
Efficient Mini-batch Training for Stochastic Optimization

Mu Li1,2, Tong Zhang2,3, Yuqiang Chen2, Alexander J. Smola1,4

1Carnegie Mellon University 2Baidu, Inc. 3Rutgers University 4Google, Inc.
muli@cs.cmu.edu, tzhang@stat.rutgers.edu, chenyuqiang@baidu.com, alex@smola.com

ABSTRACT
Stochastic gradient descent (SGD) is a popular technique
for large-scale optimization problems in machine learning.
In order to parallelize SGD, minibatch training needs to
be employed to reduce the communication cost. However,
an increase in minibatch size typically decreases the rate
of convergence. This paper introduces a technique based
on approximate optimization of a conservatively regular-
ized objective function within each minibatch. We prove
that the convergence rate does not decrease with increasing
minibatch size. Experiments demonstrate that with suitable
implementations of approximate optimization, the resulting
algorithm can outperform standard SGD in many scenarios.

1. INTRODUCTION
The recent years have witnessed a rapid growth of data

in variety and volume. The sheer amount of data has led to
increasing interest in scalable optimization. Stochastic gra-
dient descent (SGD) is one of the most popular methods. It
has been successfully applied to large scale natural language
processing [11], deep learning [7], matrix factorization [10],
image classification [17], and latent variable models [22].

Traditional SGD processes one example per iteration. This
sequential nature makes SGD challenging for distributed in-
ference. A common practical solution is to employ mini-
batch training, which aggregates multiple examples at each
iteration. However, the synchronization cost of mini-batch
training is potentially still too large for large scale applica-
tions. For instance, in a distributed implementation, ma-
chines may need to communicate with each other for every
mini-batch in order to synchronize the shared variables, such
as gradients or parameters [8]. Given that both bandwidth
and latency of networks are often 100x worse than physical
memory, this overhead cannot be ignored.

Although large mini-batches are preferable to reduce the
communication cost, they may slow down convergence rate
in practice [4]. That is, if SGD converges by T iterations, the
mini-batch training with batch size b may need more than

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623612 .

T/b iterations. The increase in computation diminishes the
benefits of the reduced communication cost due to large b.
In addition, the I/O costs increases if the data is too large
to fit into memory so that one need to fetch the minibatch
from disk or network [25].

This paper considers the problem that we want to use
large mini-batches to reduce communication cost but at the
same time retain good convergence properties. It is known
that for general convex objective functions, the convergence
of SGD is O(1/

√
T); for mini-batch SGD with minibatch

size b, the convergence is O(1/
√
bT + 1/T) [8]. Since the

total number of examples examined is bT while there is only
a
√
b times improvement, the convergence speed degrades

with increasing minibatch size.
To address this issue we propose an alternative mini-batch

update strategy that does not slow down in convergence as
the mini-batch size increases. The key observation is that,
when a mini-batch is large, it is desirable to solve a more
complex optimization problem, rather than simply update
the solution by the gradients. Specifically, in each iteration,
we solve a conservative risk minimization subproblem. It
consists of two components: the original objective function
on the mini-batch and a conservative penalty. Accordingly
we are able to gain more from a mini-batch before moving
to the next. The conservative penalty reduces variance and
prevents divergence from the previous consensus. For our
goal we need two ingredients: a more sophisticated update
strategy and secondly, an efficient means of solving the con-
servative subproblem such that the increase of computation
does not overwhelm the reduced synchronization cost.

Many previous works aimed at improving mini-batch SGD
optimization. [11] proposed to use asynchronous commu-
nication. [23] studied the accelerated version. At a more
fundamental level, [20, 27] consider the problem of solving
subproblems in parallel, followed by averaging. They can
be viewed as the extreme case where the mini-batch size is
the entire partition. These strategies, however, are wasteful
since no communication occurs during the compute phase.

Our approach differs from previous work by the addition
of a conservative penalty and the use of each data partition
in a nontrivial manner beyond simple gradient computation:

• We propose a new and general way of performing mini-
batch updates beyond simple parameter averaging.

• We show that the proposed algorithm has an optimal
O(1/

√
bT) convergence rate, which improves [8] when

the batch size b is large. Furthermore, we show it can

661

be improved to O(log T/(λbT) + λ/(
√
bT)) for a λ-

strongly convex objective function.

• We propose two strategies to solve the conservative
subproblem and demonstrate how to extend them in a
communication efficient distributed implementation.

• We demonstrate the efficacy of the algorithm on a large
scale dataset.

2. ALGORITHM
For concreteness of our exposition we need to introduce

the inference problem formally. Our goal is to solve

w∗ = argmin
w∈Ω

φ(w) where φ(w) =
1

n

n∑
i=1

φi(w). (1)

Here φi : Ω→ R is a convex loss function and w is a shared
parameter. This general form addresses a large group of
machine learning problems. We give two examples:

Risk Minimization [12]: Here the objective is to mini-
mize a loss function `(x, y, w), such as the regression or
classification error that depends on data x and label y.
Moreover, one commonly adds a regularizer c(w). As-
sume there are n example pairs (x1, y1), . . . , (xn, yn),
then we obtain the objective function by setting

φi(w) = `(xi, yi, w) + λc(w) (2)

where λ is the regularization coefficient.

Graphical Model Inference [15, 14]: In undirected graph-
ical models (and factor graphs) the relationship be-
tween random variables can be encoded by clique po-
tentials ψC(w), as given by the Hammersley-Clifford
theorem [1]. Assume the clique set C = {C1, . . . , Cn},
then pseudolikelihood can be decomposed into terms

φi(w) = logψCi(w). (3)

Note that this only applies to fully observed models.
For partial observations we need to interleave this with
an expectation step (or any other method for address-
ing nonconvex inference problems).

