the type-name rule, is
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the TF-IDF similarity of the words in the parent quantity
type of U and tokens in x excluding xij . For example, in the
header “Length (m)”, this feature will apply for production
Meter := x22 since the word “Length” matches the parent
type of unit Meter. However, it does not fire for production
million := x22.

5.2.2 Lexical clues
When each of the after-in and bracketed rules apply

on a xij we fire a feature when R is the unit state “Unit”.
To allow for occasional extraneous tokens, (e.g. length in
approx meter), we also fire these tokens with a tolerance of
one token.

5.2.3 Relative frequency
We exploit ontologies such as WordNet that provide rel-

ative frequency of word usage to get disambiguation clues
between units and non-units and between different symbols
of the same unit. WordNet provides relative frequency of
various senses of nouns in its ontology. Each noun sense
s is associated with a list of word-forms and a frequency
f(s). Let S = {s1, . . . , sm} be the set of senses whose word-
forms match xij . If one of these senses, say s, is a descen-
dant of the Quantity type in Wordnet and matches the base
name of the unit U in QuTree, we fire a feature with value

1− f(s)∑
t∈S f(t)

. For example, with xij=”last”, we found eight

matching senses in Wordnet, with more than 99% frequency
on the non-unit meaning of last as “finish” or “end”. This
provided strong evidence to not tag “last” as a unit.

5.2.4 Co-occurrence statistics from table corpus
Another strong clue for correctly assigning a unit U to x

is obtained from the presence of strongly co-occurring words
in x outside unit words xij . For example, for x = “width in
m”, and unit U = metre for token x22, we can exploit the
fact that “width” often co-occurs with Length units. We use
the unlabeled corpus of table headers to train a query type
classifier as described in Section 3.1.2. Using this, we assign
a feature with value Pr(tU |x) where tU is the parent type of
unit U .

5.2.5 Compound, Multiple, Multiplier units
We next add a set of features to handle compound units.

For each compound unit type: unit-multiplier pair (e.g. dol-
lar [million]), and ratio/product of two units (MJ/L) we add
bias terms so that atomic units are preferentially related via
these operations instead of being treated as a list of unre-
lated units. Finally, when two units belong to the same type,
we add a bias term so that they are treated as alternatives
(e.g. metre|feet).

6. EXPERIMENTS
After describing our testbed in Section 6.1, we perform

controlled studies on collective extraction (§6.2), choice of
value distribution h (§6.3), query type inference (§6.4), re-
sponse interval generation approaches (§6.5), and the effect
of various unit extractors (§6.6).

6.1 Testbed
Table corpora. Our corpus of tables was collected from
two sources: a commercial Web crawl with 500M pages sim-
ilar to ClueWeb094 from which we extracted 25 million ta-

4lemurproject.org/clueweb09

bles [11], and tables returned by research.google.com/tables
in response to queries.

Queries and ground truth. We used three sources of queries:
QCQ: 28 diverse queries used in [3].
WorldBank: 172 queries on four quantity attributes of coun-

tries: forest area, co2 emissions, land area, and popula-
tion. Ground truth is from World Bank documents [18].

InfoGather: 146 queries used in InfoGather [20], on three
different types of quantities: population of 50 large
cities of the world and revenue and profit of 34 large
corporations. Land area of countries was also part of
this workload, but since we had already included in
WorldBank, we dropped it from this set.

Queries with ground truth are at goo.gl/542L2Y.

Measurements. As in QCQ [3], we need to design how
the performance of QEWT is measured. Most commonly,
ground truth G is available as a set of values, or one or
a few ranges. Similar to QCQ, we assume that the query
specifies a multiplicative confidence band ε. I.e., if a true
point value is v, the user would be satisfied with a value in
[(1 − ε)v, (1 + ε)v] (Our results are with ε = 0.02). Mean-
while, QEWT presents a distribution h. The probabilistic
precision of h is∫

v

h(v)δ
(

[(1− ε)v, (1 + ε)v] ∈ G
)
dv, (5)

which is the total area matching a ground truth value band.
Recall is defined as the fraction of G supported by h5. The
probabilistic F1 score is the harmonic mean of probabilistic
precision and recall. Given the total area under h is always
1, any attempt to recall all ground values by “smearing out”
h will result in large swathes of h never being touched by
a ground truth band. Since the form of h shown to the
user is a set probability weighted set intervals, we use hI
(Equation 3) for h.

6.2 Benefits of collective answer extraction
QEWT potentially improves upon two simpler baselines.

In CollectiveHard, for each snippet s, we greedily and lo-
cally choose the extraction with the best scoring unit and
value. I.e., Js is pinned. The only uncertainty is in rel-
evance Rs, for which h is used. For Pr(t|q) we use the
hard scores from Section 3.1.1 which is 1 when aq matches
the catalog, and uniform otherwise. In Independent, h is
missing but the rest of the setting is exactly the same as
in Collective. The default representation for h is variable
width kernel density. Figure 9 shows that the full power
of QEWT’s collective extraction is vital. In workload In-
foGather, CollectiveHard suffers particularly severely be-
cause of the hard method of query type assignment on the
corporate tax rate queries.

6.3 Effect of choices of h
With the value of h established, in Figure 10 we com-

pare choices for h: variable and fixed width kernel density,
wavelets, and a degenerate distribution with impulse prob-
abilities only at point values seen in the snippets, essen-
tially treating quantities as discrete symbolic extractions.
Whereas there is no clear winner among the continuous dis-
tributions, they are all better than point histograms, which

5Note, an alternative definition of probabilistic recall is pre-
cision times the fraction of G supported by h. But that
causes precision to be counted twice in F1 and is redundant.
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Figure 9: Comparing collective extraction models.

are bad for queries like net worth of a celebrity, or revenue
of a company that are often stated approximately; it gets
no benefit of consensus from values that are close by (e.g.
$ 111.5 billion versus $ 111.05 billion).
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Figure 10: Comparing different models for h(.)

