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ABSTRACT
Histogram construction is a fundamental problem in data
management, and a good histogram supports numerous min-
ing operations. Recent work has extended histograms to
probabilistic data [5–7]. However, constructing histograms
for probabilistic data can be extremely expensive, and exist-
ing studies suffer from limited scalability [5–7]. This work
designs novel approximation methods to construct scalable
histograms on probabilistic data. We show that our meth-
ods provide constant approximations compared to the op-
timal histograms produced by the state-of-the-art in the
worst case. We also extend our methods to parallel and
distributed settings so that they can run gracefully in a clus-
ter of commodity machines. We introduced novel synopses
to reduce communication cost when running our methods
in such settings. Extensive experiments on large real data
sets have demonstrated the superb scalability and efficiency
achieved by our methods, when compared to the state-of-
the-art methods. They also achieved excellent approxima-
tion quality in practice.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems

Keywords
histogram; scalable method; probabilistic database

1. INTRODUCTION
In many applications, uncertainty naturally exists in the

data due to a variety of reasons. For instance, data inte-
gration and data cleaning systems produce fuzzy matches
[10, 21]; sensor/RFID readings are inherently noisy [4, 9].
Numerous research efforts were devoted to represent and
manage data with uncertainty in a probabilistic database
management system [18,21]. Many interesting mining prob-
lems have recently surfaced in the context of uncertain data
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e.g., mining frequent pattern and frequent itemset [1, 3, 24].
In the era of big data, along with massive amounts of data
from different application and science domains, uncertainty
in the data is only expected to grow with larger scale.

Histograms are important tools to represent the distribu-
tion of feature(s) of interest (e.g., income values) [15, 19].
Not surprisingly, using the possible worlds semantics [8,21],
histograms are also useful tools in summarizing and working
with probabilistic data [5–7]. Given that answering queries
with respect to all possible worlds is in #P-complete com-
plexity [8], obtaining a compact synopsis or summary of a
probabilistic database is of essence for understanding and
working with large probabilistic data [5–7]. For example,
they will be very useful for mining frequent patterns and
itemsets from big uncertain data [1, 3, 24].

Cormode and Garofalakis were the first to extend the well-
known V-optimal histogram (a form of bucketization over a
set of one dimension values) [15], and wavelet histogram [16]
to probabilistic data [6,7], followed by the work by Cormode
and Deligiannakis [5]. Note that histogram construction can
be an expensive operation, even for certain data, e.g., the ex-
act algorithm for building a V-optimal histogram is based on
a dynamic programming formulation, which runs in O(Bn2)
for constructing B buckets over a domain size of n [15].
Not surprisingly, building histograms on probabilistic data
is even more challenging. Thus, existing methods [5–7] do
not scale up to large probabilistic data, as evident from our
analysis and experiments in this work.

Thus, this work investigates the problem of scaling up his-
togram constructions in large probabilistic data. Our goal is
to explore quality-efficiency tradeoff, when such tradeoff can
be analyzed and bounded in a principal way. Another objec-
tive is to design methods that can run efficiently in parallel
and distributed fashion, to further mitigate the scalability
bottleneck using a cluster of commodity machines.

Overview. A probabilistic database characterizes a prob-
ability distribution of an exponential number of possible
worlds, and each possible world is a realization (determinis-
tic instance) of the probabilistic database. Meanwhile, the
query result on a probabilistic database essentially deter-
mines a distribution of possible query answers across all
possible worlds. Given the possible worlds semantics, es-
pecially for large probabilistic data, approximate query an-
swering based on compact synopsis (e.g., histogram) is more
desirable in many cases, e.g., cost estimations in optimizers
and approximate frequent items [3, 5–7,21,24,26].

Conventionally, histograms on a deterministic database
seek to find a set of constant bucket representatives for the
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data distribution subject to a given space budget of buckets
and an error metric. Building histograms on determinis-
tic databases has been widely explored and understood in
the literature. In probabilistic databases, building the cor-
responding histograms need to address the following prob-
lems: (I) how to combine the histograms on each possible
world; (II) how to compute the histogram efficiently without
explicitly instantiating all possible worlds.

One meaningful attempt is building histograms that seek
to minimize the expected error of a histogram’s approxima-
tion of item frequencies across all possible worlds, using an
error metric, which was first proposed in [6, 7]. One con-
crete application example might be estimating the expected
result size of joining two probabilistic relations based on the
corresponding histograms, or evaluating queries asking for
an expected value approximately.

It is important to note that for many error metrics, this
histogram is not the same as simply building a histogram for
expected values of item frequencies; and the latter always
provides (much) worse quality in representing the proba-
bilistic database with respect to a number of commonly used
error metrics, as shown in [6, 7]

Based on this definition, a unified dynamic programming
(DP) framework of computing optimal histograms on the
probabilistic data was proposed in [6,7] with respect to var-
ious kinds of error metrics. Specifically, for the widely used
sum of square error (SSE), it costs O(Bn2) time where B
is the number of buckets and n is the domain size of the
data. Immediately, we see that the optimal histogram con-
struction suffers from quadratic complexity with respect to
the domain size n. For a domain of merely 100, 000 values,
this algorithm could take almost a day to finish and render
it unsuitable for many data sets in practice.

Summary of contributions. Inspired by these observa-
tions, we propose constant-factor approximations for his-
tograms on large probabilistic data. By allowing approxi-
mations, we show that it is possible to allow users to adjust
the efficiency-quality tradeoff in a principal manner.

We propose a novel “partition-merge” method to achieve
this objective. We introduce “recursive merging” to improve
the efficiency, while the histogram quality achieved will not
significantly deviate from the optimal version. We also de-
vise novel synopsis techniques to enable distributed and par-
allel executions in a cluster of commodity machines, to fur-
ther mitigate the scalability bottleneck. To that end,

• We review the problem of histogram constructions on
probabilistic data in Section 2, and highlight the limi-
tations in the state-of-the-art.

• We design Pmerge in Section 3, which gives constant-
factor approximations and scales up the histogram con-
struction on large probabilistic data. Pmerge uses a
“partition-merge”approach to realize efficiency-quality
tradeoff. It also admits “recursive-merging” to allow
further efficiency-quality tradeoff.

• We extend our investigation to distributed and paral-
lel settings in Section 4, and introduce novel synopsis
methods to support computation- and communication-
efficient execution of our methods in distributed and
parallel fashion in Section 5.

• We conduct extensive experiments on large data sets in
Section 6. The results suggest that our approximation
methods have achieved significant (orders of magni-

tude) run-time improvement compared to the state-of-
the-art approach with high-quality approximation.