A much larger family of problems has been characterized by
the ADMM algorithms of [2]. They can all be viewed as
special cases of the above setting where different φi(w) only
act on a subset of variables.

2.1 Mini-Batch Stochastic Gradient Descent
We begin with a brief review of a naive variant of mini-

batch SGD. During training it processes a group of exam-
ples per iteration. For notational simplicity, assume that
n is divisible by the number of mini-batches m. Then we
partition the examples into m mini-batches, each of size
b = n/m. Note that this assumption is not required nei-
ther for the proof nor for the implementation. Likewise,
the pre-partitioning step is also not necessary in practice,
however, it simplifies the exposition of what follows.

Given a random minibatch I ⊂ {1, . . . , n} of size b, we
can define the objective function on I as

φI(w) =
1

|I|
∑
i∈I

φi(w) we have φ(w) = EI [φI(w)] . (4)

In the simple case that Ω = Rd the mini-batch SGD employs
the following stochastic update rule: at each iteration t, we
pick mini-batch It ⊂ {1, . . . , n} of size b at random and let

wt = wt−1 − ηt∇φIt(w). (5)

Whenever Ω has a nontrivial shape we would need to add
a projection step, which finds the nearest neighbor of wt in
the feasible set Ω [26].

For convex φi, this method converges to the minimum ob-
jective value at a rate of O(1/

√
bT + 1/T), where T is the

number of iterations [8]. Although b times more examples
are processed in an iteration, the mini-batch training can
converge much slower than that of standard SGD with the
same number of processed examples. In practice, the conver-
gence rate slows down dramatically in terms of the number
of examples processed, when we use a large mini-batch size.

2.2 Efficient Mini-Batch Training
The above empirical finding was a key motivation for our

approach. To gain some intuition note that for general do-
mains Ω the update (5) can be rewritten as an optimization
problem on a mini-batch:

wt = argmin
w∈Ω

[
φIt(wt−1) + 〈∇φIt(wt−1), w − wt−1〉

+
1

2ηt
‖w − wt−1‖22

]
Note that this can be regarded as an approximation of φIt(w),
the loss on the minibatch plus a conservative penalty relative
to wt−1. While the above optimization problem is easy to
solve, the first order Taylor approximation of φIt(w) might
be too coarse to achieve sufficient progress towards the op-
timal solution. Such an aggressive trade-off of fast conver-
gence in favor of computational efficiency is highly unde-
sirable for mini-batches of large sizes: often there is high
overhead of switching to the next mini-batch, e.g. due to
process synchronization, data reads from disk and network
communication.

Note that SGD often uses a small step size due to the vari-
ance of the randomly chosen mini-batch. However, when the
size of a mini-batch increases, its variance decreases. More
sophisticated methods may be used towards faster conver-
gence rate. In this paper, we propose to update the param-
eter by solving the following subproblem at iteration t:

wt = argmin
w∈Ω

[
φIt(w) +

γt
2
‖w − wt−1‖22

]
. (6)

It consists of two components: the first part minimizes the
objective function on mini-batch It, aiming to achieve full
utilization of this mini-batch. The second component is a
conservative constraint which limits dramatic changes of the
parameter to avoid overutilization.

Algorithm 4 shows the proposed algorithm. Compared
to the SGD rule, we need to solve the more complex con-
servative subproblem for each mini-batch. For the sake of
simplicity in the theoretical analysis, we assume that the op-
timization is performed exactly; in practice, an approximate
solution will be sufficient, particularly in the early stages of
inference. If the computational cost for this approximate
optimization is not too expensive compared to SGD, then
this method has similar overall complexity per step relative
to SGD, while at the same time drastically reducing the
amount of network communication required between steps.

662

Algorithm 1 Single node template

Input: Initial w0, conservative coefficients γ1, . . . , γT
1: for t = 1, . . . , T do
2: randomly choose mini-batch It ⊂ {1, . . . , n} of size b
3: solve the conservative subproblem:

wt = argmin
w∈Ω

[
φIt(w) +

γt
2
‖w − wt−1‖22

]
.

4: end for

2.3 Theoretical Analysis
The advantage of solving the conservative subproblem (6)

is that the convergence does not slow down dramatically
when the mini-batch size increases. This is reflected in our
main result. Before stating the theorem, we need to intro-
duce the notion of a Bregman divergence for convex func-
tions f as follows:

Df (w;w′) := f(w)− f(w′)−∇f(w′)>(w − w′) (7)

This is the difference between f(w) and the value of the
first-order Taylor expansion of f at w′, when evaluated at
w. The properties of Bregman divergence include:

Non-negativity: Df (w;w′) ≥ 0

Convexity: Df (w;w′) is convex with respect to w

Linearity: Df (w;w′) is linear with respect to f , namely

Df+cf ′(w;w′) = Df (w;w′) + cDf ′(w;w′).

We need the following assumption for our theorem:

Assumption 1. We assume that for all t:

EIt [Dφ(wt;wt−1)] ≤ EIt

[
DφIt

(wt;wt−1) +
γt
2
‖wt − wt−1‖22

]
Note thatDφ(w;wt−1) = EIt

[
DφIt

(w;wt−1)
]

holds for gen-

eral w that does not depend on It. However, since wt de-
pends on It we require some γt > 0 to satisfy the condition.
Essentially, Assumption 1 bounds the amount of ’surprise’
we can expect when replacing the full Bregman Divergence
by one on the subset plus a conservative penalty.

