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ABSTRACT

Solving the missing-value (MV) problem with small estima-
tion errors in big data environments is a notoriously resource-
demanding task. As datasets and their user community con-
tinuously grow, the problem can only be exacerbated. As-
sume that it is possible to have a single machine (‘Godzilla’),
which can store the massive dataset and support an ever-
growing community submitting MV imputation requests. Is
it possible to replace Godzilla by employing a large number
of cohort machines so that imputations can be performed
much faster, engaging cohorts in parallel, each of which ac-
cesses much smaller partitions of the original dataset? If so,
it would be preferable for obvious performance reasons to ac-
cess only a subset of all cohorts per imputation. In this case,
can we decide swiftly which is the desired subset of cohorts
to engage per imputation? But efficiency and scalability is
just one key concern! Is it possible to do the above while
ensuring comparable or even better than Godzilla’s imputa-
tion estimation errors? In this paper we derive answers to
these fundamentals questions and develop principled meth-
ods and a framework which offer large performance speed-
ups and better, or comparable, errors to that of Godzilla,
independently of which missing-value imputation algorithm
is used. Our contributions involve Pythia, a framework and
algorithms for providing the answers to the above questions
and for engaging the appropriate subset of cohorts per MV
imputation request. Pythia functionality rests on two pil-
lars: (i) dataset (partition) signatures, one per cohort, and
(ii) similarity notions and algorithms, which can identify the
appropriate subset of cohorts to engage. Comprehensive ex-
perimentation with real and synthetic datasets showcase our
efficiency, scalability, and accuracy claims.

Categories and Subject Descriptors: H. Information
Systems; 1.5.3 Clustering.

Keywords: Big data; Missing value; Clustering.

1. INTRODUCTION

Data quality is a major concern in big data processing and
knowledge management systems. One relevant problem in
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data quality is the presence of missing values (MVs). The
MYV problem should be carefully addressed, otherwise bias
might be introduced into the induced knowledge. Common
solutions to the MV problem either fill-in the MVs (impu-
tation) or ignore / exclude them. Imputation entails a MV
substitution algorithm (MVA) that replaces MVs in a dataset
with some plausible values. Imputed data can be treated as
reliable as the observed data, but they are as good estima-
tions as the assumptions used to create them.

On the one hand, most computational intelligence and ma-
chine learning (ML) techniques (such as neural networks and
support vector machines) fail if one or more inputs contains
MVs and thus cannot be used for decision-making purposes
[1]. Furthermore, the choice of different MVAs affects the
performance of ML techniques that are subsequently used
with imputed data [2]. On the other hand, the MV problem
abounds: it can be found, for instance, in results from medi-
cal experimentation and chemical analysis, in datasets from
domains such as meteorology and microarray gene monitor-
ing technology [4], and in survey databases [5]. MVs can
occur e.g., due to wireless sensor faults, not reacting experi-
ments, or participants skipping survey questions. Industrial
and research databases include MVs [6], e.g., maintenance
databases have up to 50% of their entries missing [7]. Pa-
tient records in medical databases lack some values; inter-
estingly, a database of patients with cystic fibrosis missing
more than 60% of its entries was analyzed in [8]. Moreover,
gene expression microarray data sets contain MVs, making
the need for robust MVAs apparent, since algorithms for
gene expression analysis require complete gene array data
[9].

Motivations. Given the significance of MVAs, three
notes are in order: Firstly, MVAs which can ensure low
estimation errors are computationally expensive and typi-
cally their performance is largely dependent on dataset sizes.
Secondly, nowadays, datasets can be massive. Even worse,
existing datasets grow significantly with time; it is not sur-
prising that most MVAs in the literature are typically tested
over small-to medium sized datasets. Lastly, as if the scala-
bility limitations imposed by dataset sizes were not enough,
in many applications the user community (e.g., in shared sci-
entific datasets in data centers accessed by scientists from
all over the world) can be very large and thus the MV im-
putation input arrival rates can become high as well. These
facts pose a scalability nightmare.

The scalability gospel (as established by the seminal work
from Google researchers producing the Map-Reduce (MR)
[10] data-access paradigm and systems such as the Google



File System [11]) rests on the notion of scaling out: that is,
(i) employ a large number of commodity (off-the-shelf and
thus inexpensive) machines, each storing a much smaller par-
tition of the original dataset, and (ii) access them in parallel.

However, MR is not a panacea, for two reasons. First,
not all complex problems are ‘embarrassingly parallelizable’
and amenable to MR techniques. In particular, there ex-
ist sophisticated MVAs ensuring small errors, which are not
MR-able [12]. Second, in the context of MVAs, even if they
were ‘embarrassingly parallelizable’, not all partitions may
be relevant. It may very well be the case that a number
of the machines hold data that cannot help (or even hurt)
in the MV imputation process. And, obviously, engaging
only a fraction of all machines will introduce large benefits:
First with respect to performance. MV imputation will be
shorter, as these times typically depend on the worst per-
forming machine and with increasing machine numbers the
probability of a mall-performing machine increases. Fur-
ther, overall MV imputation throughput will be higher, as
each imputation will be taxing fewer overall system resources
(processors, communication bandwidth and disks). Second,
with respect to MV estimation errors. In fact, as we shall
formally show later, engaging all machines and their dataset
partitions may actually introduce large additional MV esti-
mation errors.

Goals. In this work, we will consider a stream of MV
inputs (or inputs), i.e., multi-dimensional vectors with some
MVs in certain dimensions, arriving at a data system. Typi-
cally, the system is presented with a batch of data items with
MVs, which must be added to the system after MVs have
been estimated. There are two system alternatives. The
first is based on employing a single machine which stores
the whole of the dataset. We affectionately call this ma-
chine Godzilla. Godzilla can employ any MVA to perform
the MV imputations. As motivated earlier, this approach
suffers from several disadvantages. The second alternative
employs a (potentially large) number of machines, referred
to as cohorts, each storing a partition of Godzilla’s dataset.
Imputation execution engages cohorts in parallel, whereby
each cohort runs an MVA on a much smaller local dataset.
This can introduce dramatic performance improvements. As
an illustration, assuming, say, 50 cohorts and an MVA op-
erating on a dataset of size n with asymptotic complexity
O(n?) (or O(n?); [3], [4]) a scale-out execution is expected
to speedup input processing by a factor of 50% = 2,500 (or
50 = 125,000) as such MVA runs in parallel on a dataset of
size %n. Moreover, this alternative affords the possibility
of accessing only a subset of all cohorts for a given input.
We will not make any restricting assumptions as to specific
characteristics of this system or the method for partitioning
the dataset.