In addition, we survey other related works in Section 7 and
conclude the paper in Section 8. Unless otherwise specified,
proofs of theorems and lemmas were omitted due the space
constraint and for brevity; they are available in Appendix B
of our online technical report [25].

2. BACKGROUND AND STATE OF THE ART
Uncertain data models. Sarma et al. [20] describes var-
ious models of uncertainty, varying from the simplest basic
model to the (very expensive) complete model that can de-
scribe any probability distribution of data instances.

Basic model is a over-simplification with no correlations.
Existing work on histograms on uncertain data [5–7] adopted
two popular models that extend the basic model, i.e., the
tuple model and the value model, and compared their prop-
erties and descriptive abilities. The tuple and value models
are two common extensions of the basic model in terms of
the tuple- and attribute-level uncertainty [20], that were ex-
tensively used in the literature (see discussion in [5–7]).

Without loss of generality, we consider that a probabilistic
database D contains one relation (table). We also concen-
trate on the one dimension case or one attribute of interest.

Definition 1 The tuple model was originally proposed in
TRIO [2]. An uncertain database D has a set of tuples τ =
{tj}. Each tuple tj has a discrete probability distribution
function (pdf) of the form

〈
(tj1, pj1), . . . , (tj`j , pj`j )

〉
, spec-

ifying a set of mutually exclusive (item, probability) pairs.
Any tjk, for k ∈ [1, `j ], is an item drawn from a fixed domain
and pjk is the probability that tj takes the value tjk in the
jth row of a relation.

When instantiating this uncertain relation to a possible
world W , each tuple tj either draws a value tjk with prob-
ability pjk or generates no item with probability of 1 −∑`j
k=1 pjk. The probability of a possible world W is sim-

ply the multiplication of the relevant probabilities.

Definition 2 The value model is a sequence τ of indepen-
dent tuples. Each tuple gives the frequency distribution of a
distinct item of the form 〈 j : fj = ((fj1, pj1), . . . , (fj`j , pj`j ))
〉. Here, j is an item drawn from a fixed domain (e.g., source
IP) and its associated pdf fj describes the distribution of j’s
possible frequency values.

In particular, Pr[fj = fjk] = pjk where fjk is a frequency
value from a frequency value domain V; fj is subject to
the constraint that

∑
jk pjk ≤ 1 for k ∈ [1, `j ]. When it

is less than 1, the remaining probability corresponds that
the item’s frequency is zero. When instantiating this un-
certain relation to a possible world W , for an item j, its
frequency fj either takes a frequency value fjk with proba-
bility pjk or takes zero as its frequency value with probability

1 −
∑`j
k=1 pjk. So the probability of a possible world W is

computed as the multiplication of the possibilities of fj ’s
taking the corresponding frequency in each tuple.

2.1 Histograms on probabilistic data

Without loss of generality, in both models, we consider
the items are drawn from the integer domain [n] = {1, ..., n}
and useW to represent the set of all possible worlds. Let N
be the size of a probabilistic database, i.e., N = |τ |.
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For an item i ∈ [n], gi is a random variable for the distri-
bution of i’s frequency over all possible worlds, i.e,

gi = {(gi(W ),Pr(W ))|W ∈ W}, (1)

where gi(W ) is item i’s frequency in a possible world W and
Pr(W ) is the possibility of W .

Example 1 Consider an ordered domain [n] with three items
{1, 2, 3} for both models, i.e., n = 3.

The input τ = {〈(1, 1
2
), (3, 1

3
)〉, 〈(2, 1

4
), (3, 1

2
)〉} in the tuple

model defines eight possible worlds:

W ∅ 1 2 3 1, 2 1, 3 2, 3 3, 3

Pr(W ) 1
24

1
8

1
24

1
6

1
8

1
4

1
12

1
6

The input τ = {〈1 : (1, 1
2
)〉, 〈2 : (1, 1

3
)〉, 〈3 : ((1, 1

2
), (2, 1

2
))〉}

in the value model defines eight possible worlds:
W 3 1, 3 2, 3 3, 3 1, 2, 3 1, 3, 3 2, 3, 3 1, 2, 3, 3

Pr(W ) 1
6

1
6

1
12

1
6

1
12

1
6

1
12

1
12

Consider the tuple model example from above and denote
the eight possible worlds (from left to right) as W1, . . . , W8.
It’s easy to see that g3(W ) = 1 for W ∈ {W4,W6,W7},
g3(W ) = 2 for W ∈ {W8} and g3(W ) = 0 on the rest.
Thus, the frequency random variable g3 of item 3 is g3 =
{(0, 1

3
), (1, 1

2
), (2, 1

6
)} with respect to W in this example.

Meanwhile, it’s also easy to see g3 = {(1, 1
2
), (2, 1

2
)} over

W in the value model example from above.

Definition 3 A B-bucket representation partitions domain
[n] into B non-overlapping consecutive buckets (sk, ek) for
k ∈ [1, B], where s1 = 1, eB = n and sk+1 = ek + 1. Fre-
quencies within each bucket bk are approximated by a single

representative b̂k and we represent it as bk = (sk, ek, b̂k).

The B-bucket histogram achieving the minimal SSE error
for approximating a deterministic data distribution is known
as the V-optimal histogram [14]. It can be found using a dy-
namic programming formulation in O(Bn2) time [15], where
n is the domain size of the underlying data distribution. We
denote this method from [15] as the OptVHist method.

To extend histogram definitions to probabilistic data, we
first consider a single possible world W ∈ W for a prob-
abilistic data set D, where W is a deterministic data set.
Hence, the frequency vector of W is given by G(W ) =
{g1(W ), ..., gn(W )} (recall that gi(W ) is item i’s frequency
in W ). Given a B-bucket representation for approximat-
ing G(W ), the SSE of a bucket bk in the world W is given

as: SSE(bk,W ) =
∑ek
j=sk

(gj(W ) − b̂k)2. The SSE of the

B-bucket representation in W is simply
∑B
k=1 SSE(bk,W ).