Note that the assumption holds as long as we pick γt
greater than or equal to the smoothness parameter of φ:

φ(w)− φ(w′)−∇φ(w′)>(w − w′) ≤ γt
2
‖w − w′‖22.

In other words, the counterpart of strong convexity, namely
that there exists a quadratic upper bound on the amount of
change, suffices to guarantee this condition. In practice,
however, one may be more aggressive and allow a much
smaller γt when the mini-batch size is large. In fact, one
may show that a choice of γt = O(1/b) is sufficient. We
have the following theorem:

Theorem 1. Consider the stochastic update rule (6). As-
sume that φi is λ-strongly convex for all i:

φi(w)− φi(w′)−∇φi(w′)>(w − w′) ≥ λ

2
‖w − w′‖22.

Under Assumption 1 and when choosing the update param-
eter γt = γ + λ(t− 1), we have for all w∗ ∈ Ω:

T∑
t=1

E[φ(wt)− φ(w∗)] ≤
γ

2
‖w∗ − w0‖22 +

A2

b

T∑
t=1

1

γt

where A2 = sup
w∈Ω

n−1
n∑
i=1

‖∇φi(w)−∇φ(w)‖22.

For convex functions, the modulus of strong convexity λ = 0
vanishes. This amounts to a constant update rate γ. In this
case, choosing

γ =

√
2T

b

A

‖w∗ − w0‖2
minimizes the right hand side of the bound. Note that there
is no a-priori guarantee that a correspondingly small γ is
feasible. However, since the variance decreases with O(1/b)

for increasing minibatch size, the scaling of γ = O(1/
√
b)

is appropriate. This yields the following aggregate regret
bound

1

T

T∑
t=1

E[φ(wt)− φ(w∗)] ≤
√

2A√
Tb
‖w∗ − w0‖2.

This means that if mini-batch size is b, after T steps, we
have a convergence bound of 1/

√
bT . Therefore increasing

mini-batch size does not affect convergence in terms of the
number of training examples processed by the algorithm.
For strongly convex λ > 0, we can achieve a regret bound of
O(log T/(λbT) + λ/(

√
bT)) with optimal choice of γ.

2.4 Proof of Theorem 1
For convenience, we define the regularized mini-batch loss

ht(w) = φIt(w) +
γt
2
‖w‖22.

Our proof relies on three lemmas. First, we upper bound
‖wt − w̄t‖2, where w̄t is similar to wt except for optimizing
over all examples. That is, the gradients differ via ‖∇φ(w̄t)−
∇φIt(w̄t)‖2. Next we show that the expectation of the lat-
ter, namely the variance of gradient over a mini-batch, is
bounded from above by A2/b. Finally we characterize the
progress from time t− 1 to t. The proofs of these auxiliary
lemmas are presented in the Appendix.

Lemma 1. Let

w̄t = argmin
w∈Ω

[
φ(w) +

γt
2
‖w − wt−1‖22

]
, (8)

be the minimizer of the conservative version of the risk.
Then the difference between the full solution w̄t and the
minibatch solution wt is bounded by

‖wt − w̄t‖2 ≤
1

γt
‖∇φ(w̄t)−∇φIt(w̄t)‖2 .

Lemma 2. Assume that w ∈ Ω and assume that we ran-
domly choose a mini-batch I of size b independent of w.
Then the expected deviation between gradients is bounded by

EI
[
‖∇φI(w)−∇φ(w)‖22

]
=
n− b
n− 1

B2

b
≤ A2

b
.

where B2 =
1

n

n∑
i=1

‖∇φi(w)−∇φ(w)‖22.

663

Lemma 3. Given any w∗ ∈ Ω, the expected improvement
in terms of Bregman Divergence is bounded via

E [Dht(w∗, wt)]−E [Dht(w∗, wt−1)]

≤φ(w∗)−E [φ(wt)]−E [Dφ(w∗;wt−1)] +
1

γt

A2

b
. (9)

Proof of Theorem 1. Under the assumption that φi
is λ-strongly convex, it follows by construction that ht is
strongly convex with modulus γt + λ. Consequently the
Bregman divergence is bounded by

Dht(w∗, wt) ≥
γt + λ

2
‖w∗ − wt‖22 .

Together with Lemma 3, we have

E
[
φ(wt)− φ(w∗) +

γt+1

2
‖w∗ − wt‖22

]
= E

[
φ(wt)− φ(w∗) +

γt + λ

2
‖w∗ − wt‖22

]
≤ E [φ(wt)]− φ(w∗) + E [Dht(w∗, wt)]

≤ E [Dht (w∗, wt−1)−Dφ (w∗;wt−1)] +
A2

bγt

= E
[
DφIt

(w∗, wt−1)−Dφ (w∗;wt−1)
]

+
γt
2
E
[
‖w∗ − wt−1‖22

]
+
A2

bγt

=
γt
2
E
[
‖w∗ − wt−1‖22

]
+
A2

bγt

Here the first equality follows from the definition of γt; the
second equality follows from the definition of ht and simple
algebra; the third equality uses the fact that we are drawing
It independently. Hence we have

EIt|wt−1
DφIt

(w∗, wt−1) = Dφ(w∗;wt−1).

Summing over t = 1, . . . , T , we obtain the desired bound.

3. PRACTICAL CONSIDERATIONS
Our analysis assumes that we solve the conservative sub-

problem (6) exactly; in practice, we only need to perform
this optimization approximately. In this section, we pro-
pose two approximate approaches and their distributed im-
plementation.