6.4 Effect of query type prediction Pr(t|q)
We compare the dictionary match approach (§3.1.1) with

the data-driven approach (§3.1.2). Out of the 35 distinct
attribute names spanning the three workloads, dictionary
match correctly identified only ten of the query types. In
contrast, our data-driven approach correctly classified 34 of
them with confidence at least 0.66. Some example attributes
and their type and score from this method appear in Fig-
ure 11. When the data-driven unit extractor is plugged into
the collective answer extractor, the result is a significant
boost to end-to-end accuracy, as shown in Figure 12.

6.5 Interval generation methods compared
Figure 13 compares MDL-intervals (§4.2) vs. uniform mix-

ture approximations (§4.1). The x-axis is proportional to the
(assigned) marginal cost of an additional segment (one uni-
form distribution). The y-axis shows F1. At low segment
cost, responses are over-fragmented, losing recall. At high
segment cost, precision is lost.

Part of the reason for MDL’s superiority is the guidance
from the reference value distribution. Figure 14 shows an
example, for the query “corporate tax rate of united states”.
There are 12 distinct correct answers in the tight interval
[39.05, 39.34] (%), shown as green crosses. The candidate ex-
tracted values V = {(vi, pi)} are shown as red squares (some
wide off the mark). About 100 reference values forming Sq,
sampled from tables on corporate tax rates of several coun-
tries are between 20% and 40%, shown as blue diamonds.
Because of the large reference density in [35, 45], the inter-
vals (with probabilities) created by MDL are [39.2,39.4]:
0.61, [35,35]: 0.1, [40,40]: 0.09, and [39.0,39.1]: 0.09. The
most likely one is shown as a green box, containing most
true values. In contrast, the top response from Uniform-
Mix is the low-precision interval [35.0,45]: 0.91, because it

Attribute Type Pr(τ |aq)
annual rainfall Length 0.92
revenue Currency 0.71
weight Mass 0.96
CO2 emissions Mass 0.87
depth Length 0.97
distance to sun Length 0.97
net worth Currency 0.83
population Multiples 0.73
half life Time 0.67

Figure 11: Query attributes aq, labeled type τ and
Pr(τ |aq) via logistic classifier.
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Figure 12: Query F1 accuracy under different query-
type classification models.
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Figure 13: Comparing the MDL and UniformMix
models for generating final intervals in the answer
for increasing Segment cost.

has no query-specific method of measuring relative distances
between points.

6.6 Benefits of PCFG-based unit extractor
Here we evaluate different parsers for extracting units dis-

cussed in Section 5 and also study their impact on end-to-
end query processing.

In order to estimate the extraction accuracy of unit parsers,
we created a dataset of 617 table headers from our corpus
that have been manually labeled with the correct units. In
Figure 15 we plot the extraction accuracy of different parsers
under varying settings. Rule is a rule-based parser that in-
cludes among others the rules of Section 5.1 refined to label
only unambiguous matches. This has an accuracy of only
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Figure 14: An example showing how a reference set
of numbers helps the MDL approach select the cor-
rect intervals.
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40%, and almost all of this error is due to poor recall —
the precision of the rule-based parser is 99%. In contrast,
our proposed CFG-based parser that we call QuantCFG
achieves an accuracy of 82%. We created another parser
called Sequence that uses all the features of QuantCFG
but not its grammar, and chooses the unit with highest score
w.f among all word sequences that match QuTree. The
drop in accuracy to 74% establishes the importance of the
grammar. The next three bars establish the importance of
features in Sections 5.2.2, 5.2.3, 5.2.4 by reporting accuracy
of QuantCFG without various subsets of them.
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Figure 15: Comparing different parsers.

We next assess the impact of the unit extraction accuracy
on the final answer quality in the end-to-end system. In
Figure 16, we compare F1 scores of the answer on the three
workloads on three different parsers described above: the
rule-based parser, the feature-based sequence parser, and
our QuantCFG parser. We observe that it is necessary to use
parsers both with high precision and high recall for getting
quality answers.
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Figure 16: Comparing different parsers on their im-
pact on the answer quality in the end to end system.

7. RELATED WORK
Moriceau [10] was among the earliest to formalize quan-

tity search, and provide some initial notions of temporal
trends and aggregation of values. A more extensive sys-
tem was built by Wu and Marian [19, “W&M”]. Banerjee
et al. [3, “QCQ”] proposed the quantity interval ranking
problem. None of these exploited source HTML tables, none
delayed per-snippet extraction decisions, and none proposed
an inference procedure that collectively estimated snippet
relevance, snippet extractions, and the value distribution.
SCAD [1] collected quantities while satisfying domain-guided
numeric constraints between them (e.g., a laptop screen is
wider than it is tall). But SCAD did not use a unit ex-
tractor or consensus inference as in QEWT. Zhang et al.
[20, “InfoGather”] also extract units and values from Web
tables. They focus on identifying correspondences among
tables based on column types. They do not model uncertain
value distributions. Their aggregation/consensus is based
on exact match of values, which we demonstrate as weaker

than QEWT’s value distribution model. InfoGather extracts
column units using rules, which cannot handle compound
units and noisy headers, unlike our PCFG unit extractor.
Their “query” resembles a table completion task, with ∼100
entities, units, and scales explicitly provided. In contrast,
QEWT is a robust, open-domain system for ad-hoc, single-
entity queries.
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