
Improved Testing of Low Rank Matrices

Yi Li
Max-Planck Institute for

Informatics
yli@mpi-inf.mpg.de

Zhengyu Wang
Institute for Interdisciplinary
Informatics Science (IIIS)

Tsinghua University
wangsincos@163.com

David P. Woodruff
IBM Research, Almaden

dpwoodru@us.ibm.com

ABSTRACT
We study the problem of determining if an input matrix
A ∈ Rm×n can be well-approximated by a low rank ma-
trix. Specifically, we study the problem of quickly estimat-
ing the rank or stable rank of A, the latter often providing
a more robust measure of the rank. Since we seek signifi-
cantly sublinear time algorithms, we cast these problems in
the property testing framework. In this framework, A ei-
ther has low rank or stable rank, or is far from having this
property. The algorithm should read only a small number of
entries or rows of A and decide which case A is in with high
probability. If neither case occurs, the output is allowed to
be arbitrary. We consider two notions of being far: (1) A
requires changing at least an ε-fraction of its entries, or (2)
A requires changing at least an ε-fraction of its rows. We
call the former the “entry model” and the latter the “row
model”. We show:

• For testing if a matrix has rank at most d in the entry
model, we improve the previous number of entries of
A that need to be read from O(d2/ε2) (Krauthgamer
and Sasson, SODA 2003) to O(d2/ε). Our algorithm
is the first to adaptively query the entries of A, which
for constant d we show is necessary to achieve O(1/ε)
queries. For the important case of d = 1 we also give
a new non-adaptive algorithm, improving the previous
O(1/ε2) queries to O(log2(1/ε)/ε).

• For testing if a matrix has rank at most d in the row
model, we prove an Ω(d/ε) lower bound on the num-
ber of rows that need to be read, even for adaptive
algorithms. Our lower bound matches a non-adaptive
upper bound of Krauthgamer and Sasson.

• For testing if a matrix has stable rank at most d in the
row model or requires changing an ε/d-fraction of its
rows in order to have stable rank at most d, we prove
that reading Θ̃(d/ε2) rows is necessary and sufficient.

We also give an empirical evaluation of our rank and stable
rank algorithms on real and synthetic datasets.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623736.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computation on
matrices; G.2.3 [Discrete Mathematics]: Applications

General Terms
Algorithms, Theory

Keywords
dimensionality reduction, principal component analysis, prop-
erty testing, robustness, stable rank

1. INTRODUCTION
Low rank approximation is a popular tool in computer

science with applications to computer vision, information
retrieval, and machine learning. In many of these appli-
cations, such as image, video, multimedia processing, web
data, and bioinformatics the dimensionality of the data is
very large. This makes designing algorithms for processing
such data more challenging, requiring very low memory and
extremely fast processing time.

A saving grace of large-scale data is that it is often of low
intrinsic dimension. For example, in Principal Component
Analysis (PCA) [6, 7, 13] the data points are column vectors
of a matrix A with the assumption that A can be expressed
as L+N for L a matrix of low rank and N a matrix of small
Frobenius norm, which could typically model noise that has
been added to A. Replacing A with the matrix L provides a
good low rank approximation to A. PCA has a wide range of
applications, including non-negative matrix factorization [9],
latent dirichlet allocation [1], clustering [3], and geometric
shape fitting problems [4]. There is a large body of work on
randomized algorithms for low rank approximation; we refer
the reader to Section 5 of the survey by Mahoney [11].

Recently, a new form of PCA called robust PCA was intro-
duced [2]. In this problem, the data points are again column
vectors of a matrix A = L+N , where L is a low rank matrix,
but now N is only guaranteed to be a sparse matrix. Un-
like classical PCA, the entries of N can be arbitrarily large
provided there are a small number of non-zero entries (the
locations of the non-zero entries of N are unknown). This
makes robust PCA less sensitive to outlier contamination.
We refer the reader to [2] in which applications of robust
PCA to video surveillance, face recognition, latent semantic
indexing, ranking and collaborative filtering are given. In
typical applications, such as recommender systems [15], L is

691

a matrix of a small constant rank. Surprisingly, under cer-
tain assumptions there are efficient algorithms for recovering
L and N . One assumption is that the number of non-zero
entries of N is at most a sufficiently small constant fraction
of the total number of entries.

Independently of the work above, the property testing
community has also studied whether a matrix can be ex-
pressed as a small perturbation of a low rank matrix [8,
12]. In the property testing model there is an unknown,
typically very large object, such as a graph, a matrix, or a
vector. This object is queried in certain positions in order
to determine if it satisfies a property P or is far from sat-
isfying P. For an introduction to property testing, we refer
the reader to a survey by Goldreich [5]. The relevant results
in the property testing literature for robust PCA are those
for what we refer to as the Rank property. In this problem,
the input matrix A is either of rank at most d, or requires
changing an ε-fraction of its entries in order to become a ma-
trix of rank at most d. Note that this is a decision version
of the robust PCA problem: either A = L in the notation
above, or if A = L + N for a matrix L of rank at most
d, then necessarily more than an ε-fraction of entries of N
are non-zero. Distinguishing these two cases allows one to
decide whether the assumptions required for a robust PCA
algorithm to succeed hold. If the input A is in neither case,
then it is allowed for the algorithm to output an arbitrary
answer, which is acceptable for the robust PCA application
since robust PCA is guaranteed to work if N has at most an
ε-fraction of non-zero entries.

The Rank problem was studied by Krauthgamer and Sas-
son [8], who showed there exists a randomized algorithm
succeeding with 99% probability on every input matrix A
and reading only O(d2/ε2) entries of A. This bound is inde-
pendent of the dimensions of the matrix A. This provides
a quick, provably correct method for determining whether
robust PCA procedures will work on A, without having to
run them in case A is not well-approximated by a low rank
matrix. Other methods such as clustering and recommenda-
tion systems can also benefit by first running an algorithm
for Rank to determine if A is close to a low rank matrix.

Despite this progress, there are several natural questions
that remain:

1. In machine learning problems a quadratic dependence
on ε is often prohibitive. Can one improve theO(d2/ε2)
algorithm of [8] to have a linear dependence on 1/ε?

2. In differential equation applications, one often has a
sparse matrix stored in Compressed Sparse Row (CSR)
or Compressed Sparse Columns (CSC) representation,
which allows the retrieval of an entire row or column
almost as quickly as a single entry. What is the com-
plexity of the Rank problem in this model? To dis-
tinguish this model from the previous model, we refer
to this as the “row model”, while the model in which
individual entries are changed is the “entry model”.