3.1 Approximation by Early Stopping
Optimization algorithms solving the original problem (1)

can often be applied to the conservative subproblem (6): the
latter consists of a part of the former with a simple quadratic
term with respect to the parameter. While the most suitable
optimization methods vary for different objective functions,
a natural idea is to reuse the one to solve (6) but to stop it
earlier. It is understood that real applications are complex;
here we propose two simple but general methods that allow
us to solve (6).

The first one is a direct extension of SGD. Note that, if
we set γ = 0, then SGD equals to performing gradient de-
scent with a single pass of the mini-batch with wt−1 as the
start point. We relax the single pass constraint such that
we could obtain a more accurate solution of the conservative
subproblem. The algorithm, named EMSO-GD, is shown in
Algorithm 2. It solves (6) by gradient descent. Standard

stopping criteria can be used to achieve early stopping. For
instance, we may stop when the relative objective improve-
ment is less than a thresholds. In practice we found it most
convenient to use the simplest strategy: limit the maximal
iteration number L. That is, the for loop will stop if we pass
the mini-batch L times. A major benefit of this strategy is
to simplify the synchronization of the distributed implemen-
tation we will introduce in the next section.

Algorithm 2 EMSO-GD: solve (6) by gradient descent

Input: previous parameter wt−1, mini-batch It
conservative coefficient γt, learning rate ηt

Output: new parameter wt
1: wt ← wt−1

2: for ` = 0, . . . , L do
3: update

wt ← wt − ηt (∇φIt(wt) + γt(wt − wt−1)) (10)

4: end for

The second method is motivated by [25], where coordi-
nate descent is applied to solve the dual form of the linear
SVM in a mini-batch. Unlike [25], we directly solve the
subproblem by coordinate descent in the primal form. Al-
gorithm 3 shows the proposed algorithm, which is named
EMSO-CD. In each time, EMSO-CD chooses a random coor-
dinate j ∈ [1, p], where p is the total number of coordinates,
and then solves the one dimension problem

argmin
wj

{
φIk (w) +

γt
2
‖w − wt−1‖2

}
.

This minimization problem may have a closed form solution.
But generally it could be solved by the Newton method.
Similar to EMSO-GD, we use the maximal iteration number
as the early stop criteria.

Algorithm 3 EMSO-CD: solve (6) by coordinate descent

Input: previous parameter wt−1, mini-batch It
conservative coefficient γt

Output: new parameter wt
1: wt ← wt−1

2: for ` = 0, . . . , Lp do
3: randomly choose coordinate j ∈ [0, p]
4: update

wt,j ← wt,j − ηt
∇jφIt(wt) + γt(wt,j − wt−1,j)

∇2
jjφIt(wt) + γt

(11)

5: end for

3.2 Distributed Model Averaging
In distributed computing, we assume there are dmachines,

which are connected by network. Then the conservative
subproblem could be solved by all these machine together.
Specifically, we first divide a mini-batch into d partitions,
next assign one partition to each of the machines, and then
obtain the solution via communication. One possible ap-
proach is that all machines communicate in each iteration
when solving the subproblem. However, this may introduce
a large amount of communication.

Instead, we propose to use a more communication friendly
approach where each machine solves the conservative sub-
problem independently, and then all machines average their

664

name KDD04 URL CTR

examples 146 K 2.4 M 142 M
features 74 3.2 M 28 M
entries 11 M 277 M 8.4 G
features per example 73±0.8 116±17 59±26
label ratio +1 : −1 1:111 1:2 1:15

Table 1: A collection of real datasets.

results. The algorithm is shown in Algorithm 4. Note that
there is no restriction in terms of the choice of methods
for solving the subproblems locally. In particular, the algo-
rithms introduced in the previous section apply.

Algorithm 4 EMSO: Efficient Mini-Batch for
Stochastic Optimization

Input: initialization w0, conservative coefficients {γt}Tt=1

learning rate {ηt}Tt=1, number of machines k
1: partition examples into m mini-batches I1, . . . , Im
2: for t = 1, . . . , T do
3: randomly choose mini-batch It
4: partition It into It,1, . . . , It,d
5: for i = 1, . . . , d do {in parallel}
6: machine i get partition It,i
7: solve the conservative subproblem on It,i by

Algorithm 2 or 3 to obtain w
(i)
t

8: end for
9: average wt = 1

d

∑d
i=1 w

(i)
t via communication

10: end for

4. EXPERIMENTS

4.1 Dataset
To evaluate the proposed algorithms, we used three bi-

nary classification datasets of varying scales, which are listed
on Table 1. KDD04 comes from the particle physics task at
KDD Cup 20041, whose goal is to classify two types of parti-
cles generated in high energy collider experiments. The URL

dataset aims to detect malicious URLs2. CTR is a private
dataset containing displayed advertisements which are ran-
domly sampled within a period of three months. The goal is
to predict whether or not an advertisement will be clicked.
KDD04 is a dense dataset, while the other two are extremely
sparse. The largest dataset CTR has more than 100 million
examples and the raw text file size is approximately 300 GB.

4.2 Setup
For the sake of simplicity we study the case of classification

via logistic regression. There the objective function can be
written in the form of (1) by letting

φi(w) = log(1 + exp(−yi〈xi, w〉)).

Here we let (yi, xi) to be the i-th sample pair.
We evaluated five algorithms, as summarized in Table 2.

With the exception of LibLinear all algorithms were imple-
mented in C++ using MPI for communication. The linear

1http://osmot.cs.cornell.edu/kddcup/datasets.html
2http://sysnet.ucsd.edu/projects/url/

name update iteration distributed
L-BFGS [18] batch yes
LIBLINEAR [9] batch no
Mini-Batch SGD (5) mini-batch yes
EMSO-GD (10) mini-batch yes
EMSO-CD (11) mini-batch yes

Table 2: Evaluated Algorithms.

algebra operations are mainly performed by eigen33, which
is a highly efficient C++ template library.