The formidable challenges here entail: (i) for data accu-
racy (estimation-error) reasons, we should ensure that the
subset of cohorts contacted achieve similar, if not smaller es-
timation errors, compared to the errors that Godzilla would
yield; (ii) swiftly determine the subset of cohorts to engage
per imputation, achieving large efficiency/scalability gains.

Contributions. To our knowledge, this is the first study
on scaling out MV imputations. We shall derive fundamen-
tal knowledge regarding meeting the estimation error and
performance goals outlined above. Armed with this knowl-
edge, we shall propose a novel, principally derived frame-
work, Pythia, which offers large performance speed-ups and
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better, or comparable, errors to that of Godzilla given a
stream of MV inputs. Pythia’s salient contribution is that,
given an input (of imputation requests), Pythia is able to
predict and engage the appropriate subset of cohorts to em-
ploy per imputation. Pythia’s prediction process relies on
(i) the concept of per cohort-dataset signature, which derives
from the (local) dataset of a cohort and (ii) novel similarity
notions and algorithms which, based on each imputation re-
quest and cohort signatures, can determine the best subset
of cohorts to engage. Finally, we will provide comprehen-
sive experimental evidence substantiating and showcasing
Pythia’s accuracy and performance, using a variety of met-
rics and real and synthetic datasets.

The paper is structured as follows: Section 2 reports on
background and discusses related work, while Section 3 in-
troduces the problem fundamentals of scaling out the MV
imputations. In Section 4 and Section 5 we introduce the
Pythia framework and propose two schemes. In Section 6 we
evaluate our framework and Section 7 concludes the paper.

2. BACKGROUND & RELATED WORK
2.1 Missing data

Assume a data set X of d-dimensional data points with
some MVs on a certain dimension X;. Data on X; are said
to be missing completely at random (MCAR) if the proba-
bility of MV on Xj;, g, is unrelated to the value of X; itself
or to the values of any other dimensions. If data are MCAR,
a reduced sample of X will be a random sub-sample of X’;
MCAR assumes that the distributions of MVs and complete
data are the same. Data on X; are said to be missing at
random (MAR) if ¢ depends on the observed data, but does
not depend on the MV itself. In MAR, the dimension as-
sociated with MVs has a relation to other dimensions, i.e.,
MVs can be estimated by using the complete data of other
dimensions. It is impossible to test whether the MAR con-
dition is satisfied for X because, since the (actual) values of
missing data are not known, we cannot compare the values
of those with and without missing data to see if they differ
systematically on that X;. Data on X; are missing not at
random (MNAR) if ¢ depends on the MVs and, thus, missing
data cannot be estimated by using the existing dimensions;
MNAR is rarely applicable in practice.

2.2 Related work

Missing data hinder the application of many statistical
analysis and ML techniques available in off-the-shelf soft-
ware. To analyze X with MVs, certain MVAs have been
proposed [13]. The simplest method is discarding the data
points with MVs or removing the corresponding dimensions.
Both removals of such points and dimensions result in de-
creasing the information content of X and are applicable
only when (i) X contains a small amount of MVs, and (ii)
the analysis of the remaining complete points will not be
biased by the removal. There are many MVAs varying from
naive methods, e.g., mean imputation, to some more robust
methods based on relationships among dimensions. In the
dummy variable adjustment, MVs are set to some arbitrary
value. The mean / mode imputation replaces MVs of a di-
mension by the sample mean / mode of all observed values
of that dimension. In hot deck MVA [14], a MV is filled in
with a value from an estimated distribution w.r.t. X. In
the K-nearest neighbors MVA [15], the MVs of a point are
imputed considering the K most similar (observed) points



from X. The regression- and likelihood-based MVAs are in-
troduced in [16]. In regression-based imputation [17], the
MVs of a point are estimated by regression of the dimen-
sions corresponding to MVs on the dimensions associated to
the observed values of that point. This approach argues that
dimensions have relationships among themselves; if no rela-
tionships exist among dimensions in X and the dimensions
corresponding to MVs, such MVA will not be precise for im-
putation. Likelihood-based imputation [16] is based on pa-
rameter estimation in the presence of MVs, i.e., X’s param-
eters are estimated by maximum likelihood or maximum a
posteriori procedures relying on variants of the Expectation-
Maximization algorithm. The multiple imputation MVA
[18], instead of filling in a single value for each MV, re-
places each MV with a set of plausible values that represent
the uncertainty about the actual value to impute. These
multiply-imputed datasets are then analyzed by using stan-
dard procedures for complete data and combining the re-
sults from these analyses. In case of MVs in time series, the
models in [19] (using dynamic Bayesian networks), [20] (us-
ing matrix completion), and [21] (using Gaussian mixtures
clustering) recover MVs in motion capture sequences, vital
signs, and micro-array gene expression streams, respectively.
Furthermore, ML-based MVAs, e.g., decision-trees and rule-
based methods, generate a model from & that contain MVs,
which is used to perform classification that imputes the MVs
(see [2] and the references therein). Finally, the imputation
framework [6] applies most existing MVAs (base methods)
to improve their accuracy of imputation while preserving
the asymptotic computational complexity of the base meth-
ods. The interested reader could also refer to [6], [9] and
[22] (and the references therein) for a comprehensive survey
of the most recent MVAs.

3. PROBLEM ANALYSIS & FUNDAMEN-

TALS
3.1 Definitions & Notations

Definition 1. Given a set X of d-dimensional data points,
X = {x1,...,X x|}, for each x; we define w; = [w;x] " with
wir = 0 whenever x;’s k-th dimensional value is missing;
otherwise w;r = 1. We express x; as (z;, z;" ), where z; € R"
denotes observed values and z;" € R denotes MVs, with
n= Zzzl Wik.