Cormode and Garofalakis have extended B-bucket his-
togram to probabilistic data [6,7] by asking for the minimal
expected SSE. Formally,

Definition 4 Given the (uncertain) frequency sequence of
random variables {g1, . . . , gn} as defined in (1), the problem
seeks to construct a B-bucket representation (typically B �
n) such that the expected SSE over all possible worlds is
minimized, i.e., the histogram with the value given by:

H(n,B) = min{EW

 B∑
k=1

ek∑
j=sk

(gj − b̂k)2

} (2)

In (2), the expectation of the sum of bucket errors is equal
to the sum of expectations of bucket errors [6, 7], i.e.,

EW

 B∑
k=1

ek∑
j=sk

(gj − b̂k)2

 =

B∑
k=1

EW

 ek∑
j=sk

(gj − b̂k)2

 . (3)

Consequently, the optimal histogram could be derived by
a dynamic programming formulation as follows:

H(i, j) = min
1≤`<i

H(`, j − 1) + min
b̂

(`+ 1, i, b̂), (4)

where H(i, j) represents the minimal error from the optimal

j-buckets histogram on interval [1, i]; minb̂(`+ 1, i, b̂) is the
minimal bucket error for the bucket spanning the interval

[`+ 1, i] using a single representative value b̂.
Previous work [6, 7] showed that the cost of the optimal

histogram is O(Bn2) and minb̂(`+1, i, b̂) could be computed
in constant time using several precomputed prefix-sum ar-
rays which we will describe in the following subsection. We
dub this state-of-art method from [7] the OptHist method.

2.2 Efficient computation of bucket error

Cormode and Garofalakis [7] show that, for SSE, the min-

imal error of a bucket b = (s, e, b̂) is achieved by setting the

representative b̂ = 1
e−s+1

EW
[∑e

i=s gi
]
. The corresponding

bucket error is given by:

SSE(s, e, b̂) =
e∑
i=s

EW [g2i ]−
1

e− s+ 1
EW [

e∑
i=s

gi]
2. (5)

In order to answer the minb̂(s, e, b̂) query in (4) for any

(s, e) values in constant time, prefix-sum arrays of EW [g2i ]
and EW [gi] in equation (5) are precomputed as follows (de-
tails can be found in [7]):

A[e] =
e∑
i=1

EW [g
2
i ] =

e∑
i=1

(VarW [gi] + EW [gi]
2
) B[e] =

e∑
i=1

EW [gi]

(6)

tuple model: EW [gi] =
∑
tj∈τ Pr[tj = i] and VarW [gi] =∑

tj∈τ Pr[tj = i](1− Pr[tj = i]).

value model: EW [gi] =
∑
vj∈V vj Pr[gi = vj ] and VarW [gi]

=
∑
vj∈V(vj − EW [gi])

2 Pr[gi = vj ]

Set A[0] = B[0] = 0, then the minimal SSE minb̂(s, e, b̂)
for both models is computed as:

A[e]−A[s− 1]−
(B[e]−B[s− 1])2

e− s+ 1
.

In both models, in addition to the O(Bn2) cost as shown
in last subsection, it also takes O(N) cost to compute the
A,B arrays (N = |τ |, number of probabilistic tuples).

3. APPROXIMATE HISTOGRAMS
The state-of-the-art OptHist method from [7] is clearly

not scalable, when given larger domain size.

A baseline method. A natural choice is to consider com-
puting a B-bucket histogram for the expected frequencies of
all items. Note that this histogram is not the same as the
desired histogram as defined in equation (2) and (3) since in
general E[f(X)] does not equal f(E[X]) for arbitrary func-
tion f and random variable X.

However, we can show in our histogram, the SSE error of

a bucket [s, e] using b̂ as its representative is:

SSE(s, e, b̂) = EW [

e∑
i=s

(gi − b̂)2] =

e∑
i=s

(EW [g2i ]− 2EW [gi ]̂b+ b̂2).

On the other hand, if we build a B-bucket histogram over
the expected frequencies of all items, the error of a bucket
[s, e] using b̄ as its representative is:

633



SSE(s, e, b̄) =

e∑
i=s

(EW [gi]−b̄)2 =

e∑
i=s

((EW [gi])
2−2EW [gi]b̄+b̄

2).

When using the same bucket configurations (i.e., the same

boundaries and b̂ = b̄ for every bucket), the two histograms
above differ by

∑e
j=s(EW [g2i ]−(EW [gi])

2) =
∑e
j=s VarW [gi]

on a bucket [s, e]. Hence, the overall errors of the two his-
tograms differ by

∑
i∈[n] VarW [gi] which is a constant. Given

this and computing the expected frequencies of all items can
be done in O(N) time, computing the optimal B-bucket his-
togram for them (now a deterministic frequency vector) still
requires the OptVHist method from [15], taking O(Bn2)
for a domain of size n, which still suffers the same scalabil-
ity issue.

A natural choice is then to use an approximation for the
B-bucket histogram on expected frequencies (essentially a
V-optimal histogram), as an approximation for our histogram.
The best approximation for a V-optimal histogram is an
(1+ε)-approximation [23] (in fact, to the best of our knowl-
edge, it is the only method with theoretical bound on ap-
proximation quality). But when using approximations, one
cannot guarantee that the same bucket configurations will
yield the same approximation bound with respect to both
histograms. So its theoretical guarantee is no longer valid
with respect to our histogram. Nevertheless, it is worth
comparing to this approach as a baseline method, which is
denoted as the EF-Histogram method.

3.1 The Pmerge method
Hence, we search for novel approximations that can pro-

vide error guarantees on the approximation quality and also
offer quality-efficiency tradeoff, for the histograms from [6,7]
as defined in (2). To that end, we propose a constant approx-
imation scheme, Pmerge, by leveraging a “partition-merge”
principle. It has a partition phase and a merge phase.

Partition. The partition phase partitions the domain [n]
intom equally-sized sub-domains, [s1, e1] , . . . , [sm, em] where
s1 = 1, em = n and sk+1 = ek + 1. For the kth sub-
domain [sk, ek], we compute the A,B arrays on this domain
as Ak, Bk for k ∈ [1,m]. Ak and Bk are computed using
[sk, ek] as an input domain and equation (6) for the value
and the tuple models respectively,

Next, for each sub-domain [sk, ek] (k ∈ [1,m]), we apply
the OptHist method from [7] (as reviewed in Section 2.1)
over the Ak, Bk arrays to find the local optimal B-buckets
histogram for the kth sub-domain. The partition phase pro-
duces m local optimal B-bucket histograms, which lead to
mB buckets in total.

Merge. The goal of the merge phase is to merge the mB
buckets from the partition phase into optimal B buckets in
terms of the SSE error using one merging step. To solve this

problem, naively, we can view an input bucket b = (s, e, b̂)
as having (e − s + 1) items with identical frequency value

b̂. Then, our problem reduces to precisely constructing an
V-optimal histogram instance [15]. But the cost will be

O(B(
∑mB
i=1(ei − si + 1))2) using the OptVHist method,

which is simply O(Bn2).