3. It is often more common for a matrix to have low stable
rank than low rank, where the stable rank is defined
as ‖A‖2F /‖A‖2. Here ‖A‖F is the Frobenius norm and
‖A‖ the operator norm. The stable rank is a contin-
uous, robust relaxation of the rank, with applications
to finding well-conditioned submatrices [16]. Can we
design algorithms for the StableRank problem, of de-
termining if A has stable rank at most d, or requires

changing an ε/d-fraction of rows to have stable rank at
most d? For this question to make sense, we assume as
is often done when working with the stable rank [16],
that the rows of A have Euclidean norm at most 1, as
otherwise one can increase the norm of a single row
of A until its stable rank is arbitrarily close to 1. It
also makes sense to parameterize the problem in terms
of changing an ε/d-fraction of rows rather than an ε-
fraction of rows, since by replacing a 1/d fraction of
rows with the vector v for an arbitrary unit vector v,
one can always reduce the stable rank to at most d.

Our Contributions: In this paper we thoroughly study
both the Rank and StableRank problems. We answer the
questions above, providing new theoretical and empirical
guarantees for these problems.

Results for the Rank Problem:

1. In the entry model, by allowing queries (i, j) to be
adaptively chosen based on the values Ai′,j′ of previ-
ously queried entries (i′, j′), we are able to improve the
algorithm of [8] to give an algorithm which makes only
O(d2/ε) rather than O(d2/ε2) queries. Our algorithm,
like that of [8] has one-sided error, meaning that if A
is of rank at most d the algorithm will be correct with
probability 1, while if A is ε-far from this property, the
algorithm succeeds with probability .99.

2. We show that, for constant d, adaptivity is neces-
sary for achieving this improved algorithm. That is,
we show that any algorithm which makes only non-
adaptive queries, meaning it chooses its query set be-
fore reading any of the entries of A, requires reading
Ω((log 1/ε)/ε) entries of A. As our upper bound for
constant d is O(1/ε) queries, this demonstrates a sep-
aration in the power of adaptivity.

3. We further study the problem when d = 1, which has
important applications to parsing images of building
facades [17]. In this case we design a non-adaptive
algorithm which achieves O((1/ε) log2(1/ε)) queries in
the entry model, improving the O(1/ε2) non-adaptive
algorithm of [8].

4. In the row model, we show that any, possibly adap-
tive, algorithm requires reading Ω(d/ε) rows of A. This
matches a non-adaptive O(d/ε) algorithm of [8].

Results for the StableRank Problem:

1. We show in the row model that reading a total of
O(d logn log(d logn)/ε2) non-adaptively chosen rows
suffices to solve the problem.

2. We also show an Ω(d/ε2) lower bound in the row model.
Our lower bound holds even for adaptive algorithms,
and is optimal up to an O(logn log(d logn)) factor.

We experimentally validate our algorithms for Rank and Sta-
bleRank on several natural input distributions on A and spar-
sity patterns N .

For the StableRank problem, we use real datasets from the
University of Florida Sparse Matrix Collection. We show
that for a large fraction of the matrices in this dataset, our
algorithms only need to sample a very small fraction of rows

692

to solve the StableRank problem. We parameterize the num-
ber of rows that need to be read as a function of the stable
rank parameter d for these datasets.

For the Rank problem, we use synthetic datasets. Our
experiments show particularly noticeable improvements for
adaptive query algorithms over non-adaptive query algo-
rithms for small ε. For example, for ε = 0.01 and d = 1,
for one of our input distributions the number of adaptive
queries is 7% of the number of non-adaptive queries required.

Paper Outline: We give our adaptive algorithm for the
Rank problem in the entry model in Section 2, and show
that adaptivity is essential by proving a lower bound for
non-adaptive algorithms in Section 3. In Section 4, we give a
new non-adaptive algorithm for the important case of d = 1,
which comes close to the lower bound we prove for non-
adaptive algorithms in Section 3. In Section 5 we consider
the row model, and prove a lower bound on the number
of rows read for the Rank problem. In Section 6 we give
an algorithm for the StableRank problem and show a nearly
matching lower bound, both in the row model. Finally, we
present our experimental results in Section 7.

2. ALGORITHM FOR RANK PROBLEM
In this section we study the Rank problem with adaptive

queries. We assume that min(m,n) = ω(d/ε), that is, that
min(m,n) is larger than cd/ε for any fixed constant c > 0.
This is consistent with our goal of testing if A has small
rank.

We first review the algorithm for Rank in [8]. Suppose that
the input matrix A has rank greater than d. That algorithm
tries to find a submatrix with rank greater than d. The
algorithm starts with an empty submatrix and iteratively
grows the submatrix by appending one random row and one
random column. Let Bt be the submatrix maintained at step
t and Xt = rank(Bt). It was shown in [8] that Pr{Xt+1 >
Xt|Xt ≤ d} ≥ ε/3 and thus by a Chernoff bound, t = O(d/ε)
suffices to reach Xt > d with constant probability.

Algorithm 1 Our Algorithm for the Rank problem

1: I ← ∅, J ← ∅
2: for t = 1 to O(d2/ε) do
3: Pick (i, j) uniformly random from Ic × Jc
4: Query AI,j , Ai,J and Ai,j
5: if rank(AI∪{i},J∪{j}) > rank(AI,J) then
6: I ← I ∪ {i} , J ← J ∪ {j}
7: end if
8: Bt ← AI,J
9: if rank(Bt) > d then

10: return “A is ε-far from rank d”
11: end if
12: end for
13: return “A is of rank d”

In our adaptive algorithm, we also augment Bt in each
step until rank(Bt) > d. We formally write our algorithm
in Algorithm 1. Suppose at step t, rank(Bt) < d and I and
J are the index sets of the rows and columns of Bt, respec-
tively. Consider the index pairs Ic × Jc, where Ic = [m] \ I
and Jc = [n] \ J , where for an integer `, [`] = {1, 2, . . . , `}.
We claim that at least an Ω(ε) fraction of the index pairs
in Ic × Jc would increase rank(Bt). Assume that this is

true for the moment. Then in expectation, O(1/ε) random
samples in Ic × Jc suffice for there to exist a sample index
pair that would increase the rank Bt after augmenting with
respect to that index pair. We can find one such pair by
checking each chosen possible augmentation of Bt. Call the
pair found Bt+1. By linearity of expectation and a Chernoff
bound, t = O(d) steps suffice to give rank(Bt) > d. The
number of entries read is, in expectation, bounded by

O(d)∑
t=0

O

(
2t+ 1

ε

)
= O

(
d2

ε

)
.

Now we prove our claim above to complete the proof. We can
assume, without loss of generality, that Bt consists of an up-
per left submatrix of A. Since we assume that min(m,n) =
ω(d/ε), and Bt has at most d rows and columns, we can
change all the entries of A in the first t columns and first t
rows so that the rows restricted to the first t columns are
in the row span of Bt, and the columns restricted to the
first t rows are in the column span of Bt. This only changes
at most an ε/2-fraction of the total number of entries of A.
Next, for each entry (i, j) not among the first t columns or
rows, we can change the value of Ai,j so that augmenting
Bt by the pair (i, j) does not increase the rank of Bt. Since
we must change at least an ε-fraction of overall entries of A
to reduce the rank to at most d, and Bt has rank at most
d, the number of index pairs in Ic × Jc that would increase
rank(Bt) must be at least εmn/2.