Definition 2. Given a finite integer m > 0, &} is a parti-
tion of X such that X = U2, X; and X; # Xj,i # 5. S, de-
notes the machine (cohort), which maintains X;, performs a
MVA over X;, and is indexed by ¢,i = 1,...,m. § = {S; }i%;
is the set of all cohorts. The (imaginary) Godzilla Sy assem-
bles all X; and is capable of performing a MVA over X.

Definition 8. A single MV input on MVA is i = (x,w)
and output is X expressed by (z,2™). %X € R? is referred
to as estimate containing 2™ € R(*™™ of imputed MVs by
MVA. If x, is the actual vector, the absolute reconstruction
error is e =|| X — X4 ||; || x || denotes the Euclidean norm.

3.2 MVAs in our framework

As our contributions are independent of any particular
MVA, we overview two popular and representative MVAs as
would be used in our framework. To exemplify our frame-
work and methods, we employ the weighted K-nearest neigh-
bors (KNN) [15] and sequential multivariate regression im-
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putation method (REG) [17]. These MVAs are widely used
for multivariate imputation in many scientific areas.

3.2.1 Weighted K-nearest neighbors imputation

KNN is widely used [22] since it has many attractive char-
acteristics: it is a non-parametric method, which does not
require the creation of a predictive model for each dimension
with MV and takes into account the correlation structure of
the data. KNN is based on the assumption that points close
in distance are potentially similar. For given input (x;, w;)
with x; = (z;,2"), KNN calculates a weighted Euclidean
distance D;; between x; and x; € X such that

1/2
xjk)Q)

The MV of the k-th dimension of x; (i.e., zi of zi") is
estimated by the weighted average of non-MVs of the K

—1
>E, %‘W KNN
is typically used with K=10,15,20; theses values have been
favored in previous studies [22], [23]. (In our experiments
we will use K=10).

d
Dij _ (Zk—l ik jk( ik

d
D 1 Wik Wik

.. . sm
most similar x; to x;, i.e., Zjy =

3.2.2  Sequential multivariate regression imputation

REG estimates the MVs by fitting a sequence of regression
models and drawing values from the corresponding predic-
tive distributions. Let Y1, ..., Y4_, denote d—n (dependent)
variables with MVs, sorted in ascending order to the num-
ber of MVs and X = [X1,...,X,]" denote n (predictor)
variables with no MVs. REG consists of ¢ rounds. In round
1, step 1, we regress the variable with the fewest number
of MVs, Y1, on X imputing the MVs under the appropri-
ate regression model; e.g., if Y7 is continuous, categorical,
or binary then ordinary least squares, generalized logit, or
logistic linear regression is applied, respectively. In step 2,
after estimating the regression coefficients 3 of the model
from step 1, we use the estimated [ to impute the MVs of
Y1. In step 3, we update X by appending Y; and continue to
variable, say Y2, with the next fewest MVs and repeat the
process using updated X as predictors until all the variables
have been imputed. That is, Y7 is regressed on U = X Ys
is regressed on U = (X, Y1), where Y1 has imputed MVs;
Y3 is regressed on U = (X, Y1, Y2), where Y1 and Y have
imputed MVs, and so on. Steps 1 to 3 are then repeated
in rounds 2 through ¢, modifying the predictors set to in-
clude all Y's except the one used as the dependent variable.
Hence, regress Y: on X and Ya,...,Y4_,; regress Y2 on X
and Y1,Ys,...,Ys_n, and so on. Repeated cycles continue
for ¢ rounds, or until stable imputed MVs occur.

3.3 On Cohort vs. Godzilla errors

We consider a discrete time domain ¢t € T and at instance
t=1,2,..., weare given input i[¢]. Assume that Godzilla So
exists and is capable of invoking a certain MVA for i[t]. At
first thought, one could claim that, since Godzilla has global
knowledge (i.e., the union of all X;), the corresponding esti-
mate X¢[t] would be better (in terms of reconstruction error
ec[t]) than X;[t] of each S; (with error e;[t]). However, this
does not always hold true. It depends on the probability
density function (pdf) of {X;} and the (possibly unknown)
pdf of z[t], z™[t], and w]t].



THEOREM 1. Let ec and e; denote the estimate error of
Godzilla Sy and cohort S;. It is not always true that eq <
€, VS; € S.

ProoOF. To prove Theorem 1, suppose its converse were
true. Then it suffices to show counterexamples. Consider
the mean imputation (MEAN) and the KNN. Consider that
points in X; are normally distributed, A (u;, 0?), with mean
w; and variance o7 and |p; —pj| >> 0,1 # j. Evidently, So’s
data set X = LJ ", &; follows the mixture N (u, 0%) with pu =
Doy aifsi, o? = =ity ai((pi — ) +07); ai >0, Yt ai =
1. If we were told that all (both observed z and unobserved

™) inputs followed N (15, af-) for some j,1 < j < m then we
should have engaged only S; thus yielding e; < eq in case
of MEAN;, and e; = eg in case of KNN (for K << |X}]) and
avoiding engaging all S;. [

Furthermore, consider that all X; follow exactly the same
distribution; consequently, So’s X follows the same distri-
bution. Then, regardless of any knowledge on the pdfs of
inputs, we could randomly select one cohort from S, thus,
yielding e; = e@,VS; € S, and avoiding engaging all cohorts.

Example 1: Consider m 3 cohorts S1, 52,53 with
2D datasets X, corresponding joint pdfs fi, f2, f3 and a
Godzilla Sp with X = Uf’zl X; whose joint pdf fg is shown in
Fig. 1(a). Assume REG, KNN, and MEAN MVAs. We are
given a stream of 10* inputs i[1],...,i[t] and assume that
we know the pdf of each i[t], i.e., its observed and MVs are
known to be produced either by fi, f2, or fs. For each i[t],
we invoke a MVA (a) on Sp and obtain ec[t], (b) only on
the cohort S; with the same pdf f; as that of the input and
obtain e;[t], and (c) on all cohorts, aggregate their estimates
by taking their average and obtain eqy[t]. Fig. 1(b) shows
the root-mean-square error (RMSE) eq, e;, and eqy for all
MVAs. We observe that the knowledge of the pdf of each
input results to a significantly lower error e;, because we
engage only the cohort S; corresponding to the same pdf as
that of the input. Godzilla produces a relatively high e (for
all MVAs) with high computational cost due to processing
high volumes of data. Moreover, the parallel execution of
MVAs over all cohorts for each input produces a high eqy;.
Unfortunately, the pdf of an incoming input is not known,
especially, the pdf of the MVs is unknown since they are
never observed. Moreover, we can achieve high parallelism
with concurrently engaging all cohorts but, we also obtain
high error, because there might be a subset of cohorts that
adversely contribute to the aggregated estimate, e.g., due to
the fact that the corresponding pdfs of their data sets are
different from those of the inputs (see Example 2). Note,
however, that in the case of MEAN, eq = equ.