L-BFGS This is a parallelized version of the classical memory-
limited BFGS method, as described in [18]. That is,
the root machine obtains subgradients from each of the
client machines to aggregate into a global subgradi-
ent. Subsequently the parameters are updated and we
broadcast its new value. By construction the method
is a batch optimization solver.

LibLinear This is the single-machine implementation as
obtained from Chih-Jen Lin’s site4. We include it to
provide a reference point to existing and well-known
solvers. This is a sophisticated batch solver for convex
problems.

Mini-Batch SGD This effectively computes subgradients
for a small minibatch on each machine. These subgra-
dients are then aggregated to obtain a full mini-batch
supgradient. After that, we take an update on the
server using (5) and rebroadcast the parameters.

We used an O(1/
√
t) decay learning rate for the mini-

batch algorithms. Specifically, we set

ηt = η

√
α

t+ α

for iteration t, where constants η and α specify the
initial scale and decaying speed, respectively. We per-
formed grid search to choose the best values by exam-
ining the convergence progress. We search the range
of η ∈ {100, . . . , 10−5} and α ∈ {100, . . . , 104}.

EMSO-GD This uses the parameter-averaging approach
introduced in Algorithm 4 while performing param-
eter updates per client via (10). It differs from the
previous methods by taking the higher order informa-
tion of the loss function into account when processing
a minibatch.

EMSO-CD The key difference to EMSO-GD is that it uses
coordinate descent to update parameters within a mini-
batch. Other than that, the structure is essentially
identical. For both EMSO variants we set λ = 0, the
number of inner iterations to be 5 and 2, respectively,
and search γ from {100, . . . , 105}.

All experiments were carried on a cluster, where each ma-
chine is equipped with four AMD Opteron Interlagos 16 core
6272 CPUs, 128GB memory and 10Gbit Ethernet.

3http://eigen.tuxfamily.org/
4http://www.csie.ntu.edu.tw/~cjlin/liblinear/

665

http://osmot.cs.cornell.edu/kddcup/datasets.html
http://sysnet.ucsd.edu/projects/url/
http://eigen.tuxfamily.org/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/

4.3 Minibatch Size and Convergence
A first sanity check is to ascertain that the convergence

results regarding mini-batch methods on a single node hold.
For this purpose we increase the batch size from 103 to
105. The objective values after processing 107 examples are
shown on Figure 1. As expected, when the mini-batch size
increases, there is an increment of objective value for mini-
batch SGD due to the rather crude approximation of the
dataset by a first order Taylor expansion. That is, the con-
vergence in terms of examples processed slows down. This
degeneration is worst on the dataset KDD04, which is dense
and extremely unbalanced in terms of its labels. This prob-
lem is alleviated by EMSO-GD. It performs 5 iterations of
gradient descent in a mini-batch and therefore potentially
gains more information about the higher order structure
than SGD.

However, the convergence is much more stable when solv-
ing the conservative subproblem by coordinate descent. As
can be seen from Figure 1, the objective value of EMSO-
CD does not increase. It even slightly decreases, with the
increasing mini-batch sizes. A possible explanation is that,
even though each mini-batch is passed only twice, the coor-
dinate descent with the previous parameter as a warm start
gives satisfactory solutions to the conservative subproblem.
So it provides sufficient progress to compensate for the loss
due to increasing the mini-batch size.

In summary, solving conservative optimization problems
on a minibatch is beneficial when compared to a naive gra-
dient computation.

4.4 Comparison to other algorithms
In a next step we compare the algorithms listed in Table 2

by objective value versus run time. We use the same setting
as Section 4.3 for the mini-batch algorithms, but only report
the result with the best batch size, namely 105 for EMSO-
CD and 103 for the other two algorithms. Figure 2 shows the
results. It can be seen that the convergence the two batch
algorithms, L-BFGS and LibLinear is similar: slow at the
beginning but fast at the end. This is not too unsurprising
given LibLinear’s heritage.

For the mini-batch algorithms, EMSO-GD is compara-
ble to SGD: While EMSO-GD converges faster in terms of
number of minibatch iterations, it consumes 5 times more
computational time than SGD. Note that, even with a larger
mini-batch size, EMSO-CD is 10 times faster than the other
two, and furthermore, it is faster than the batch algorithm
at the end.

4.5 Minibatch Size and Synchronization Cost
Recall that a major benefit of large mini-batch sizes is the

potential reduction in synchronization cost. Figure 3 shows
the contribution of synchronization cost to the overall run-
time of the algorithm when using 12 machines. Even with
such a small number of computers the proportion is con-
siderable. As expected, this cost decreases with increasing
mini-batch size. It is due to the increase in the amount of
computation between synchronization passes. Furthermore,
because both EMSO-GD and EMSO-CD solve a more com-
plex optimization problem in each mini-batch than SGD,
their synchronization cost is correspondingly smaller than
that of SGD. In addition, although coordinate descent passes
a mini-batch twice in our experiment, it requires significant
more exponentiation operations than the gradient descent (a

1000 10000 100000
0.01

0.015

0.02

0.025

0.03

0.035

minibatch

o
b
je

c
ti
v
e

SGD

EMSO−GD

EMSO−CD

1000 10000 100000
0

0.05

0.1

0.15

0.2

0.25

minibatch

o
b
je

c
ti
v
e

SGD

EMSO−GD

EMSO−CD

1000 10000 100000
0.19

0.2

0.21

0.22

0.23

0.24

minibatch

o
b
je

c
ti
v
e

SGD

EMSO−GD

EMSO−CD

Figure 1: Objective value versus mini-batch size after in
total 107 examples are processed in a single node. From top
to bottom, datasets are KDD04, URL, and CTR, respectively,
where CTR is downsampled to 4 millions examples due to
the limited capacity of a single node.