Our algorithm is optimal for constant d, because it re-
quires Ω(1/ε) queries just to distinguish a zero matrix from
a matrix with εmn randomly placed non-zero entries.

3. LOWER BOUND FOR RANK PROBLEM
FOR NON-ADAPTIVE ALGORITHMS

In this section, we start with a simple example to demon-
strate that it is generally hard to improve the non-adaptive
upper bound of O(1/ε2) for Rank even for d = 1, for a class
of natural non-adaptive algorithms which query submatri-
ces and make their decision based on the maximum rank
of them. Next, we give a proof that any randomized non-
adaptive algorithm requires Ω((log 1/ε)/ε) queries for d ≥ 1.

3.1 A Hard Input for a Class of Natural Non-
adaptive Algorithms

To design non-adaptive algorithms, a natural way is to se-
lect some submatrices of A to query, namely A1, · · · , At, and
then make a decision based on whether maxi∈[t] rank(Ai) >
d. However, there is an example of A such that the number
of queries required is at least Ω(1/ε2) for such algorithms,
even when d = 1. In the following we fix d = 1. One can
easily extend the result to any d.

Denote

M =

(
0εn×εn 1εn×(1−ε)n

1(1−ε)n×εn 0(1−ε)n×(1−ε)n

)
,

where 1r,c is an r-by-c matrix whose entries are all 1s. Let A
be the matrix obtained from uniformly randomly permuting
the rows and columns of M .

In order to find a fully queried submatrix whose rank is
more than 1, one must query an entry in A corresponding
to an entry of the top-left submatrix in M (we call such an
entry critical), whose size is just εn × εn. Therefore, if the

693

total query size is o(1/ε2), the probability is o(1) that one
has queried a critical entry in order to find that rank(A) = 2
instead of 1. Hence, a lower bound of Ω(1/ε2) holds for non-
adaptive algorithms which query a set of submatrices and
decide on whether the maximum rank of those submatrices
is more than d.

In fact, for more complicated algorithms, it is possible to
reduce the non-adaptive query size when d = 1. We shall
study it in Section 4.

The example here also illustrates the superiority of adap-
tive queries over non-adaptive ones. An adaptive algorithm
needs O(1/ε) queries (in expectation) to find an entry of
value 1, and based on the position of that entry, the algo-
rithm can then extend it to a matrix of rank 2 with O(1/ε)
more queries; while a non-adaptive algorithm does not know
which rank-1 matrix to extend.

3.2 An Ω(1
ε

log 1
ε
) Non-adaptive Lower Bound

for Constant d
In this subsection, we prove the following theorem, which

can be automatically extended to arbitrary d.

Theorem 1. Any randomized non-adaptive algorithm for
the Rank problem with d = 1 requires Ω((1/ε) log(1/ε)) queries.

To give a lower bound for non-adaptive queries for any
randomized algorithm, we apply Yao’s Lemma, and (1) de-
fine two distributions D0, D1, such that D0 is a distribution
of matrices of rank at most d (or PrM∼D0 {rank (M) ≤ d} =
1, the same below), while D1 is a distribution of matrices
which are ε-far from rank d; (2) prove that with high prob-
ability, any deterministic non-adaptive set of (c/ε) log(1/ε)
entries cannot distinguish D0 from D1, where c > 0 is a
constant.

Algorithm 2 Hard Distribution

1: Let i be uniformly sampled in [k].
2: Let r = n/2i−1, c = εn · 2i, and x1, x2, y1, y2 be i.i.d.
N(0, In) vectors.

3: Let M0,M1 ∈ Rn×n be

M0 =

(
x1y

T 0r,n−c
0n−r,c 0n−r,n−c

)
and

M1 =

(
x1y

T
1 + x2y

T
2 0r,n−c

0n−r,c 0n−r,n−c

)
,

where yi =
√

(y1)2i + (y2)2i .
4: Let Pr, Pc ∈ Rn×n be two uniformly random permuta-

tion matrices.
5: Let D0 be the distribution of PrM0Pc and D1 the dis-

tribution of PrM1Pc.

We define the distributions D0 and D1 on Rn×n in Al-
gorithm 2. Notice that D0 is a distribution of matrices of
rank 1 with probability 1 while D1 is a distribution such
that a random sample is ε-far from a rank-1 matrix with
probability 1.

Now consider a deterministic algorithm for testing the ma-
trix A sampled from either of the two distributions with
equal probability. The queries of the algorithm can be writ-
ten as a deterministic subset S ⊆ [n] × [n]. The following

lemma is straightforward by the construction of the distri-
butions, together with the property of normal distributions
that N(µ1, σ

2
1) +N(µ2, σ

2
2) ∼ N(µ1 + µ2, σ

2
1 + σ2

2).

Lemma 1. If for each row and column of A the number
of observed non-zero entries is at most 1, then the algorithm
cannot determine whether A is “of rank 1” or “ε-far from
any rank-1 matrix” better than a random guess. Formally,

(∀j ∈ [n] , |{(i, j) ∈ S |Ai,j 6= 0}| ≤ 1)
∧ (∀i ∈ [n] , |{(i, j) ∈ S |Ai,j 6= 0}| ≤ 1)
⇒ Pr {rank (A) ≤ 1 | AS} = 1

2

.

To upper-bound the probability that two or more non-zero
observations are in a query row or column, we need the
following lemma. It follows from a union bound argument
and simple inequalities.

Lemma 2. Suppose that there are n bins, m of which con-
tain a ball each. Then choosing b bins uniformly at random
collects at least 2 balls with probability at most (bm/n)2.

Proof. We pick b bins one by one. The probability that
two particular bins both contain balls is at most (m/n)2.
Also notice that if at least 2 balls are picked, it must be the
case that there exist two attempts both of which have balls.
Applying a union bound, we obtain the probability that we

collect at least 2 balls is at most
(
b
2

)
·
(
m
n

)2 ≤ (bm
n

)2
.

The next is the most important lemma, which is a bit
technical. It says that if the number of non-adaptive queries
is small, then the probability will be small that there exists
one column such that the number of non-zero observations
on that column is larger than 1.

Lemma 3. If |S| ≤ 1
192ε

log 1
ε
, then

Pr {∃j ∈ [n] , |{(i, j) ∈ S |Ai,j 6= 0}| ≥ 2} ≤ 1/8.