3.4 On computing good cohort subsets

Here we show: (i) that computing the best cohorts subset
is computationally hard, (ii) that even if an efficient heuristic
can be found, it would not be desirable for our purpose since
it would require communication with all cohorts, hence, an-
other approach is needed, like our signature-based prediction
approach and (iii) that as exemplified using our reference
popular MVAs, it is highly beneficial to engage only a good
cohort subset per imputation. The above showcases thus
the traits and benefits of our approach.

In our framework, we utilize a node called Pythia that at-
tempts to predict the best cohorts subset per input. Pythia
receives input i[t] = (x[t], w[t]) with 0 < n[t] = S¢_, wi[t] <
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d. In the remainder, the time index t is omitted for the
sake of readability. Of course, Pythia can, trivially, en-
gage all cohorts in parallel. Each cohort S; locally pro-
duces an estimate %X; (through MVA invocation) and pro-
vides it to Pythia. Then, Pythia takes their average value
%= L3 X. Let us denote such method as the All Co-
horts Method, notated by ACM, so to differentiate it from
Pythia’s sophisticated methods. ACM implies that all co-
horts are equal candidates and available for providing an
estimate. It would have been preferable if Pythia could en-
gage a subset 8’ C S of cohorts whose average estimate
% = |Si,‘ Zsiesl X; would be equal to X, or more interest-
ingly, if Pythia could engage the minimum subset of cohorts
whose average estimate is close to x for each input.
Determining the minimum cohorts subset whose aggregate
estimate is close to X calls to mind the Subset Sum Problem
(SSP) [24]: Consider a pair (Z, s), where Z is a set of m > 0
positive integers and s is a positive integer. SSP asks for a
subset of Z whose sum is closest to, but not greater than, s.
SSP is NP-hard [24]. Consider now the following problem,
referred to as Minimum Subset Average Problem (MSAP).

Problem 1. (MSAP) Given (Z, s), find the minimum sub-
set 7' with average s’ subject to |s'| = s or [s'] = s (C1).

THEOREM 2. MSAP is NP-hard.

ProOF. Ifthereis a polynomial-time algorithm for MSAP,
then a polynomial-time algorithm can be developed for SSP.
Assume there exists a polynomial algorithm A(Z,s) that
solves MSAP, i.e., A(Z, s) finds in polynomial time the mini-
mum subset Z’ subject to constraint C1 in Problem 1. Then,
A(Z,s) can be used to solve SSP with (Z,ms), m = |Z|.
In general, any solution B(Z,s) of SSP with (Z,s) can be
formulated as Algorithm 1. If the complexity of A(Z,s)
is a polynomial Q(m) then the complexity of B(Z,s) is
O(mQ(m)). But, this implies that there is a polynomial-
time algorithm for SSP. Hence, no polynomial-time algo-
rithm exists for MSAP. []

ALGORITHM 1: B(Z,s)
Input: 7,s
Output: 7'
for 1 <k <|Z| do
call A(Z, 3);
If a subset Z’ of 7 with k elements is found, whose
elements have an average k' such that |k'| = s/k or
[£'] = s/k Then return I’

end

THEOREM 3. Given input i, the problem of finding the
minimum subset S’ C S of cohorts, whose average estimate
o . L
X' gives the same reconstruction error as X is NP-hard.

PROOF. Let e =|| X — %, || and €’ =|| X’ — x4 ||. In order
to show that the problem of finding the minimum subset
S’ with ¢ = e is NP-hard, it suffices to show that finding
the minimum subset &’ C S of cohorts such that || X' ||=]]
% || subject to C1 is NP-hard. Consider the set Z° = {|||
% 1}y, and I8 = {J]] % [T}, || % 1> 0,%. Since
MSAP, which deals with integers is NP-hard from Theorem
2, MSAP with (Z° ||| % ||]) and (Z*,]|| % ||]) is also NP-
hard. [

SSP and MSAP are NP-hard, however, one is often satis-
fied with an approximate, sub-optimal solution, i.e., in poly-
nomial time; see [25] for SSP. Nevertheless, even if Pythia
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were able to use such heuristic to find the minimum set S’
for given input (let m be small) then this would still not
be preferable given our goals. That is because, in order to
obtain &’ for a given input, Pythia would firstly have to en-
gage all cohorts and consequently, based on their estimates,
produce §’. What we want is for Pythia to guess/predict
the most appropriate S’, which gives the same or, hopefully,
smaller reconstruction error than that of S without having
to access all cohorts! For instance, this guess can be in-
terpreted as follows: cohort S; € S might consider z (of
input i) as an observation which is deemed unlikely w.r.t.
X;. Based on the fact that a MVA highly depends on X;, S;
will probably provide a bad estimate for i (w.r.t. e;). Were
Pythia capable of predicting the unsuitability of S; provid-
ing a good estimate before engaging S; then Pythia could
have excluded S; from S’.

The task of predicting S’ per input involves the following
issues: (a) the joint pdf of the MVs is evidently unknown
since the actual values of z™ are not observed; (b) it is not
feasible to identify the joint pdf that generates z, since we
have only one sample from this at a time; (c) it is not suitable
to assume that z is produced by a certain pdf at time ¢,
which remains also the same for subsequent z[7],7 > ¢. This
is getting more difficult when dealing with non-stationary
distributions of z and w, which is not a rare situation.