A critical observation is that a bucket b = (s, e, b̂) can also

be viewed as a single weighted frequency b̂ with a weight of
(e − s + 1), such that we can effectively reduce the domain
size while maintaining the same semantics. Formally, let
Y = mB. A weighted frequency vector {f1, f2, . . . , fY }

1
2
3

1 16

w=2

4

bucket sub-domain boundary

: frequency in W1 : frequency in W2

2 3

w=2

0
domain value

1
2
3

0

7

: weighted frequency

w=3
w=1

w=1
w=3 w=3

w=1

domain value

5 6 8 9 10 11 12 13 14 15

partition phase

merge phase

1 1642 3 75 6 8 9 10 11 12 13 14 15

frequency

Figure 1: An example of Pmerge: n = 16,m = 4, B = 2.

on an ordered domain [Y ] has a weight wi for each fi. It
implies wi items with a frequency fi at i. The weighted
version of the V-optimal histogram seeks to construct a B-
bucket histogram such that the SSE between these buckets
and the input weighted frequency vector is minimized. This
problem is the same as finding:

Hw(Y,B) = min{
B∑
k=1

ek∑
j=sk

wj(fj − b̂k)2},

where s1 = 1 and eB = Y . The optimal B buckets can
be derived by a similar dynamic programming formulation
as that shown in equation (4). The main challenge is to

compute the optimal one-bucket minb̂(s, e, b̂) for any interval
[s, e] now in the weighted case. We show in Appendix A how
to do this efficiently using several prefix sum arrays.

Thus the weighted optimal B-bucket histogram can be
derived by filling a Y × B matrix, and each cell (i, j) takes
O(Y ) time. Thus, the weighted B-bucket histogram is com-
puted in O(BY 2) = O(m2B3) time, which is much less than
O(Bn2) since both B and m are much smaller than n.

An example. An example of Pmerge is given in Figure 1,
where n = 16, B = 2, and m = 4. To ensure clarity, we show
only two possible worlds W1 (blue circle) and W2 (green tri-
angle) from the set of possible worlds W of this database.
In the partition phase, each sub-domain of size 4 is approx-
imated by 2 local optimal buckets. In total, the partition
phase has produced 8 buckets in Figure 1. In the merge
phase, each input bucket maps to a weighted frequency as
discussed above. For example, the first bucket covering fre-
quencies in [1, 2] represents a weighted frequency of 1.8 with
weight 2. These 8 buckets were merged into two buckets as
the final output.

Complexity analysis. In the partition phase, it takes lin-
ear time to compute the corresponding Ak, Bk arrays within
each sub-domain [sk, ek] for k ∈ [1,m], following the results
from [7]. The size of sub-domain [sk, ek] is roughly n/m for
k ∈ [1,m]. It takes O(Bn2/m2) to run the OptHist method
on Ak, Bk to find the kth local optimal B-bucket histogram.
Next, the merge phase takes only O(B3m2) time as analyzed
above. Hence,

Lemma 1 Pmerge takes O(N +Bn2/m+B3m2).

3.2 Approximation quality
In order to evaluate the absolute value of the histogram

approximation error, we adopt the `2 distance (square root
of SSE error) between the data distribution and the his-
togram synopsis. Next, we show the approximation quality
of Pmerge compared to the optimal B-bucket histogram
found by OptHist in terms of the `2 distance.
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Theorem 1 Let ‖H(n,B)‖2 and ‖HPmerge(n,B)‖2 be the
`2 norm of the SSE error of B-bucket histogram produced by
OptHist and Pmerge respectively on domain [n]. Then,
‖HPmerge(n,B)‖2 < 3.17 · ‖H(n,B)‖2.

3.3 Recursive Pmerge
Note that the problem size of mB in the merge phase

of Pmerge may still be too large to be handled efficiently
by a DP method. Fortunately, we can further improve the
efficiency by doing “recursive merging” as follows.

First of all, the partition phase will partition the input
domain into m` equal-sized sub-domains, instead of only m
sub-domains, for some integer ` (user specified).

The merge phase now recursively merges the m`B buckets
from the partition phase into B buckets using ` iterations.
Each iteration reduce the number of input buckets by a fac-
tor of m by applying a sequence of merging steps. Specif-
ically, each merging step merges mB consecutive buckets
(from left to right) from the current iteration into B buck-
ets in the next iteration, which is done using the same merg-
ing step from the standard Pmerge method (i.e., using the
weighted B-bucket histogram idea). We dub the recursive
Pmerge methods RPmerge.

Extending the analysis from Lemma 1 and Theorem 1
gives the following result, w.r.t the `2 norm of the SSE:

Theorem 2 Using O(N + B n2

m`
+ B3∑`

i=1m
(i+1)) time,

the RPmerge method gives a 3.17` approximation of the
optimal B-bucket histogram found by OptHist.

It is important to note that the approximation bounds in
both Theorems 1 and 2 reflect the worst-case analysis. The
extreme cases leading to the worst-case bounds are almost
impossible in real data sets. In practice, Pmerge and its
recursive version RPmerge always provide (very) close to
optimal approximation quality (much better than what these
worst-case bounds indicate), as shown in our experiments.

4. DISTRIBUTED AND PARALLEL Pmerge
Pmerge allows efficient execution in a distributed and

parallel framework. In the partition phase, each sub-domain
can be handled independently in parallel.

The recursive Pmerge offers even more venues for paral-
lelism. In this case, its merge phase can also run in a dis-
tributed and parallel fashion, since each merging step from
every iteration can be processed independently.

Next, we’ll address the challenge on computing the local
Ak, Bk arrays efficiently for each sub-domain [sk, ek] in a dis-
tributed and parallel setting . For both models, we assume
that the underlying probabilistic database has been split into
β chunks {τ1, . . . , τβ} and stored in a distributed file system
(DFS). It is important to note that the input data is not
necessarily sorted by the values of the items when stored
into chunks in a DFS.

4.1 The partition phase in the value model
Recall that in the value model, fi is a pdf describing item

i’s possible frequency values and their associated probabili-
ties. We first show that:

Lemma 2 In the value model, Pr[gi = v] = Pr[fi = v] for
any frequency value v ∈ V (V is the domain of all possible
frequency values).

Lemma 2 and equation (6) imply that:

Lemma 3 The A,B arrays for the value model also equal:
A[j] =

∑j
i=1 E[f2

i ], B[j] =
∑j
i=1 E[fi].