Proof. We start with some definitions. For every i ∈
[k − 1], let xi be the number of columns in [n] such that the
number of entries observed on that column is larger than
2i−1 but no more than 2i. Let xk be the number of columns
in [n] such that the number of entries observed on that col-
umn is larger than 2k−1. More formally, for i ∈ [k − 1],
let

xi =
∣∣∣{j ∣∣∣2i−1 < |(·, j) ∩ S| ≤ 2i

}∣∣∣ ,
and for i = k,

xi =
∣∣∣{j ∣∣∣2i−1 < |(·, j) ∩ S|

}∣∣∣ .
We know that

2 |S| ≥
∑

i∈[k]
2i · xi.

For i ∈ [k], let Pi bet the probability that there exists one
column containing 2 or more observed non-zero entries, con-
ditioned on the event that A has an (n/2i−1)×(εn2i) subma-
trix of non-zero entries (i.e., i is chosen when it is generated
in Algorithm 2). By Lemma 2, we obtain that for all j ∈ [k],

Pj ≤ ε · 2j ·

(
j−1∑
i=1

xi · 41+i−j +

k∑
i=j

xi

)
.

Notice that the factor ε2j comes from the fact that there
are only ε2jn columns that are non-zero in A. If we visit

694

2i entries on a column of n/2j−1 non-zero entries, the prob-
ability that we hit at least 2 non-zero entries is at most(

2i·n/2j−1

n

)2
= 41+i−j . If it is more than 1, we bound it by

1 since it is a probability. Therefore,

Pj ≤ ε ·

(
j−1∑
i=1

xi · 22+2i−j +

k∑
i=j

2j · xi

)
.

Summing over all j ∈ [k] yields that∑
j∈[k]

Pj ≤ 12ε ·
∑
j∈[k]

2j · xj ≤ 24ε |S| .

Therefore, if |S| ≤ 1
192ε

log 1
ε
, then

1

k

∑
j∈[k]

Pj ≤ 1/8,

i.e.,

Pr {∃j ∈ [n] , |{(i, j) ∈ S |Ai,j 6= 0}| ≥ 2} ≤ 1/8.

Extending Lemma 3 to rows and combining with Lemma 1,
we can prove Theorem 1, i.e., any non-adaptive algorithm
that solves our problem takes Ω

(
1
ε

log 1
ε

)
queries.

4. NON-ADAPTIVE RANK ONE ALGORITHM
In this section, we give a non-adaptive algorithm for the

Rank problem with O(1
ε

log2 1
ε
) queries when d = 1 and ε ≤

1/e. Let η be such that η log(1/η) = ε and η < 1/2. Also
let k = log 1/η. The proposed algorithm is as follows. We
describe it for an n × n matrix A, though it immediately
extends to rectangular matrices as well.

Choose R1, · · · , Rk and C1, · · · , Ck from [n] uniformly at
random such that

R1 ⊆ · · · ⊆ Rk, C1 ⊇ · · · ⊇ Ck,

and

|Ri| = c02id, |Ci| = c0d/2
iη,

where c0 is a sufficiently large constant to be determined
later. Denote Q =

⋃k
i=1(Ri × Ci), the overall set of entries

the algorithm will query. Then, the algorithm computes

min
A(Rk,C1)\Q

rank(ARk,C1),

the minimum possible rank of the matrix, and decides that
“A is ε-far from being rank-d” iff the minimum possible rank
is more than d.

Notice that the total number of entries the algorithm
queries is O(d2 log(1/η)/η) = O((d2/ε) log2(1/ε)). Now we
justify the correctness of the proposed algorithm for d = 1.

For fixed A ∈ Rn×n which is ε-far from being rank -d,
call (r, c) an augment for R × C ⊆ [n] × [n] if r ∈ [n] \ R,
c ∈ [n] \ C and rank(AR∪{r},C∪{c}) > rank(AR,C). Let
aug(R,C) be the set of all the augments, that is,

aug(R,C) = {(r, c) ∈ ([n] \R)× ([n] \ C) :

rank(MR∪{r},C∪{c}) > rank(MR,C)}.

For fixed R, C and A, define countr (r ∈ [n] \ R) to be the
number of c’s such that (r, c) ∈ aug(R,C). Let count∗i∈[n−|R|]

be the non-increasing reordering of the sequence (countr)r∈[n]\R.
For simplicity of notation, let count∗i = 0 if i > n−|R|. The
following lemma follows from the fact that the number of
augments is at least εn2 if A is ε-far from being rank-d and
rank(AR,C) ≤ d, as argued in Section 2.

Lemma 4. If A is ε-far from being rank-d and rank(AR,C) ≤
d, then

|aug (R,C) | =
∑

r∈[n]\R

countr =
∑
i

count∗i ≥ εn2.

We define the concept of an augment pattern below.

Definition 1. For M , R, C and i ∈ [log(1/η)], we say that
(R,C) has augment pattern i on A iff count∗n/2i ≥ 2i−1ηn.

Following the definition, we show the existence of at least
one augment pattern for (R,C) when A is ε-far from being
rank-d and rank(MR,C) ≤ d.

Lemma 5. If A is ε-far from being rank-d and rank(AR,C) ≤
d, then there exists i such that (R,C) has augment pattern
i.

Proof. We prove the lemma by contradiction. Suppose
that (R,C) does not have augment pattern i for all i ∈
[log(1/η)], i.e.,

count∗n/2i < 2i−1ηn, i = 1, 2, . . . , log(1/η).

It follows that∑
i

count∗i =

n∑
i=n

2
+1

count∗i+

n
2∑

i=n
4
+1

count∗i+ · · ·

+

n

2log(1/η)−1∑
i= n

2log(1/η)
+1

count∗i +

ηn∑
i=1

count∗i

<
ηn2

2
· (log (1/η) + 1)

< η log (1/η)n2 (since η < 1/2)

= εn2,

which contradicts Lemma 4.

Note that if (R,C) has augment pattern i on A, a uni-
formly random rectangle sample of dimension c2i × c/2iη
will hit at least one augment with high probability, which is
at least(

1−
(

1− 2−i
)c2i)(

1−
(

1− 2i−1η
)c/2iη)

≥ 1− 2

ec/2
.

We conclude this fact as

Lemma 6. Suppose that (R,C) has augment pattern i on
A and j ∈ {i − 1, i}. Let R′, C′ ⊆ [n] be uniformly random
such that |R′| = c2j , |C′| = c/2jη. Then the probability that
(R′, C′) contains at least one augment of (R,C) on A is at

least 1− 2e−c/2.

Now we are ready to show the correctness for the proposed
algorithm.

Theorem 2. Suppose that ε ≤ 1/e. For any matrix A
(either of rank at most d = 1, or at least ε-far from it),
the probability that the proposed algorithm is erroneous is at
most 1/3, provided that c0 ≥ 12.