Example 2: Consider m = 30 cohorts. We are given a
stream of 10* inputs where the joint pdf of each input is un-
known. For each input, we invoke a MVA (KNN and REG)
on Godzilla and on all cohorts in parallel, and aggregate
their estimates (ACM). For each input, we obtain the order
statistics @1 = min;{e;},..., Q30 = max;{e;} of the corre-
sponding errors of all cohorts and plot their average values
in Fig. 1(c-d); the e is shown for comparison. We can ob-
serve that more than 40% of cohorts provide lower error to
that of Godzilla for KNN and REG. This indicates that it is
of high importance to predict such subset of cohorts for each
input while knowing neither the pdfs of the cohorts’ sets nor
the pdf of each input. Note that ACM in this case produces
a higher average error than even Godzilla. Furthermore, we
observe that for each input there is an ideal cohort that gives
the minimum error; note that Q1 is 93% / 95% smaller than
ec for KNN / REG. An ideal Pythia has to predict S’ hope-
fully including the ideal cohort and/or those S; with e; < eq
for each input. We now formulate our problems.

Problem 2. Determine what information each S; € S a-
priori must convey to Pythia in order to predict whether
S; is suitable for providing a (local) good estimate X; given
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an input, i.e., whether S; should be a member of S’. This
information is referred to as the signature P; of X;.

Problem 3. Determine how signatures { P; };2, are updated
for each input.

4. THE PYTHIA FRAMEWORK

Pythia aims to solve the above problems. Predicting S’
for each input, based on per-cohort signatures, avoids the
fundamental problems of NP-hardness of exact solutions and
of the need to on-the-fly engage all cohorts for approximate
heuristic solutions.

Each cohort S; constructs a signature P; from X;. P;
reflects the current structure of data points in X;. The idea
behind a signature is that .S; is engaged for a given i once
x can be ‘explained’ through P;. S; provides its (locally)
created P; to Pythia, which stores all signatures forming
P ={P;}%,. Figure 2(a) pictorially depicts the framework’s
operation. The operation of the framework is as follows:
Given i,

1. Pythia predicts S’ C S w.r.t. P

2. Pythia then engages only the cohorts from S’ sending
i to them.

3. Each S; € &’

(a) invokes a MVA and
(b) provides its estimate X; to Pythia.
4. Pythia constructs the aggregate estimate X that is sent
to cohorts from S’.
5. Each S; € 8’ can exploit X for updating its P;.
6. Pythia uses x for updating P.

4.1 Signatures

In this work, P; refers to a clustering structure over X; pro-
viding a set of representative points (clusters) C;. Each co-
hort S; € S employs the Adaptive Resonance Theory (ART)
[26], an unsupervised learning model from the competitive
learning paradigm, in order to locally construct P; over AX;.
In ART, whose algorithm is shown as Algorithm 2, each
X € X; is processed by finding the nearest cluster c¢* € R?
to xi, i.e., ¢* = argmincec; || ¢ — xx ||, where C; is the set
of clusters. Then, it is allowed xj to modify /update ¢* only
if ¢* is sufficiently close to x; (c* is said to ‘resonate’ with
xi) Le., if || ¢* —xp ||< p; for some vigilance p; > 0. In this
case, ¢* is updated through the rule ¢* « ¢* + 7;(xx — ¢*),
where 7; € (0,1) is a learning rate, which gradually de-
creases. Otherwise, i.e., | ¢* —xy ||> ps, a new cluster c is
formed handling x; such that ¢ = xx and C; «— C; U {c}.

Definition 4. Cohort S;’s signature P; over X is the triple
Py = (Ci, pi, ni)- 1)



ALGORITHM 2: ART algorithm at cohort S;
Input: X, n:, p:

Output: C;
Ci={xik;
for 1 <k < |X;| do
b" =|| " — xx [|= minecec; || ¢ — % [|;

if b > p; then
‘ Ci —C; U {Xk};
else
| ¢ —c* +ni(xk —c*);
end
end

Definition 5. We say that x is a member of P;, notated
x € P;, iff mincee, || ¢ — x ||< pi; otherwise, x & P;.

The statement ‘x € P;’ denotes that there is at least one
c € C; such that x is placed close to ¢ with distance less
than p;, for instance, the closest cluster ¢* to x. The more
clusters ¢ € C; satisfy the criterion || ¢ — x ||< p;, the more
appropriate C; is for x. In this sense, if x € P; then x can
be represented by at least one cluster from X;. Based on
this intuition, if x € P;, cohort S; provides a rather good
estimate for some missing parts of x compared to a cohort
S; associated with a P; for which it holds true that x ¢ P;.
The latter case indicates that no cluster from C; can be a
representative point for x.

Since p; represents a threshold of similarity between points
and clusters, thus, guiding ART in determining when a new
cluster should be formed, it should depend on &;. In order
to give a physical meaning to p;, it is expressed through a set
of percentages oy, € (0,1) of the ranges between the lowest

;™ and highest z7'** values of each dimension k of points in

Xi,k=1,...,d. Letr; = [(2P™*—gPi), ... (2P —gPim)] T
and the diagonal d x d matrix A with A[k, k] = ax. Then
pi =|| Ar; ||. High aj values result to a low number of

clusters and vice versa. Each S; determines a p; over Xj,
creates P; through Algorithm 2, and sends P; to Pythia.

Note: when dealing with mixed-type data points, e.g.,
consisting of categorical, binary, and continuous attributes,
we can adopt appropriate distance metrics [27] for the dis-
tance between xj; and x; instead of using the Euclidean
distance || xx — x; ||; this does not spoil the generality of
signature creation.
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Figure 2: (a) Inputs with MVs, Pythia and engaged
cohorts; (b) Engaged cohorts against m (COE).
4.2 Cohort prediction schemes

Up to this point, we have shown how to use signatures as
a guiding light to select appropriate cohorts for MV impu-

tations. Now, our concern is twofold: MV imputations must
be (i) low cost and (ii) high accuracy. Low cost (once signa-
ture processing is performed) refers to the communication
cost between Pythia and cohorts and to the cost of run-
ning MVAs at cohorts. High accuracy refers to low RMSE.
Therefore, we present algorithms with these in mind.