Without loss of generality, we assume β “data nodes (aka
processes)” to consume the input data chunks, and also m
“aggregate nodes/processes” to produce the local optimal
B-bucket histograms. Each data chunk is processed by one
data node in parallel. Each data node produces m parti-
tions, each of which corresponds to a sub-domain of size
(roughly) n/m, using a partition function h : [n] → [m],
h(i) = (di/dn/mee).

The `th data node processing chunk τ` reads in tuples in τ`
in a streaming fashion. For each incoming tuple (i, fi) found
in τ`, it computes two values (E[fi],E[f2

i ]). It then writes a
key-value pair (i, (E[fi],E[f2

i ])) to the h(i)th partition. The
h(i)th aggregate node will collect the h(i)th partitions from
all β data nodes, the union of which forms the h(i)th sub-
domain of the entire data.

Thus, the kth (k ∈ [1,m]) aggregate node will have all
the key-value pairs (i, (E[fi],E[f2

i ])) for all i ∈ [sk, ek] in the
kth sub-domain, if item i exists in the database; otherwise
it simply produces a (i, (0, 0)) pair for such i ∈ [sk, ek].

That said, the kth aggregate node can easily compute the
Ak, Bk arrays for the kth sub-domain using Lemma 3. It
then uses the OptHist method onAk, Bk to produce the kth
local optimal B-bucket histogram. Clearly, all m aggregate
nodes can run independently in parallel.

4.2 The partition phase in the tuple model
In the tuple model, the tuples needed to compute VarW [gi]

and EW [gi] for each item i are distributed over β tuple
chunks. Hence, we rewrite equation (6) for computing A,B
arrays in the tuple model as follows:

Lemma 4 The A,B arrays in the tuple model can also be
computed as:

A[j] =

j∑
i=1

(

β∑
`=1

VarW,`[gi] + (

β∑
`=1

EW,`[gi])
2
) B[j] =

j∑
i=1

β∑
`=1

EW,`[gi],

where VarW,`[gi] =
∑
t∈τ` Pr[t = i](1 − Pr[t = i]) and

EW,`[gi] =
∑
t∈τ` Pr[t = i].

A similar procedure as that described for the value model
could then be applied. The difference is that the `th data
node processing chunk τ` emits a key-value pair (i, (EW,`[gi],
VarW,`[gi])) instead, for each distinct item i from the union
of all possible choices of all tuples in τ`. Thus, the kth
aggregate node will reconstruct Ak, Bk arrays according to
Lemma (4) and then use the OptHist method on Ak, Bk
arrays to produce the local optimal B-bucket histogram for
the kth sub-domain in the partition phase.

4.3 Recursive Pmerge and other remarks
For RPmerge, we carry out the partition phase for each

model using the method from Section 4.1 and Section 4.2
respectively. In the merge phase, we can easily invoke mul-
tiple independent nodes/processes to run all merging steps
in one iteration in parallel. In the following, we denote the
distributed and parallel Pmerge and RPmerge methods as
parallel-Pmerge and parallel-RPmerge respectively.

5. PARALLEL-Pmerge WITH SYNOPSIS
A paramount concern in distributed computation is the

communication cost. The parallel-Pmerge method may in-
cur high communication cost for large domain size.
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This cost is O(n) in the value model. Given a set τ of
tuples in a value model database with size N = |τ |; τ is
stored in β distributed chunks in a DFS. Each tuple will
produce a key-value pair to be emitted by one of the data
nodes. In the worst case N = n (one tuple for each item of
the domain), thus O(n) cost. On the other hand, this cost
is O(βn) in the tuple mode. The worst case is when possible
choices from all tuples in every distributed tuple chunk have
covered all distinct items from the domain [n].

There are only O(Bm) bytes communicated in the merge
phase of parallel-Pmerge for both models, where every ag-
gregate node sends B buckets to a single node for merging.
Thus, the communication cost of parallel-Pmerge is domi-
nated by the partition phase.

We present novel synopsis to address this issue. The key
idea is to approximate the Ak, Bk arrays at the kth aggre-

gate node (k ∈ [1,m]) with unbiased estimators Âk, B̂k con-
structed by either samples or sketches sent from the data
nodes. Since parallel-Pmerge and parallel-RPmerge share
the same partition phase, hence, the analysis above and the
synopsis methods below apply to both methods.

5.1 Sampling methods for the value model
The VS method. One way of interpreting E[f2

i ] and E[fi]
is treating each of them as an count of item i in the arrays
Ak and Bk respectively. Then Ak[j] and Bk[j] in Lemma
3 can be interpreted as the rank of j, i.e. the number of
appearance of items from [sk, ek] that are less than or equal
to j in array Ak, Bk respectively. Using this view, we show

how to construct an estimator B̂k[j] with the value model

sampling method VS. The construction and results of Âk[j]
are similar.

Considering the `th data node that processes the `th tuple
chunk τ`, we first define T1(i, `) = E[f2

i ] and T2(i, `) = E[fi]
respectively if (i, fi) ∈ τ`; otherwise we assign them as 0. We
then define Ak,`, Bk,` as follows, for every k ∈ [1,m]:

Ak,`[j] =

j∑
i=sk

T1(i, `), Bk,`[j] =

j∑
i=sk

T2(i, `), for any j ∈ [sk, ek].

Using τ`, the `th data node can easily compute Ak,`, Bk,`
locally for all k and j values. It’s easy to get the following
results at the kth aggregate node for any j ∈ [sk, ek]:

Ak[j] =

β∑
`=1

Ak,`[j], Bk[j] =

β∑
`=1

Bk,`[j], for any k ∈ [1,m]. (7)

We view Bk,`[j] as the local rank of j from τ` at the `th
data node. By (7), Bk[j] is simply the global rank of j that
equals the sum of all local ranks from β nodes. We also let
Mk =

∑ek
j=sk

E[fj ].

For every tuple (i, fi) from τ`, data node ` unfolds (con-
ceptually) E[fi] copies of i, and samples each i independently
with probability p = min{Θ(

√
β/εMk),Θ(1/ε2Mk)}. If a

copy of i is sampled, it is added to a sample set Sk,` where
k = h(i), using the hash function in Section 4.1. If ci copies
of i are sampled, we add (i, 1), . . . , (i, ci) into Sk,`. The pairs
of values in Sk,` are sorted by the item values from the first
term, and ties are broken by the second term. Data node `
sends Sk,` to the kth aggregate node for k ∈ [1,m].