666

10
0

10
1

10
2

10
3

10
−2

10
−1

time (sec.)

o
b
je

c
ti
v
e

L−BFGS
Liblinear
SGD
EMSO−GD
EMSO−CD

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

time (sec.)

o
b
je

c
ti
v
e

L−BFGS
Liblinear
SGD
EMSO−GD
EMSO−CD

10
1

10
2

10
3

10
−0.7

10
−0.6

10
−0.5

10
−0.4

time (sec.)

o
b
je

c
ti
v
e

L−BFGS
Liblinear
SGD
EMSO−GD
EMSO−CD

Figure 2: Objective value versus run time by a single node.
Datasets are the same as Figure 1, which are KDD04, URL,
and CTR from top to bottom.

fast special functions library would probably address this is-
sue). As a result, it consumes more CPU time than gradient
descent, even though the latter processes a min-batch five

10
3

10
4

10
5

30

40

50

60

70

80

90

minibatch

s
y
n
c
h
ro

n
iz

a
ti
o
n
 c

o
s
t
(%

)

SGD

EMSO−GD

EMSO−CD

Figure 3: The fraction of synchronization cost as a function
of minibatch size when communicating between 12 and 12
nodes.

objective = 0.2 objective = .1972
#nodes time speedup time speedup

5 879s 1.00x 2439s 1.00x
10 499s 1.76x 1367s 1.78x
20 363s 2.42x 962s 2.54x

Table 3: Run time and speedup for EMSO-CD to reach the
same objective value when running on 5, 10 and 20 nodes.

times, and therefore has a further decreased synchronization
cost.

The convergence results under various mini-batch sizes
are shown in Figure 4. We first fix the total number of
examples processed to be 5 × 106. As can be seen from
the top figure, the results are similar to the single node re-
sults of Figure 1. That is, EMSO-GD slightly improves SGD
while EMSO-CD is resilient to increase the mini-batch size.
The bottom of Figure 4 shows the results by fixing the run
time to be 1, 000 seconds. The trend then is total different.
Because the portion of synchronization cost decrease, more
time can be allocated to process the examples, therefore a
large mini-batch size is faster. Furthermore, although SGD
is comparable to EMSO-GD in the single node experiment,
as shown in Figure 2, the latter outperforms the former here,
due to the communication cost in distributed environment.
In addition, there are clear advantages for EMSO-CD to use
large batch size, as it converges faster when the mini-batch
size increases.

4.6 Scalability
We conclude our experimental evaluation by assessing run-

time results for varying numbers of nodes. We primarily
compare the following two algorithms: EMSO-CD and L-
BFGS. Figure 5 shows the convergence results. As can be
seen, both algorithms benefits from an increase in the num-
ber of nodes. But L-BFGS gains more than EMSO-CD,
because the former passes the whole training data in each
iteration so the portion of synchronization cost is small—
15% comparing 30% of EMSO-CD. However, EMSO-CD is

667

10
3

10
4

10
5

0.2

0.205

0.21

0.215

0.22

0.225

0.23

minibatch

o
b

je
c
ti
v
e

SGD

EMSO−GD

EMSO−CD

10
3

10
4

10
5

0.2

0.205

0.21

0.215

0.22

minibatch

o
b

je
c
ti
v
e

SGD

EMSO−GD

EMSO−CD

Figure 4: Objective values when varying the mini-batch size
using 12 nodes. Top: for a fixed total number of examples
set to 5×106. Bottom: for fixed runtime set to 1000 seconds.

still 10 times faster than L-BFGS, due to the faster conver-
gence rate.

Table 3 shows the quantitative speedup for EMSO-CD to
reach specific objective values. When the number of nodes
doubled from 5 to 10, there is an average 1.75x speedup for
both objective values, and if the nodes number is increased
by 4 times, the speedup increases to 2.5x.

5. RELATED WORK AND DISCUSSION
The idea of using mini-batch in stochastic optimization

has been studied by a number of researchers. For example,
it was shown in [8] that distributed mini-batch gradient can

achieve a convergence rate of O(1/
√
Tb + 1/T), which is

comparable to that of serial SGD when the minibatch size
is small. Additional studies include [6, 24, 23].

There is also a large volume of works to improve the stan-
dard mini-batch approach. For example, [16] proposed to
solve minw φIt(w) directly, while [3] presented a L-BFGS
style updating. In addition, [19, 13] argued to reduce the
stochastic variance via gradients computed on the whole
dataset.

10
1

10
2

10
3

10
−0.71

10
−0.69

10
−0.67

10
−0.65

time (sec.)

o
b

je
c
ti
v
e

5 nodes

10 nodes

20 nodes

EMSO−CD

5 nodes

10 nodes

20 nodes

L−BFGS

Figure 5: Objective function value versus run time for both
EMSO-CD and L-BFGS using varying numbers of nodes.

Another line of research focuses on the practical perfor-
mance, especially when data cannot fit into memory. For
example, [25] studied solving linear SVM in the dual form
by processing a block of data at each time. [21] showed
that having both I/O and computational threads working
together can further improve the performance. [5] studied
how to select the data block.