4.2.1 Cost-aware algorithm: Top-K Cohort scheme

For simplicity we present the top-1 (Best) Cohort (BC)
scheme, i.e., I = 1. Pythia is not involved in producing the
(final) estimate X, instead, only one cohort (best cohort) is
engaged for doing this locally. Pythia communicates only
with the best cohort, which runs the MVA, thus, this opti-
mizes our cost metric. Given i, Pythia determines the best
cohort S* € § with P* = (C*, p*,n™) such that (A1) c¢* =
argminceur ¢, || €~z || and ¢* = argmincec~ || c—z |, i.e.,
c* € C* is the closest cluster to z among all clusters from
all signatures, and (A2) z € P*. Note that z € R" with
0<n= ZZ:1 wy < d provided that x contains d — n MVs.
In order to evaluate ‘z € P*’ Pythia calculates p*™ < p*
associated with the n dimensions of r* corresponding to the
n non-MVs. Then, it checks if || c¢* — z ||< p*™ dealing
only with the n dimensions of c*. Pythia engages only S*,
which produces the final x. If there is no cohort that satis-
fies criteria A1 and A2, BC engages the cohort that satisfies
only criterion Al. If K > 1 one can repeat the above criteria
for the top I cohorts ranked with the distance between the
corresponding ¢ and z, 1 < j < K < m. In this case the
final % is produced by aggregating all %X;.

4.2.2 Accuracy-aware algorithm: Cohorts Outlier
Elimination scheme

Cohorts Outlier Elimination (COE) trades off additional
cost for improving our other metric, accuracy. Given i,
Pythia checks whether z € P;. This is achieved once Pythia,
for each cohort S;, calculates pi") < p; associated with the
n dimensions of r; corresponding to the n non-MVs. If
| et —z||< p™ (dealing only with the n dimensions of ¢*)
with ¢; = argmincec, || ¢ — z || then &’ — & U {S;}. Once
&' is determined with ¢ = |§'| < |S| = m, Pythia engages
only cohorts from &’ and obtains their corresponding esti-
mates X;,7 = 1,...,£. The aggregate estimate X determined
by Pythia is

) ) lz—c |
= ibi , by = R 2
x= 2 % > lz—c [ @)

S]‘ es’

where b; is the weight for estimate X; normalized by the
sum of inverse distance from the closest cluster c; to z from
cohort S; € S”. The set S” C S’ contains cohorts S; € S’
whose estimates are not considered outliers in &€ = {|| %1 ||
,---» ]l X¢ ||}. This is achieved by computing the statistic

| || %i || —median(€)|

mad(E) ®)

Uq,e =

for each || %; ||€ £ and then considering %X; as outlier if
u;,e exceeds a certain cutoff, usually 2.5 or 3.0 [28]. The
median(€) and mad(€) is the sample median and median
absolute deviation about the median of £, respectively. Pythia
provides % to each S; € 8” for updating their signatures; see
Section 5.1. If 8’ = (), Pythia engages all cohorts; if S” = 0,
Pythia engages all cohorts from S’.



4.3 Pythia asymptotic complexity

In COE, given i Pythia evaluates ‘z € P;’, VP; € P, i.e.,
it performs one nearest neighbor (1NN) search for each P;
over C;. We adopt a d-dimensional tree structure [31] for
each P; over the clusters of C;. Let £ = % Z:’;l |C;| be the
average number of clusters in signature P;. The correspond-
ing time complexity per input i in COE is O(mdlog(§)). In
BC, we also adopt a d-dimensional tree structure over all
clusters from all signatures in P. Given i, Pythia performs
a INN search with O(dlog(m¢)) time since it searches over
all clusters from all signatures Ui~ ;C;. COE and BC require
O(md¢€) space. Pythia requires O(¢) and O(1) communica-
tion with cohorts from S’ and the best cohort in COE and
BC schemes, respectively.

5. PYTHIA SIGNATURE UPDATE
5.1 COE signature update

Once Pythia has produced X given an input, it updates
P. Only P; € P, which correspond to cohorts S; € S”,
need to be updated. The update of P; is based on the rule
c; «— c¢; +mi(z — c}) where ¢; = argmineec; || 2 —c ||, i.e,,
only the dimensions of ¢} are modified, which correspond to
the n dimensions of the non-MVs of x. This denotes that
no new clusters at P; are formed after the update w.r.t. X,
since z € P;. The exact update can be locally reflected by
S; € 8" to its signature in order to be secured against a
Pythia break-down situation. The magnitude of change in
P,wrt. Xisd=n; || z—cj ||.

Let the sum involving the y moments of the reciprocals of
binomial coefficients Fl(-y) => 0 ok (i)fl for non-negative
z4+1 a4l 2k

2z +1 k=1 k

integers z, y. From [29] we obtain that FY =
(1 _ (0)
and ' = SFy .

THEOREM 4. The expected magnitude of change in P;,
E[6,|S; € 8"], in COE is bounded above by 6 = n; pi(F") —
2) and 6 ~ (325 — Qd%l)mpi for very large d.

PRroOF. Consider input i with 1 < n < d — 1 non-MVs
and S; € 8. The probability of choosing a subset of n out

of d dimensions corresponding to non-MVs is (i) ! The ex-

pected magnitude of change of P; is E[d;] = Zdﬂ (d) 71772' |

n=1 \n
. _ -1 (n _ ~1 0
z—cf <02 () mel” < S0t (D) Tme = (B~
2)nipi. The asymptotic expansion of Flflo) ~ 2+ ﬁ -

~ (5 -

52—t as d — oo (proved in [30]). Hence, 6"
sa=t)mipi- O

THEOREM 5. The expected magnitude of change in P,
E[é], in COE is bounded above by §™* = nt"axp"‘ax(F,(nl) -
1)(F50> _ 2) and §M3X ~ (m _ 1)(% _ 2d#il),nmaxpmax fOT
very large m and d, where n™* = max{n;}i~1, p
{pi}iti.