We define the rank of a pair (i, x) in Sk,` as the number
of pairs ahead of it in Sk,`, denoted as r((i, x)). For any
j ∈ [sk, ek] and ` ∈ [1, β], aggregate node k computes an

estimator B̂k,`[j] for the local rank Bk,`[j] as: B̂k,`[j] =
r((j, cj))/p+ 1/p, if item j is present in Sk,`.

If an item j ∈ [sk, ek] is not in Sk,`, let y be the predecessor

of j in Sk,` in terms of item values, then B̂k,`[j] = B̂k,`[y] +

1/p. If no predecessor exists, then B̂k,`[j] = 0.
It then estimates the global rank Bk[j] for j ∈ [sk, ek] as:

B̂k[j] =

β∑
`=1

B̂k,`[j]. (8)

Lemma 5 B̂k[j] in (8) is an unbiased estimator of Bk[j]

and Var[B̂k[e]] is O((εMk)2).

The communication cost is
∑
`,j p = O(min{

√
β/ε, 1/ε2})

for ` ∈ [1, β] and j ∈ [sk, ek] for aggregate node k in the
worst case. Hence, the total communication cost in the par-
tition phase of Pmerge with VS is O(min{m

√
β/ε,m/ε2}).

Note that {M1, . . . ,Mm} can be easily precomputed inO(mβ)
communication cost.

5.2 Sketching methods for the tuple model
The TS (tuple model sketching) method. Observe that
we can rewrite equations in Lemma 4 to get:

Ak[j] =

β∑
`=1

j∑
i=sk

VarW,`[gi] +

j∑
i=sk

(

β∑
`=1

EW,`[gi])
2

Bk[j] =

β∑
`=1

j∑
i=sk

EW,`[gi]. (9)

We can view
∑j
i=sk

VarW,`[gi] and
∑j
i=sk

EW,`[gi] as a
local rank of j in a separate local array computed from τ`.
Similarly, estimation of the global rank, i.e., the first term of
Ak[j] and Bk[j] in (9), can be addressed by the VS method.

The challenge is to approximate
∑j
i=sk

(EW [gi])
2, the sec-

ond term of Ak[j] in (9). It is the second frequency moment
(F2) of {EW [gsk ], . . . ,EW [gj ]}. Given that each EW [gi] is a
distributed sum and j varies over [sk, ek], we actually need
a distributed method to answer a dynamic F2 (energy) range
query approximately on a sub-domain [sk, ek].

The key idea is to build AMS sketches [17] for a set of
intervals from a carefully constructed binary decomposition
on each sub-domain locally at every data node.

For a sub-domain [sk, ek] at the kth aggregate node, let
M ′′k =

∑ek
i=sk

(EW [gi])
2. The leaf-level of the binary de-

composition partitions [sk, ek] into 1/ε intervals, where each
interval’s F2 equals εM ′′k . An index-level (recursively) con-
catenates every two consecutive intervals from the level be-
low to form a new interval (thus, the height of this binary
decomposition is O(logd 1

ε
e). Figure 2(a) illustrates this idea.

s e

F2 = εM ′′
k

F2 = 2εM ′′
k

F2 = M ′′
k

EW [gαk,1 ]
EW [gsk ] EW [gek ] EW,ℓ[gsk ] EW,ℓ[gek ]· · · · · ·

(a) binary decomposition (b) local Q-AMS

F2 = εM ′′
k

EW [gα
k, 1

ε
−1

] EW,ℓ[gαk,1 ]EW,ℓ[gα
k, 1

ε
−1

]

F2 = 2εM ′′
k

· · ·
· · ·
· · ·

AMS

· · ·
· · ·
· · ·
AMS

AMS

Figure 2: Binary decomposition and local Q-AMS.

Once the ( 1
ε
− 1) partition boundaries {αk,1, . . . , αk, 1

ε
−1}

at the leaf-level were found, aggregate node k sends them
to all β data nodes. Each data node builds a set of AMS
sketches, one for each interval from the binary decomposi-
tion (of all levels), over its local data. We denote it as the
local Q-AMS sketch (Queryable-AMS).
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In other words, data node ` builds these AMS sketches
using {EW,`[gsk ], . . . ,EW,`[gek ]} as shown in Figure 2(b).
Then data node ` sends its Q-AMS sketch for [sk, ek] to the
kth aggregate node, which combines β local Q-AMS sketches
into a global Q-AMS sketch for the kth sub-domain [sk, ek],
leveraging on the linearly-mergeable property of each indi-
vidual AMS sketch [12, 17]. The global Q-AMS sketch is
equivalent to a Q-AMS sketch that is built from {EW [gsk ], . . . ,

EW [gek ]} directly; recall that EW [gi] =
∑β
`=1 EW,`[gi].

For a query range (s, e), sk ≤ s < e ≤ ek, we find the
intervals that form the canonical cover of (s, e) in the global
Q-AMS sketch, and approximate (EW [gs])

2+· · ·+(EW [ge])
2

by the summation of the F2 approximations (from the AMS
sketches) of these intervals. If (s, e) is not properly aligned
with an interval at the leaf-level of an Q-AMS sketch, we
snap s and/or e to the nearest interval end point.

The error from the snapping operation in the leaf-level is
at most O(εM ′′k ). By the property of the AMS sketch [17],
the approximation error of any AMS sketch in the global Q-
AMS sketch is at most O(εF2(I)), with at least probability
(1− δ), for an interval I covered by that AMS sketch. Also
F2(I) ≤ M ′′k for any I in the global Q-AMS sketch. Fur-
thermore, there are at most O(log 1

ε
) intervals in a canon-

ical cover since the height of the tree in Q-AMS is logd 1
ε
e.

Hence, the approximation error for any range F2 query in
the global Q-AMS sketch is O(εM ′′k log 1

ε
) with probability

at least (1 − δ), for ε, δ ∈ (0, 1) used in the construction of
the Q-AMS sketch. Finally, the size of an AMS sketch is
O( 1

ε2
log 1

δ
) [12,17]. Thus, we can show that:

Lemma 6 Given the partition boundaries {αk,1, . . . , αk, 1
ε
−1}

for a sub-domain [sk, ek], for any s, e such that sk ≤ s <
e ≤ ek, Q-AMS can approximate (EW [gs])

2 +(EW [gs+1])2 +
· · ·+(EW [ge])

2 within an additive error of O(εM ′′k log 1
ε
) with

probability ≥ (1− δ) using space of O( 1
ε3

log 1
δ
).