Our work is different from previous ones in several aspects.
First, we propose a novel mini-batch algorithm that solves
a regularized optimization problem in primal form at each
step. We show that the method can also achieve the optimal
convergence rates theoretically, and presented practical im-
plementations of the approach. The practical performance
of the resulting methods outperform minibatch SGD under
various scenarios.

Conclusion.
In this paper we proposed a variant of mini-batch SGD

whose convergence rate does not degrade when the batch
size increases. It solves a conservative subproblem in each
iteration to maximize the utilization of the mini-batch while
at the same time controlling the variance via a conservative
constraint. We showed that it enjoys an optimal conver-
gence rate and proposed practical distributed implementa-
tions. Furthermore, we demonstrated its efficiency on serial
and distributed experiments on large scale datasets.

6. REFERENCES
[1] J. Besag. Spatial interaction and the statistical

analysis of lattice systems (with discussion). Journal
of the Royal Statistical Society. Series B,
36(2):192–236, 1974.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and
J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of
multipliers. Foundations and Trends in Machine
Learning, 3(1):1–123, 2010.

[3] R. Byrd, S. Hansen, J. Nocedal, and Y. Singer. A
stochastic quasi-newton method for large-scale
optimization. arXiv preprint arXiv:1401.7020, 2014.

668

[4] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu.
Sample size selection in optimization methods for
machine learning. Mathematical programming,
134(1):127–155, 2012.

[5] K.-W. Chang and D. Roth. Selective block
minimization for faster convergence of limited memory
large-scale linear models. In Conference on Knowledge
Discovery and Data Mining, pages 699–707, 2011.

[6] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan.
Better mini-batch algorithms via accelerated gradient
methods. In NIPS, volume 24, pages 1647–1655, 2011.

[7] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Ng. Large scale distributed deep
networks. In Neural Information Processing Systems,
2012.

[8] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao.
Optimal distributed online prediction using
mini-batches. Technical report,
http://arxiv.org/abs/1012.1367, 2010.

[9] R.-E. Fan, J.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, Aug. 2008.

[10] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis.
Large-scale matrix factorization with distributed
stochastic gradient descent. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 69–77. ACM, 2011.

[11] K. Gimpel, D. Das, and N. A. Smith. Distributed
asynchronous online learning for natural language
processing. In Proceedings of the Fourteenth
Conference on Computational Natural Language
Learning, pages 213–222. Association for
Computational Linguistics, 2010.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer, New York,
2 edition, 2009.

[13] R. Johnson and T. Zhang. Accelerating stochastic
gradient descent using predictive variance reduction.
In Advances in Neural Information Processing
Systems, pages 315–323, 2013.

[14] M. I. Jordan. An Introduction to Probabilistic
Graphical Models. MIT Press, 2008. To Appear.

[15] F. Kschischang, B. J. Frey, and H. Loeliger. Factor
graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47(2):498–519,
2001.

[16] B. Kulis and P. L. Bartlett. Implicit online learning.
In Proc. Intl. Conf. Machine Learning, 2010.

[17] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu,
L. Cao, and T. Huang. Large-scale image classification:
fast feature extraction and svm training. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 1689–1696. IEEE, 2011.

[18] D. C. Liu and J. Nocedal. On the limited memory
BFGS method for large scale optimization.
Mathematical Programming, 45(3):503–528, 1989.

[19] D. Mahajan, S. S. Keerthi, S. Sundararajan, and
L. Bottou. A parallel sgd method with strong
convergence. arXiv preprint arXiv:1311.0636, 2013.

[20] G. Mann, R. McDonald, M. Mohri, N. Silberman, and
D. Walker. Efficient large-scale distributed training of
conditional maximum entropy models. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information
Processing Systems 22, pages 1231–1239, 2009.

[21] S. Matsushima, S. Vishwanathan, and A. Smola.
Linear support vector machines via dual cached loops.
In Q. Yang, D. Agarwal, and J. Pei, editors, The 18th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD, pages
177–185. ACM, 2012.

[22] D. Mimno, M. Hoffman, and D. Blei. Sparse stochastic
inference for latent dirichlet allocation. In
International Conference on Machine Learning, 2012.

[23] S. Shalev-Shwartz and T. Zhang. Accelerated
mini-batch stochastic dual coordinate ascent. In
Advances in Neural Information Processing Systems,
pages 378–385, 2013.

[24] M. Takáč, A. Bijral, P. Richtárik, and N. Srebro.
Mini-batch primal and dual methods for svms. arXiv
preprint arXiv:1303.2314, 2013.

[25] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin.
Large linear classification when data cannot fit in
memory. In B. Rao, B. Krishnapuram, A. Tomkins,
and Q. Yang, editors, Knowledge Discovery and Data
Mining, pages 833–842. ACM, 2010.

[26] M. Zinkevich. Online convex programming and
generalised infinitesimal gradient ascent. In
Proceedings of the International Conference on
Machine Learning, pages 928–936, 2003.

[27] M. Zinkevich, A. J. Smola, M. Weimer, and L. Li.
Parallelized stochastic gradient descent. In nips23e,
editor, nips23, pages 2595–2603, 2010.

APPENDIX

Proof of Lemma 1. Since wt = argminw∈Ω ht(w), we
have from the first order KKT condition at wt:

∇ht(wt)>(wt − w̄t) ≤ 0

In addition, the first order KKT condition of (8) at w̄t com-
bined with the fact that ht(w) = φIt(w) + γt

2
‖w − wt−1‖22

implies that

(∇ht(w̄t) +∇φ(w̄t)−∇φIt(w̄t))
>(wt − w̄t) ≥ 0.