695

Proof. If A is of rank at most 1, the algorithm will never
be wrong. Now we analyze the case that A is ε-far from being
rank-1. We discuss the two cases based on the number of
augment patterns for (∅, ∅) on A.
Case (i) (∅, ∅) has only one single augment pattern.

Let i denote the only augment pattern that (∅, ∅) has.

We divide Ri uniformly at random into two even parts, R
(1)
i

and R
(2)
i . Do the same with Ci, obtaining C

(1)
i and C

(2)
i . By

Lemma 6, the probability that A
R

(1)
i ,C

(1)
i

contains at least

one non-zero entry is at least 1− 2e−c0/4. Let us condition
on this event.

Let (r, c) ∈ (R
(1)
i , C

(1)
i) be such that Ar,c 6= 0. Then

({r}, {c}) has augment pattern i by Lemma 5, while on the
other hand it is impossible that ({r}, {c}) has augment pat-
tern other than i, since (∅, ∅) does not have the augment
pattern. Now consider the probability that (R\{r}, C\{c})
contains an augment for ({r}, {c}). We claim that this prob-

ability is also at least 1 − 2e−c0/4. Since R
(2)
i and C

(2)
i are

uniformly random given R
(1)
i and C

(1)
i , we can use a coupling

argument to show that the probability that (Ri\{r}, Ci\{c})
contains at least one augment for ({r}, {c}) is greater than
a uniformly random sample of dimension c02i/2× c0/2i+1η
in ([n] \ {r})× ([n] \ {c}) does.

Therefore, the probability to augment one empty matrix
to a 2× 2 full rank matrix is at least 1− 4e−c0/4 > 2/3, and
the algorithm answers correctly in this case.
Case (ii) (∅, ∅) has multiple augment patterns.

In this case, suppose that (∅, ∅) has augment patterns i
and j (i < j). Divide Ri uniformly at random into two

even parts R
(1)
i and R

(2)
i , and Cj into C

(1)
j and C

(2)
j . Also

divide Rj\Ri evenly into R(1) and R(2), Ci\Cj into C(1)

and C(2). According to Lemma 6, the probability that

both (R
(1)
i , C

(1)
j ∪C

(1)) and (R
(1)
i ∪R

(1), C
(1)
j) intersect with

aug(∅, ∅) is at least 1− 4−c0/4. Conditioned on this, we dis-

cuss two cases based on whether (R
(1)
i , C

(1)
j) intersects with

aug(∅, ∅).
Case (ii.1): (R

(1)
i , C

(1)
j) ∩ aug(∅, ∅) = ∅. Let (ri, ci) ∈

(R
(1)
i , C(1)) be such thatAri,ci 6= 0 and (rj , cj) ∈ (R(1), C

(1)
j)

be such that Arj ,cj 6= 0. Since Ari,cj = 0, we know that
rank(A({ri,rj},{ci,cj})) = 2 so the algorithm answers cor-
rectly.

Case (ii.2): (R
(1)
i , C

(1)
j) ∩ aug(∅, ∅) 6= ∅. Let (r, c) ∈

(R
(1)
i , C

(1)
j) ∩ aug(∅, ∅). Following a similar argument of

case (ii.1), we can prove that the probability is at least

1 − 2e−c0/4 that (r, c) could be augmented with augment
pattern i by (Ri\{r}, Ci\{c}) (or with augment pattern j
by (Rj\{r}, Cj\{c}). So the overall probability is at least

1 − 6e−c0/4 > 2/3 that the algorithm answers correctly in
this case by finding a submatrix of rank 2.

5. LOWER BOUND FOR RANK IN THE ROW
MODEL

In this section, we discuss the Rank problem in the row
model. Recall that we say A is ε-far from having property
P if at least εn rows of A have to be changed for A to
have property P . The Rank problem in this model is to
test whether the matrix has rank at most d or is ε-far from
having rank at most d.

In this model, the algorithm of [8] gives an upper bound of
O(d/ε) rows. Next we show a matching lower bound when
the entries of A come from any field F, e.g., the real numbers.
Assume that n ≥ 2d/ε throughout this section.

First assume F is a finite field. Let D1 be a distribution
over n × n matrices defined as follows. Choose a random
d-dimensional subspace W in Fn and then choose 2εn uni-
formly random vectors from W . Place these 2εn vectors on
2εn uniformly random rows of an n× n matrix. The result-
ing distribution is D1. We define D2 similarly, except that
W is a uniformly random (d+ εn)-dimensional subspace in
Fn. Clearly rank(A) ≤ d when A ∼ D1. When B ∼ D2,
with probability 1 − o(1), one needs to change at least εn
rows of B to reduce its rank to d.

By construction, adaptively choosing rows does not help
in distinguishing D1 from D2, and so we may assume the
query algorithm is non-adaptive. Fix Q ⊆ {1, . . . , n} with
|Q| = q. Let AQ = (Aij)i∈Q,1≤j≤n and define BQ similarly.
Each defines a distribution on q × n matrices, denoted by
L(AQ) and L(BQ), respectively.

Lemma 7. Suppose that F is a finite field. When q ≤
αd/(8ε), it holds that dTV (L(AQ),L(BQ)) ≤ α + |F|−d/4 +
o(1), where dTV denotes total variation distance.

Proof. When q ≤ αd/(8ε), by a Markov bound, with
probability ≥ 1 − α at most d/4 vectors of the chosen 2εn
ones are read. For distribution D1, with probability ≥ 1 −
|F|−d/4, the vectors are linearly independent. For distribu-
tion D2, with probability ≥ 1−o(1), the vectors are linearly
independent. The conclusion follows immediately from the
observation that conditioned on the vectors being linearly
independent, they are distributed as a set of uniformly cho-
sen d/4 linearly independent vectors in Fn.

For F = R, we define D1 and D2 similarly, except that
the 2εn random vectors are chosen subject to the multidi-
mensional Gaussian measure on W . Similarly to the lemma
above, we have,

Lemma 8. Suppose that F = R and α > 0. When q ≤
αd/(8ε), it holds that dTV (L(AQ),L(BQ)) ≤ α+ o(1).

Proof. When q ≤ αd/(8ε), by a Markov bound, with
probability ≥ 1 − α at most d/4 vectors of the chosen 2εn
ones are read. For both distributions, the randomly chosen
vectors are linearly independent almost surely. The conclu-
sion follows immediately from the observation that condi-
tioned on the vectors being linearly independent, they are
distributed as a set of uniformly chosen d/4 linearly inde-
pendent vectors in Rn.

The lower bound follows immediately as a corollary.

Corollary 1. In the row model, any algorithm for the
Rank problem needs to sample Ω(d/ε) rows.

6. STABLE RANK IN THE ROW MODEL

6.1 Upper Bound

Definition 2. (stable rank) Let A ∈ Rn×n be a non-zero
matrix. The stable rank of A is srank(A) = ‖A‖2F /‖A‖2.