Communication cost and partition boundaries. Each
aggregate node needs to send ( 1

ε
−1) values per sub-domain

to all β data nodes, and there are m sub-domains in total. So
the communication cost of this step is O(mβ/ε). Then, each
data node needs to send out m local Q-AMS sketches, one
for each sub-domain. The communication cost of this step
is O(mβ

ε3
log 1

δ
). Hence, the total communication is O(mβ

ε3

log 1
δ
), which caters for the worst-case analysis.

But the above method and analysis depend on the calcu-
lation of the partition boundaries {αk,1, . . . , αk, 1

ε
−1} for any

sub-domain [sk, ek], for k ∈ [1,m]. To calculate this exactly
we need {EW [gsk ], . . . ,EW [gek ]} at the kth aggregate node,
which obviously are not available (unless using O(nβ) total
communication for β data nodes for all sub-domains, which
defeats our purpose). Fortunately, given that VS can esti-
mate each Bk[j] with an ε error efficiently, each EW [gi] can

be estimated as (B̂k[i]− B̂k[i− 1]) By (9).

6. EXPERIMENTS
We implemented all methods in Java. We test OptHist,

EF-Histogram, Pmerge and RPmerge methods in central-
ized environment without parallelism, and parallel-Pmerge
and parallel-RPmerge methods (with and without synop-
sis) in distributed and parallel settings. The centralized ex-
periments were executed over a Linux machine running a
single Intel i7 3.2GHz cpu, with 6GB of memory and 1TB
disk space. We then used MapReduce as the distributed and

parallel programming framework and tested all methods in
a Hadoop cluster with 17 machines (of the above configu-
ration) running Hadoop 1.0.3. The default HDFS (Hadoop
distributed file system) chunk size is 64MB.

Datasets. We executed our experiments using the World-
Cup data set and the SAMOS data set. The WorldCup data
set is the access logs of 92 days from the 1998 World Cup
servers, composed of 1.35 billion records. Each record con-
sists of client id, file type and time of access etc. We choose
the client id as the item domain, which has a maximum pos-
sible domain size of 2, 769, 184. We vary the domain size of
client ids from 10, 000 up to 1, 000, 000. Records in the entire
access log are divided into continuous but disjoint groups,
in terms of access time. We generate a discrete frequency
distribution pdf for items within each grouping interval and
assign the pdf to a tuple in the tuple model. For the value
model, we derive a discrete pdf for each client id based on
its frequency distribution in the whole log with respect to 13
distinct requested file types and assign the pdf to the tuple
with that client id in the value model. The SAMOS data set
is composed of 11.8 million records of various atmospheric
measurements from a research vessel and we care about the
temperature field, which has a domain size of about 10,000
(by counting two digits after the decimal point of a fraction
reading). In a similar way, we form the tuple model and
value model data on the SAMOS data.

Setup. The default data set is WorldCup. To accommo-
date the limited scalability of OptHist, we initially vary the
value of n from 10, 000 up to 200, 000 and test the effects of
different parameters. The default values of parameters are
B = 400 and n = 100, 000. For RPmerge, the recursion
depth is ` = 2. We set m = 16 and m = 6 as the default
values for Pmerge and RPmerge respectively. We then ex-
plore the scalability of our methods, up to a domain size of
n = 1, 000, 000. The running time of all methods are only
linearly dependent on N , number of tuples in a database.
Hence, we did not show the effect of N ; all reported running
time are already start-to-end wall-clock time.

In each experiment, unless otherwise specified, we vary
the value of one parameter, while using the default values of
other parameters. The approximation ratios of our approx-
imate methods were calculated with respect to the optimal
B-buckets histogram produced by OptHist [6, 7].

6.1 Centralized environment
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(a) m vs running time.
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(b) m vs approx. ratio.

Figure 4: Vary m on the tuple model.

Effect of m. Figure 4 shows the running time and approx-
imation ratio when we vary m from 4 to 20 on the tuple
model data sets. Recall that Pmerge will produce m sub-
domains, while RPmerge will produce m` sub-domains, in
the partition phase. Hence, RPmerge gives the same num-
ber of sub-domains using a (much) smaller m value. For
both methods, a larger m value will reduce the size of each
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(a) Tuple model: running time.
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(b) Value model: running time.
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(c) Tuple model: approx. ratio.
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(d) Value model: approx. ratio.

Figure 5: Approximation ratio and running time: vary n.
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(a) Tuple model: running time.
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(b) Value model: running time.
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(c) Tuple model: approx. ratio.
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Figure 6: Approximation ratio and running time: vary B.

sub-domain, hence, reducing the runtime of the OptHist
method on each sub-domain and the overall cost of the par-
tition phase. But a larger m value increases the cost of
the merge phase. As a result, we expect to see a sweet
point of the overall running time across all m values. Figure
4(a) reflects exactly this trend and the same trend holds on
the value model data set as well. They consistently show
that m = 16 and m = 6 provide the best running time for
Pmerge and RPmerge respectively. Note that this sweet
point can be analytically analyzed, by taking derivative of
the cost function (partition phase + merge phase) with re-
spect to m.

Figure 4(b) shows their approximation ratios on the tuple
model data set. The approximation quality of both meth-
ods fluctuates slightly with respect to m; but they both pro-
duce B-buckets histograms of extremely high quality with
approximation ratio very close to 1. The quality is much bet-
ter than their worst-case theoretical bounds, as indicated by
Theorems 1 and 2 respectively.

The results of varying m from the value model are very
similarly, and have been omitted for brevity. Also, we have
investigated the results of varying the recursive depth ` from
1 to 3. They consistently show that ` = 2 achieves a nice
balance between running time and approximation quality.
For brevity, we ommited the detailed results.

Effect of n. Figure 5 shows the results with respect to n on
both value and tuple models. In both models, the running
time of OptHist increases quadratically with respect to n.
In contrast, both Pmerge and RPmerge are much more
scalable, and have outperformed OptHist by at least one
to two orders of magnitude in all cases. For example, in
Figure 5(b), when n = 100, 000, OptHist took nearly 14
hours while RPmerge took only 861 seconds. RPmerge
further improves the running time of Pmerge by about 2-3
times and is the most efficient method.

Meanwhile, both Pmerge and RPmerge achieve close
to 1 approximation ratios across all n values in Figures 5(c)
and Figure 5(d). The approximation quality gets better (ap-
proaching optimal) as n increases on both models.

Effect of B. We vary the number of buckets from 100 to
800 in Figure 6. Clearly, RPmerge outperforms OptHist
by two orders of magnitude in running time in both models,

as see in Figures 6(a) and 6(b). Figures 6(c) and 6(d) show
the approximation ratios in each model respectively. The
approximation ratio of both Pmerge and RPmerge slightly
increases when B increases on both models. Nevertheless,
the quality of both methods are still excellent, remaining
very close to the optimal results in all cases.
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Figure 7: Comparison against the baseline method.