PROOF. The probability that a subset S” of £ cohorts is

determined by Pythia is (ZL) ~!. Hence (from Theorem 4),

max __

m -1 4 g1 -1
m d
E[ < ) <€> >N <n) nipi
=1 i1=1 n=1
m -1
max max m
< 0t Z€<€> (F —2)
=1
— max maX(FT(nl) _ 1)(F(§O) _ 2)
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)

— 1 (Theorem 11; [29]) and from Theo-
~ (m=1)(F — =) O

d—1 ~ 2d-1

Since limy, 0o

6lnax max  max

rem 4, we obtain

5.2 BC signature update

The best cohort S* updates its signature w.r.t. X as de-
scribed in Section 5.1, with magnitude of change bounded
by "™ (Theorem 4). Note that the change in S™’s sig-
nature is not reflected at Pythia’s P and specifically at the
corresponding P* € P.

THEOREM 6. The expected magnitude of change in P,
E[é], in BC is bounded above by (Féo) — 2)pmax pmax,

ProOF. Each S; € S is equally probable to be selected
by Pythia as the best cohort given an input. Hence, from
Theorem 5 we obtain E[§] < Y7 i(FCEO)—Q)mpi < (FCEO)—
2)praxpmax O

Pythia determines a frequency o (Flgo) — 1)p™ma*p™a for
a batch update of P by asking from all (previously engaged
as best) cohorts to send their updated signatures changes
(referring only to modified clusters), provided that they have
not changed from the previous batch update. However, a
batch update can be avoided once the best cohort sends the
final estimate to Pythia for updating P.

6. PERFORMANCE EVALUATION

6.1 Experiments

Setup. We conducted an extensive series of experiments
to assess the performance of Godzilla, ACM and Pythia’s
schemes COE and BC on two real datasets (D1 and D2)
and a synthetic dataset (DS). Real datasets are adopted
from the UCI Machine Learning Repository [32]. D1 con-
tains |X| = 5 - 10° real valued vectors of d = 90 correspond-
ing to audio features. D2 contains |X| = 5 - 10* real val-
ued vectors of d = 384 corresponding to features extracted
from Computed Tomography images. FEach vector of DS
is a 20-dimensional point with the first fifteen dimensions
randomly sampled from a Gaussian mixture of five compo-
nent Gaussian pdfs with equal mixture weights and mean
values of each component randomly selected from the uni-
form distribution U(0,15). The other five dimensions are
drawn, independently, from the univariate Gaussian dis-
tribution A(0,1). The first fifteen dimensions are infor-
mative dimensions, while the rest dimensions are random
noises artificially added to test Pythia’s capability of pre-
dicting S’. For each dataset, we synthetically produce MVs
from each x; for t = 1,...,T as follows: each dimension
k=1,...,dfrom x; is randomly and independently marked
as missing with MV probability g. In this case, we expect
| X Zz;i (Z)qk(l — q)*7F points with MVs; we exclude the
cases of missing all dimensions or none. We set ¢ = 0.3,
which is a relatively high probability of MVs per dimen-
sion, thus, being able to test Pythia’s robustness in terms
of accuracy. On average, a signature P; contains 0.32% of
points of cohort’s set &; (this amount refers to the number
of clusters stored in Pythia) using ART with initial learning
rate n = 0.2, which gradually decreases. Moreover, we set
the range percentage ar = a = 0.1 for all dimensions in
order to construct p. We run all experiments 100 times and
took their average values for all performance metrics, with
a stream of T" = 1000 inputs. Pythia’s schemes and MVAs



(Section 3.2) were written in Matlab. Table 1 summarizes
the parameter values used in our experiments.

Parameter | Notation Value/Range

d dimensions {20,90,384}

« vigilance range pct. | 0.1

n init. learning rate 0.2

q MV probability 0.3

m number of cohorts {5, 10, 20,50, 100}
T number of inputs 1000

Table 1: Experiment parameters.

Performance metrics. Our metrics include efficiency
metrics and accuracy metrics. A scale-out system consist-
ing of m cohorts affords two types of parallelism: intra-
imputation and inter-imputation parallelism. The former
refers to the capability of processing any single imputa-
tion using a number of cohorts in parallel, each accessing
a dataset partition. The latter refers to the systems’ capa-
bility of running in parallel a number of imputations, each of
which engages a subset of cohorts. It is crucial to note that
Godezilla affords neither of these parallelism types and that
ACM affords only intra-imputation parallelism. This latter
scenario is particularly important as typically a system is
presented with a (large) batch of (vector-) inputs, each with
missing values and the goal is to impute all input vectors in
the batch as quickly/scalably as possible. Given this, our
efficiency metrics embody various efficiency aspects impact-
ing scalability. First, we report on imputation latency, de-
fined as the time (in seconds) a system (i.e., Godzilla, ACM,
Pythia-COE, or Pythia-BC) requires to impute a single in-
put (vector) using a MVA. The rate of latency increase as
dataset sizes grow is a strong aspect of scalability. In ACM,
latency refers to the time a single cohort requires to im-
pute a single input on its local dataset partition, assuming
m cohorts run in parallel. In Pythia, latency refers to the
time for COE / BC to predict best cohort(s) S”/S*, plus
the latency to run MVA in parallel at cohort(s). Imputa-
tion speedup is defined as the ratio of Godzilla latency over
ACM / COE / BC latency; it indicates how much a system
is faster than Godzilla for a single imputation. Imputation
throughput is defined as the rate of imputations delivered by
a system (number of imputations per second) given a finite
stream (batch) of T" inputs: with this we capture the inter-
imputation parallelism, in addition to the intra-imputation
parallelism.

We measure imputation accuracy using the RMSE metric
(root-mean squared difference) between x, and X:

1o~ ¢ wi(z Fex)? 2
_ k=1 Wtk\L(a)tk — Ltk
RMSE = <T E ) . (4)

d
t=1 > k=1 Wtk
6.2 Performance results

6.2.1 Imputation efficiency

Fig. 3(a-b) shows the imputation speedup against m for
all systems using KNN and REG over D2. Similar results
are obtained for D1 which are omitted due to space limita-
tions. Overall ACM, COE and BC achieve an almost linear
speedup using both REG and KNN. The speedup of COE
and BC drops slightly as m increases since higher m implies
more signatures to be processed at Pyhtia.
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Fig. 3(c-d) shows the latency of Godzilla and Pythia-
COE (Pythia-BC curves are very close to Pythia-COE) us-
ing REG when m = {10, 50,100} and the size of D1 and D2
varies from 5000 to 300,000 points; (similar results exist for
KNN, but are omitted for space reasons). Godzilla struggles
with increasing dataset sizes: with over 200,000 and 100,000
points, a high latency over 20s and 35s per input for D1 and
D2, respectively, is observed. Pythia scales nicely with its
latency per input increasing linearly. Moreover, when the
number of cohorts increases, we obtain a sublinear increase
in latency. Pythia can easily handle large datasets if more
cohorts are available to scale to big data missing values.