We will design an algorithm for the StableRank problem for
n× n matrices. We denote the i-th row of A by Ai,·.

696

Algorithm 3 Algorithm for the StableRank problem

// c = 1
8
(1− 1

d
)2

1: q ← Θ
(

d

(1− 1
d
)6ε2

logn+ d logn log(d logn)
)

2: Sample q rows of A, forming Ã
3: X ← n

q
‖Ã‖2F

4: if X ≤ 9
10

(1− 1
d
)εn then

5: output ‘stable rank ≤ d’
6: else
7: if n

q
‖Ã‖2 ≥ X

(1+ cd
d−1

)d
then

8: output ‘stable rank ≤ d’
9: else

10: output ‘εn/d-far from having stable rank ≤ d’
11: end if
12: end if

Lemma 9. Suppose that d/ε ≥ 2. If A is (ε/d)-far from
having stable rank ≤ d, then

‖A‖2F ≥ (
εn

d
− 1)(d− 1) (1)

‖A‖2 ≤ (1 +
ε

d
(1− 1

d
))
‖A‖2F
d
− (1− 1

d
)(
εn

d
− 1). (2)

Proof. Suppose that x ∈ Sn−1 satisfies ‖A‖ = ‖Ax‖2.
Without loss of generality, assume that 〈A1,·, x〉2 ≤ 〈A2,·, x〉2 ≤
· · · ≤ 〈An,·, x〉2. Let m = dεn/de − 1, so that n > 2m.
Changing each Ai,· (1 ≤ i ≤ m) to x forms a new matrix B,
and it must hold that srank(B) > d.

It is clear that ‖B‖2 ≥ m and ‖B‖2F ≤ ‖A‖2F +m, so

d < srank(B) ≤ ‖A‖
2
F +m

m
,

whence (1) follows.
Next we prove the second conclusion. It is clear that

Sm :=

m∑
i=1

〈Ai,·, x〉2 ≤
m

n

n∑
i=1

〈Ai,·, x〉2 =
m

n
‖A‖2 ≤ m

n
· ‖A‖

2
F

d
.

Observe that

‖B‖2F ≤ ‖A‖2F −
m∑
i=1

‖Ai,·‖22 +m ≤ ‖A‖2F − Sm +m

and

‖B‖2 ≥ ‖A‖2 − Sm +m.

It follows that

d < srank(B) ≤ ‖A‖
2
F − Sm +m

‖A‖2 − Sm +m

whence (2) follows.

Lemma 10. In Algorithm 3, it holds that |X − ‖A‖2F | ≤
1
8
(1− 1

d
)2εn with probability ≥ 9/10.

Proof. Let τ = 1
8
(1 − 1

d
)2. By a Chernoff bound, sam-

pling q rows uniformly gives failure probability 2e−2q(τε)2 <
0.1, that is, q = Ω(1/(τε)2).

Lemma 11 ([10]). Let Ã be a matrix formed by r in-
dependent row samples of A according to probability pt ≥
β‖At,·‖22/‖A‖2F . If r ≥ 4 srank(A)

βη2
ln 2n

δ
then with probabil-

ity at least 1 − δ, it holds that (1 − η)‖A‖2 ≤ n
r
‖Ã‖2 ≤

(1 + η)‖A‖2.

Lemma 12. Let X ∼ Unif(Sn−1) then ‖x‖∞ ≤
√

2 logn
n

with probability ≥ 1− n−2.

Theorem 3. Suppose that ‖A‖row = 1, then Algorithm 3
is a correct algorithm for the StableRank problem with suc-
cess probability ≥ 0.6 in the row model. It reads O(d logn

(1− 1
d
)6ε2

+

d logn log(d logn)) rows.

Proof. By Lemma 1, if A is far from having stable rank
at most d, it must hold that ‖A‖2F ≥ (1 − 1/d)εn. Con-
ditioned on the event that X is a good estimator to ‖A‖2F ,
that is, X satisfies the conclusion of Lemma 10, it holds that
X ≥ 9

10
(1− 1

d
)εn. Hence the algorithm is correct on Line 5.

Now we assume that ‖A‖2F ≥ (1− 1/d)εn. Let η = cεn
‖A‖2

F
≤

cd
d−1

=: η′ then (1− τη′

c
)‖A‖2F ≤ X ≤ (1 + τη′

c
)‖A‖2F .

Now suppose that srank(A) > c1d. Let U be a uniformly
random n× n orthogonal matrix. Since we only care about
norms of Ã we can replace Ã with ÃU , which is a random
sample of q rows of AU . Observe that (AU)i,· is a random
vector uniform on ‖Ai,·‖2Sn−1, it follows from Lemma 12
and a union bound that ‖Ai,·‖∞ ≤ 2‖Ai,·‖22(logn)/n for all
i with probability ≥ 1 − 1/n. Conditioned on this event,
‖A‖2col ≤ 2‖A‖2F (logn)/n ≤ 2 logn. Invoking [14, Theorem
1.8],

E‖Ã′‖ ≤ C1

√
q

n
‖A‖+ C2

√
log q ·

√
2 logn

n
‖A‖F

≤ C1

√
q

c1d
· ‖A‖F√

n
+ 2C2

√
log q logn · ‖A‖F√

n

and thus with probability ≥ 0.9,

‖Ã′‖ ≤ 10C1

√
q

c1d
· ‖A‖F√

n
+ 20C2

√
log q logn · ‖A‖F√

n

≤ 1√
1− τη′

c

(
10C1

√
q

c1d
+ 20C2

√
log q logn

)√
X

n

On the other hand, when srank(A) ≤ d, it holds with prob-
ability ≥ 0.9 that

‖Ã′‖ ≥ 1

2

√
q

n
‖A‖ ≥ 1

2

√
q

n

‖A‖F√
d
≥ 1

2

√
q

n

√
1− τη′

c

√
X

d

By our choice of parameters,

1

2

√
q

n

√
1− τη′

c

√
X

d

≥ 1√
1− τη′

c

(
10C1

√
q

c1d
+ 20C2

√
log q logn

)√
X

n
,

provided that c1 is less than a constant times 1/(1− 1
d
)2 and

c = τ . Hence we can distinguish the two cases.
Now we assume that srank(A) ≤ c1d. Let β = ‖A‖2F /n,

so β‖Ai,·‖22/‖A‖2F ≤ 1/n for all i, that is, uniform sampling
satisfies the assumption of Lemma 11. It then follows from
Lemma 11 that with probability at least 0.9, it holds that

(1− η)‖A‖2 ≤ n

q
‖Ã‖2 ≤ (1 + η)‖A‖2.