By substracting the first inequality from the second inequal-
ity, and rearranging terms, we obtain:

(∇ht (wt)−∇ht (w̄t))
> (wt − w̄t)

≤ (∇φ (w̄t)−∇φIt (w̄t))
> (wt − w̄t) . (12)

By additivity of Bregman divergences we have

Dht(w̄t;wt) = DφIt
(w̄t;wt) +

γt
2
‖w̄t − wt‖22 .

hence Dht (w̄t;wt) ≥
γt
2
‖w̄t − wt‖22 .

669

http://arxiv.org/abs/1012.1367

Similarly Dht(wt; w̄t) ≥ γt
2
‖w̄t − wt‖22. It follows that

γt‖wt − w̄t‖22 ≤ Dht(w̄t;wt) +Dht(wt; w̄t)

= (∇ht(wt)−∇ht(w̄t)>(wt − w̄t)

≤ (∇φ(w̄t)−∇φIt(w̄t))
>(wt − w̄t)

≤ ‖∇φ(w̄t)−∇φIt(w̄t)‖2‖wt − w̄t‖2,

where the second inequality is due to (12). The third in-
equality is Cauchy-Schwarz inequality.

Proof of Lemma 2. This bound is essentially a conver-
sion of variances from a minibatch I to the full set when
using sampling without replacement. To simplify notation
we use the abbreviation of ψi := ∇φi(w) − ∇φ(w) and
ψI = ∇φI(w)−∇φ(w). Note that by construction

Ei [ψi] = EI [ψI(w)] = ψ (13)

and therefore B2 = Ei
[
‖ψi‖2

]
and B2 ≤ A2. The latter

inequality follows since A2 is a uniform upper bound on the
variance over all w ∈ Ω. This yields

EI
[
‖ψI‖22

]
= EI

[∥∥∥∥∥1

b

∑
i∈I

ψi

∥∥∥∥∥
2

2

]
=

1

b2
EI

[∑
i,j∈I

ψi
>ψj

]

=
1

b2
EI

 ∑
i6=j∈I

ψi
>ψj

+
B2

b

=
b− 1

bn(n− 1)

∑
i6=j

ψi
>ψj +

B2

b

=
b− 1

bn(n− 1)

∑
i,j

ψ>i ψj +
B2

b
− B2

b

b− 1

n− 1

= 0 +
B2

b

n− b
n− 1

<
A2

b

The last equality used the fact that ψi has zero-mean.

Proof of Lemma 3. We have

Dht(w∗, wt)−Dht(w∗, wt−1)

= Dht(wt−1, wt) + (∇ht(wt−1)−∇ht(wt))>(w∗ − wt)

+ (∇ht(wt−1)−∇ht(wt))>(wt − wt−1)

≤ Dht(wt−1, wt) +∇φIt(wt−1)>(w∗ − wt)

+ (∇ht(wt−1)−∇ht(wt))>(wt − wt−1)

=φ(w∗)− φ(wt)−Dφ(w∗;wt−1)

− (∇φ(wt−1)−∇φIt(wt−1))>(w∗ − wt)
+ (Dφ(wt;wt−1)−Dht(wt;wt−1)),

where the equalities follow from algebraic manipulations
and the definition of Bregman divergence; in the inequality,
we used the first order KKT condition of (6) at wt, implying
that

(∇φIt(wt−1) +∇ht(wt)−∇ht(wt−1))>(w∗ − wt)

= ∇ht(wt)>(w∗ − wt) ≥ 0.

Taking expectation, we have

EDht(w∗, wt)−EDht(w∗, wt−1)

≤ φ(w∗)−Eφ(wt)−EDφ(w∗;wt−1)

−E(∇φ(wt−1)−∇φIt(wt−1))>(w∗ − wt)
+ E(Dφ(wt;wt−1)−Dht(wt;wt−1))

≤ φ(w∗)−Eφ(wt)−EDφ(w∗;wt−1)

−E(∇φ(wt−1)−∇φIt(wt−1))>(w∗ − wt)
=φ(w∗)−Eφ(wt)−EDφ(w∗;wt−1)

−E(∇φ(wt−1)−∇φIt(wt−1))>(w̄t − wt), (14)

where the second inequality follows from E(Dφ(wt;wt−1)−
Dht(wt;wt−1)) ≤ 0, which is a consequence of Assump-
tion 1. The equality holds because

E(∇φ(wt−1)−∇φIt(wt−1))>w∗

= E(∇φ(wt−1)−∇EIt|wt−1
φIt(wt−1))>w∗

= 0 = E(∇φ(wt−1)−∇φIt(wt−1))>w̄t.

Note further that

−E(∇φ(wt−1)−∇φIt(wt−1))>(w̄t − wt)

≤
√

E‖∇φ(wt−1)−∇φIt(wt−1))‖22 E‖w̄t − wt‖22

≤
√

E‖∇φ(wt−1)−∇φIt(wt−1))‖22 E‖∇φ(w̄t)−∇φIt(w̄t)‖22/γt

≤ A2/(γtb),

where the first inequality follows from Cauchy-Schwarz in-
equality, the second inequality is due to Lemma 1, and the
third inequality is due to Lemma 2. Plugging the above
estimate into (14), we obtain the desired bound.

670

	Introduction
	Algorithm
	Mini-Batch Stochastic Gradient Descent
	Efficient Mini-Batch Training
	Theoretical Analysis
	Proof of Theorem 1

	Practical Considerations
	Approximation by Early Stopping
	Distributed Model Averaging

	Experiments
	Dataset
	Setup
	Minibatch Size and Convergence
	Comparison to other algorithms
	Minibatch Size and Synchronization Cost
	Scalability

	Related Work and Discussion
	References