Fig. 4(a-b) shows the throughput of each system indicat-
ing the capability of handling a stream of T inputs. COE
engages S’ for an input (or S* in case of BC) thus the other
cohorts (€ S\ S’) are available to be potentially engaged
for other inputs in the stream. Now, recall Fig. 2(b) which
shows the average number of cohorts engaged by COE per
input for all data sets. For m = 100, about 26% of cohorts
(average for all data sets) are engaged per input. Obviously,
the distribution of the engaged cohorts plays an important
role. That is, for a stream of inputs heading for imputation,
we achieve very high throughput when (i) |S’| is relatively
small (in case of COE) and (ii) different imputations en-
gage different subsets of cohorts. On the other hand, in
ACM, all cohorts are concurrently occupied by the same in-
put. The impact of the cohort engagement policy of Pythia’s
schemes on the throughput is illustrated in Fig. 4(a-b) us-
ing REG, where the y-axis is plotted in logarithmic scale
for readability. (Similar results exist with KNN). Pythia
can handle up to tens of thousands of inputs per second,
compared to ACM and Godzilla, which deal with tens of
inputs and a few inputs, respectively. As expected, Pythia
achieves higher throughput as m increases, as the possibili-
ties for intra-imputation parallelism increase. However, note
that in Fig. 4(a) as m increases, we do not achieve further
significant increase in throughput, because Pythia’s process-
ing over signatures becomes significant. The latter is higher
for higher dimensions. In Fig. 4(b), as m increases, Pythia
achieves high throughput. We can observe the impact of
the number of dimensions d on throughput. D2 contains
points with 326% more dimensions than those in D1. Pythia
achieves a throughput over 10* (inputs/sec) with m = 20 in
D1, while it achieves the same throughput with m = 100 in
D2 (five times more cohorts).

Our results up to now clearly make a strong case for the
scale-out advantages of the Pythia framework.

6.2.2 Imputation accuracy

Fig. 4(c-d) shows the RMSE against m using KNN and
REG on synthetic data. COE and BC, as anticipated based
on discussions of Example 1 and 2, obtain significant lower
RMSE than Godzilla and ACM. However, this occurs with
decreasing benefits as the number of cohorts increases; for
m > 50 no further decrease in RMSE is achieved. Specifi-
cally, COE predicts a subset of cohorts, out of m cohorts,
which achieves quite similar RMSE as that obtained by a
subset of cohorts out of m’ with m’ > m > 50. In addition,
BC engages the best cohort whose estimate is very close to
the aggregate estimate of the subset of cohorts engaged by
COE. Please note that ACM may yield a higher RMSE de-
pending on the MVA used, even compared to Godzilla. For
instance, using KNN, Godzilla would provide the global best
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Figure 3: (a-b) Imputation speedup against m of ACM, COE and BC in dataset D2 using KNN and REG;
(c-d) Imputation scalability against m of Godzilla and Pythia (COE) in datasets D1 & D2 using REG.

K points, whereas in ACM each cohort, even when storing
irrelevant data, will be contributing its best K points. The
latter necessarily implies that ACM’s imputation involves
points which adversely affect imputation errors.

Fig. 5 shows the RMSE against m using KNN and REG
on real datasets. Pythia’s schemes achieve comparable RMSE

with Godzilla, with COE assuming relatively the lowest RMSE

for both MVAs and datasets. In addition, the RMSE of
COE remains at its lowest value from a certain m value
(e.g., m = 50 in D2) thus there is no need to involve more
cohorts. BC performs slightly better than Godzilla for both
MVAs and datasets. Moreover, BC assumes higher RMSE
than COE. This denotes the robustness of COE compared
to BC in terms of accuracy due to the aggregate estimate
from multiple engaged cohorts. ACM has higher RMSE than
Godzilla in both datasets since it aggregates the estimates
of all cohorts possibly incorporating estimates that spoil the
final result.

6.3 Discussion

The central conclusions of our study are the following:

e Godezilla suffers from obvious severe scalability / effi-
ciency limitations. Furthermore, it can have a poor
performance even in terms of imputation accuracy.

o ACM offers efficiency performance comparable to what
Map-Reduce solutions to scalability would offer, in that
it requires all cohorts to be engaged for MV imputa-
tion. As such, it can only improve per-imputation effi-
ciency. Our results show that ACM performs poorly in
terms of both MV imputation throughput (compared
to Pythia) and accuracy (compared to Pythia and even
Godzilla).

e Pythia is a great all-around performer, significantly
outperforming both ACM and Godzilla in terms of
both overall efficiency and accuracy. Note that, even
though ACM enjoys a smaller per-imputation latency
than Pythia, this is achieved at a significant cost for
overall imputation throughput and accuracy.

e Finally, the two Pythia schemes BC and COE, as ex-
pected can trade-off efficiency for accuracy with BC
offering higher throughput but at lower accuracy.

7. CONCLUSIONS

We have tackled the problem of scaling out MV imputa-
tions, a common problem in many big data applications. We
studied and developed some of the fundamentals of the prob-
lem, based on which we developed Pythia, a framework and
algorithms designed for this aim. The Pythia framework is
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drastically different, as it on the one hand avoids the need to
access all cohorts (and all associated costs for communica-
tion and for running MVAs at all cohorts), while on the other
can achieve better or comparable MV imputation accuracy,
compared to centralized solutions. Specifically, our compre-
hensive experiments showed that it can provide drastically
better efficiency/scalability and accuracy compared to a cen-
tralized approach (Godzilla) and a massively parallel, a la
Map-Reduce, solution (ACM). Future work plans entail the
study of additional cohort prediction schemes, straddling the
line between efficiency and accuracy.
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