Conditioned on this event; in the first case, ‖A‖2 ≥ ‖A‖2F /d;

in the second case, by Lemma 9, ‖A‖2 ≤ (1+ ε
d
(1− 1

d
))
‖A‖2F
d
−

697

(1− 1
d
)(εn

d
− 1) and thus

n

q
‖Ã‖2 ≤ (1 + η)

(
1 + ε

d
(1− 1

d
)

1− τη/c
X

d
− (1− 1

d
)(
εn

d
− 1)

)
.

It is not difficult to establish that

(1+η)

(
1 + ε

d
(1− 1

d
)

1− τη/c
X

d
− (1− 1

d
)(
εn

d
− 1)

)
<

1− η
1 + τη/c

·X
d

when c = τ = 1
8
(1 − 1

d
)2. Therefore we can distinguish the

two cases. Combining with the discussion above for the case
where srank(A) > c1d, we see that Line 8 and Line 10 are
correct.

6.2 Lower bound
Let D1 be a distribution over n × n matrices defined as

follows. Choose a random x0 ∈ Sn−1 and place x0 in n/d
randomly chosen rows of an n× n matrix A. Place the first
n−n/d rows of a random orthogonal matrix in the remaining
n− n/d rows of A. Let D1 be the distribution of A.

We define D2 similarly as follows. Choose random x0 ∈
Sn−1 and place x0 in (1 − 2ε)n/d randomly chosen rows of
an n×n matrix B. Place the first n− (1− 2ε)n/d rows of a
random orthogonal matrix in the remaining n− (1− ε)n/d
rows of B. Let D2 be the distribution of B.

Suppose that A ∼ D1 and B ∼ D2. It is clear ‖A‖2F = n
and ‖A‖2 ≥ n/d, and so srank(A) ≤ d. Now we upper bound
‖B‖2. With probability 1, we know that x0 does not lie in
the span of the orthogonal rows, and so ‖Bx‖2 < 1 + (1 −
3ε)n/d, that is, ‖B‖2 < 1+(1−3ε)n/d ≤ (1−2ε)n/d. Chang-
ing δn/d rows of B forms a new matrix B′ with srank(B′) ≤
d. We know that ‖B′‖2F ≥ ‖B‖2F − δn/d = (1 − δ/d)n and
‖B′‖2 ≤ ‖B‖2 + δn/d. It follows from ‖B′‖2F /d ≤ ‖B′‖2
that 1− δ/d ≤ 1− 2ε+ δ, thus δ ≥ 2ε(1 + 1/d) > ε, and we
conclude that with probability 1, the matrix B is (ε/d)-far
from having stable rank ≤ d.

FixQ ⊆ {1, . . . , n} with |Q| = q. LetAQ = (Aij)i∈Q,1≤j≤n
and define BQ similarly. Each defines a distribution on q×n
matrices, denoted by L(AQ) and L(BQ), respectively. Also
denote by B(n, p) the binomial distribution of n trials and
success probability p.

Lemma 13. The Hellinger distance between two binomial
distributions is given by

dH(B(n, p), B(n, q)) =

√
1− (

√
pq +

√
(1− p)(1− q))n.

Lemma 14. Suppose that d ≥ 2. When q ≤ α2d/(18ε2),
it holds that dTV (L(AQ),L(BQ)) ≤ α+ o(1).

Proof. Observe that AQ and BQ contain the same num-
ber of rows of x0 then the conditional distributions are the
same. Note that the distance between L(AQ) and B(q, 1/d)
is o(1) and a similar result holds for L(BQ) and B(q, 1−3ε

d
).

Therefore using that
√

2 times the Hellinger distance is at
least as large as the variation distance, we have,

dTV (L(AQ),L(BQ))

= dTV (B(q,
1

d
), B(q,

1− 3ε

d
)) + o(1)

≤
√

2dH(B(q,
1

d
), B(q,

1− 3ε

d
)) + o(1)

≤ 2

(
1−

(√
1− 3ε

d2
+

√(
1− 1

d

)(
1− 1

d
+

3ε

d

))q)
+ o(1)

It is not difficult to verify that√
1−3ε

d2
+

√(
1− 1

d

)(
1− 1

d
+

3ε

d

)
≥ 1− 9ε2

d

whenever d ≥ 2 and 0 < ε < 1
3
. Therefore, it holds that

dTV (L(AQ),L(BQ)) ≤
√

2 · 9qε2

d
+ o(1) ≤ α+ o(1).

whenever q ≤ α2

18
· d
ε2

.

The lower bound follows immediately as a corollary.

Corollary 2. Suppose that d ≥ 2. Under the row sam-
pling model, any algorithm that is correct on the StableRank
problem needs to sample Ω(d/ε2) rows.

7. EMPIRICAL RESULTS
All programs are written in MATLAB and the source code

can be found at http://www.mpi-inf.mpg.de/~yli/codes.pdf.

7.1 Stable Rank Testing
Algorithm 3 takes Õ(d

ε2
logn) row samples with a theoret-

ical guarantee, however, a literal interpretation of the bound
makes it less useful in practice, since for d = 2, ε = 0.1, it
holds that d logn/ε2 > n for n ≤ 1500. Indeed, the theo-
retical upper bound is too pessimistic, i.e., very often we do
not need so many samples for real data sets. We justify our
thoughts in the following experiment.

We test our algorithm with the University of Florida Sparse
Matrix Collection1. There are 628 square real matrices with
dimension between 100 and 1000 (inclusive). Among them,
there are 220 matrices at least 0.1-far from having stable
rank 2. There are also 35 square matrices with stable rank
≤ 2. For each matrix A of the 255 matrices, we determine
the minimum q such that our algorithm, when sampling q
rows at random, succeeds with probability ≥ 0.9 in distin-
guishing whether its stable rank is at most 2, or it is at
least 0.1-far from having stable rank 2. The probability is
determined by 100 independent trials. The cumulative dis-
tribution of q/n (where n is the dimension of A) is plotted
in Figure 2. We can see that our algorithm needs to sample
only at most 15% of the rows for 90% of the matrices. The
remaining 10% have relatively small stable rank and it is
natural to expect that more rows are needed.

We conducted similar experiments for d = 3 and d = 5,
too. The results are also plotted in Figure 2. Regarding
d = 3, there are 174 matrices at least 0.1-far from having
stable rank 3 and 67 matrices with stable rank ≤ 3. We
ran our algorithm on each of the 81 matrices and plotted
the cumulative distribution of q/n. We can see that our
algorithm needs to sample only at most 15% of the rows
for 90% of the 241 matrices. Regarding d = 5, there are
105 matrices at least 0.1-far from having stable rank 5 and
161 matrices with stable rank ≤ 5. We can see that our
algorithm needs to sample only at most 10% of the rows for
90%, and 15% of the rows for 95%, of the 266 matrices.

7.2 Rank Testing
We have seen there is a gap of a 1/ε factor in the theoret-

ical results between O(d2/ε2) samples for the non-adaptive

1http://www.cise.ufl.edu/research/sparse/matrices/

698

algorithm and O(d2/ε) samples for the adaptive one. As
above, both bounds could be too pessimistic as well. Thus
we design the following experiments to show that the adap-
tive tester has a real advantage over the non-adaptive algo-
rithm even when both algorithms read much fewer samples
than the respective theoretical upper bound.

We conducted three sets of experiments on different ma-
trix distributions as follows.

• strip distribution:

A = P

(∑d+1
j=1 xjy

T
j 0

0 0

)
Q,

where x1, . . . , xd+1 are i.i.d.N(0, Iεn) vectors, y1, . . . , yd+1

are i.i.d. N(0, In) vectors, P and Q are independent
random n× n permutation matrices.

• rectangular distribution:

A = P

(∑d+1
j=1 xjy

T
j 0

0 0

)
Q,

where x1, . . . , xd+1 are i.i.d. N(0, In/2i−1) vectors and
y1, . . . , yd+1 are i.i.d. N(0, Iεn2i) vectors, i is chosen
uniformly at random from {1, . . . , blog(1/ε)c}, P and
Q are independent random n×n permutation matrices.

• square distribution:

A = P

(∑d+1
j=1 xjx

T
j 0

0 0

)
Q,

where x1, . . . , xd+1 are i.i.d. N(0, Ib√εnc) vectors, P
and Q are independent random n×n permutation ma-
trices.

In each case it holds that rank(A) = d + 1 with probabil-
ity 1. We consider three cases of d: d = 1, 2, 5. For both
the strip and the square distribution, we set n = 1000 and
ε = 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.15, 0.20, 0.25, 0.30,
0.35, 0.40, 0.45, 0.5; for the rectangular distribution we set
n = 1024 and ε = 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2.
For each configuration of d and ε and each matrix distribu-
tion, we ran both the non-adaptive query algorithm [8] and
the adaptive query algorithm (Algorithm 1) for 1000 times
independently to obtain the number of queries needed to
conclude rank(A) > d with a success probability of at least
0.9. The results are shown in Figure 1 in logarithmic scale.

In all settings above, adaptive queries outperform non-
adaptive ones, and particularly heavily for small ε. It is also
notable that the strip distribution is especially adversarial
for the non-adaptive tester, which needs to makes at least
1/ε2 queries. When ε = 0.01, the number of adaptive queries
is only 7.1%, 9.4%, 12.4% of that of non-adaptive queries for
d = 1, 2, 5, respectively. Even when ε = 0.5, the number
of adaptive queries is less than 1/3 of that of non-adaptive
queries. The difference between non-adaptive and adaptive
queries is less pronounced under the other two distributions,
still the number of adaptive queries is at most a half of that
of non-adaptive ones.

8. ACKNOWLEDGEMENTS
David Woodruff would like to acknowledge the support

from the XDATA program of the Defense Advanced Re-
search Projects Agency (DARPA), administered through Air
Force Research Laboratory contract FA8750-12-C0323.

9. REFERENCES
[1] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent

dirichlet allocation. the Journal of machine Learning
research, 2003.

[2] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust
principal component analysis? J. ACM, 58(3):11,
2011.

[3] C. H. Q. Ding and X. He. K-means clustering via
principal component analysis. In ICML, 2004.

[4] D. Feldman, M. Schmidt, and C. Sohler. Turning big
data into tiny data: Constant-size coresets for
k-means, pca and projective clustering. In Proceedings
of the Annual ACM-SIAM Symposium on Discrete
Algorithms, 2013.

[5] O. Goldreich. A brief introduction to property testing.
In Studies in Complexity and Cryptography, pages
465–469. 2011.

[6] H. Hotelling. Analysis of a complex of statistical
variables into principal components. Journal of
educational psychology, 24(6):417, 1933.

[7] I. T. Jolliffe. Graphical Representation of Data Using
Principal Components. Springer, 2002.

[8] R. Krauthgamer and O. Sasson. Property testing of
data dimensionality. In SODA, pages 18–27, 2003.

[9] D. D. Lee and H. S. Seung. Algorithms for
non-negative matrix factorization. Advances in Neural
Information Processing Systems, 2001.

[10] M. Magdon-Ismail. Row sampling for matrix
algorithms via a non-commutative bernstein bound.
arXiv:1008.0587, 2010.

[11] M. W. Mahoney. Randomized algorithms for matrices
and data. Foundations and Trends in Machine
Learning, 3(2):123–224, 2011.

[12] M. Parnas and D. Ron. Testing metric properties. In
STOC, pages 276–285, 2001.

[13] K. Pearson. On lines and planes of closest fit to
systems of points in space. Philosophical Magazine,
2(6):559–572, 1901.

[14] M. Rudelson and R. Vershynin. Sampling from large
matrices: An approach through geometric functional
analysis. J. ACM, 54(4), July 2007.

[15] B. M. Sarwar, G. Karypis, J. A. Konstan, and
J. Riedl. Application of dimensionality reduction in
recommender systems ı̈£¡ a case study. In Proceedings
of the ACM WebKDD Workshop, 2000.

[16] J. A. Tropp. Column subset selection, matrix
factorization, and eigenvalue optimization. In SODA,
pages 978–986, 2009.

[17] C. Yang, T. Han, L. Quan, and C.-L. Tai. Parsing
façade with rank-one approximation. In CVPR, pages
1720–1727, 2012.

699

non-adaptive queries adaptive queries

0.0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

ln(number of queries)

, stripd=1

ǫ

non-adaptive queries adaptive queries

0.0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

ln(number of queries)

, stripd=2

ǫ

non-adaptive queries adaptive queries

0.0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

ln(number of queries)

, stripd=5

ǫ

non-adaptive queries adaptive queries

0.0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

ln(number of queries)

, rectangulard=1

ǫ

non-adaptive queries adaptive queries

0.0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

ln(number of queries)

, rectangulard=2

ǫ

non-adaptive queries adaptive queries

0.0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

ln(number of queries)

, rectangulard=5

ǫ

non-adaptive queries adaptive queries

0.0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

ln(number of queries)

, squared=1

ǫ

non-adaptive queries adaptive queries

0.0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

log(number of queries)

, squared=2

ǫ

non-adaptive queries adaptive queries

0.0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

log(number of queries)

, squared=5

ǫ

Figure 1: Experiment results for rank. The first row corresponds to the case where A is subject to the strip
distribution, the second row the rectangular distribution and the third row the square distribution.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Experiment results for stable rank under row access model. The horizontal axis represents q/n, the
percentage of rows sampled. The vertical axis is percentage of the tested matrices for which the algorithm
succeeds with probability ≥ 0.9 at the corresponding sampling rate. The three plots correspond to d = 2, 3, 5,
respectively, from left to right.

700