Comparison with the baseline. Lastly, we compare
the running time and approximation ratios of our meth-
ods against the baseline EF-Histogram method (with ε =
0.1, ε = 0.05 and ε = 0.01 respectively) on two data sets.
Our methods used their default parameter values on the
WorldCup data set. For the SAMOS data set, we set n =
10, 000 and B = 100. Clearly, small ε values does help im-
prove the approximation quality of EF-Histogram as shown
in Figure 7(b) and Figure 7(d). But our methods have pro-
vided almost the same approximation quality on both data
sets, while offering worst-case bounds in theory as well. Note
that EF-Histogram only provides the (1 + ε) approximation
bound with respect to the B-buckets histogram on expected
frequencies, but not on the probabilistic histograms.

Meanwhile, the running time of EF-Histogram increases
significantly (it is actually quadratic to the inverse of ε value,
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(b) Value model: vary n.
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(c) Tuple model: vary B.
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(d) Value model: vary B.

Figure 8: Scalability of the parallel approximate methods.

i.e., 1/ε2), especially on the much larger WorldCup data set.
In all cases our best centralized method, RPmerge, has sig-
nificantly outperformed the EF-Histogram as shown in Fig-
ure 7(a) and Figure 7(c). Furthermore, the distributed and
parallel fashion of Pmerge and RPmerge further improves
the efficiency of these methods, as shown next.
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(a) Tuple model.
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Figure 9: Time: vary number of slave nodes.

6.2 Distributed and parallel setting
Effect of size of the cluster. Figure 9 shows the run-
ning time of different methods when we vary the number
of slave nodes in the cluster from 4 to 16. For reference,
we have included the running time of centralized Pmerge
and RPmerge. We can see a (nearly) linear dependency
between the running time and the number of slave nodes
for both parallel-Pmerge and parallel-RPmerge methods.
The speed up for both methods is not as much as the increas-
ing factor of the number of slave nodes used. The reason is
that Hadoop always includes some extra overhead such as
job launching and tasks shuffling and IO cost of intermediate
HDFS files, which reduces the overall gain from parallelism.

Scalability. Next, we investigate the scalability of RP-
merge (the best centralized method), parallel-Pmerge and
parallel-RPmerge on very large probabilistic data sets. We
used all 16 slave nodes in the cluster, and varied either the
values of n from 200,000 to 1000,000 when B = 400, or the
values of B from 100 to 800 when n = 600, 000. We omit
OptHist and Pmerge methods in this study, since they are
too expensive compared to these methods.

Figures 8(a) and 8(b) show that with recursive merging
RPmerge can even outperform parallel-Pmerge as n in-
creases. But clearly parallel-RPmerge is the best method
and improves the running time of RPmerge by 8 times
on the value model and 4 times on the tuple model when
n = 1000, 000. It becomes an order of magnitude faster
than parallel-Pmerge in both models when n increases.

Figures 8(c) and 8(d) show the running time when we
vary B and fix n = 600, 000. Running time of all methods
increase with larger B values. This is because large B values
increase the computation cost of the merging step, especially
for recursive Pmerge. Nevertheless, parallel-RPmerge sig-

nificantly outperforms both parallel-Pmerge and RPmerge
in all cases on both models.

6.3 Distributed and parallel synopsis
Lastly, we study the communication saving and approx-

imation quality of parallel-Pmerge and parallel-RPmerge
with synopsis. The default values are n = 600, 000, B = 400
and ε = 0.002 for VS and ε = 0.1 for TS. We have omit-
ted the results for the running time of Parallel-Pmerge
and Parallel-RPmerge with synopsis, since they are very
close to that of Parallel-Pmerge and Parallel-RPmerge re-
spectively (since the running time of all these methods are
dominated by solving the DP instances in the partition and
merging phases).
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Figure 10: Effects of using synopsis.

Comparing effects of synopsis in both models. Here
we use parallel-PmergeS (parallel-RPmergeS) to denote a
parallel-Pmerge (parallel-RPmerge) method with a synop-
sis in either model. In value model, the synopsis is VS; and
in tuple model, the synopsis is TS.

Figure 10(a) shows that parallel-PmergeS outperforms
parallel-Pmerge and parallel-RPmerge by more than an
order of magnitude in communication cost for both mod-
els. Parallel-RPmergeS has much higher communication
cost than parallel-PmergeS since the sampling cost in the
partition phase has increased by an order of m using m2 sub-
domains (when ` = 2). Nevertheless, it still saves about 2-3
times of communication cost compared to that of parallel-
Pmerge and parallel-RPmerge for both models.

Figure 10(b) shows that parallel-PmergeS and parallel-
RPmergeS have excellent approximation quality on the value
model (very close to optimal histograms). They give less op-
timal approximations in the tuple model, since Q-AMS in
the TS method has higher variances in its estimated A,B
arrays in the tuple model, compared to the estimations on
A,B arrays given by VS in the value model.

Remarks. The communication cost of all of our synopsis
methods are independent of n, whereas the communication
cost of both parallel-Pmerge and parallel-RPmerge are lin-
early dependent on n, as shown from our analysis in Section
5. This means the synopsis methods introduce even more
savings when domain size increases.

639



7. RELATED WORK
We have reviewed the most relevant related work in Sec-

tion 2. That said, extensive efforts were devoted to con-
structing histograms in deterministic data, motivated by the
early work in [14–16,19]. An extensive survey for histograms
on deterministic data is in [13]. There are also numerous
efforts on modeling, querying, and mining uncertain data;
see [1, 3, 21, 24]. A good histogram for large probabilistic
data is very useful for many such operations, e.g, finding
frequent items, patterns, and itemsets [1, 3, 24,26].

However, little is known about histograms over proba-
bilistic data till three recent studies [5–7]. Cormode and
Garofalakis have extended the bucket-based histogram and
the wavelet histogram to probabilistic data by seeking to
minimize the expectation of bucket errors over all possible
worlds [6, 7]. The details of which can be found in Section
2. Cormode and Deligiannakis then extend the probabilistic
histogram definition to allowing bucket with a pdf repre-
sentation rather than a single constant value [5]. A main
limitation of these studies is the lack of scalability, when the
domain size of the probabilistic data increases.

Allowing some approximations in histogram construction
is also an important subject on deterministic data, e.g.,
[11, 22, 23] and many others. One possible choice is to run
these methods on expected frequencies of all items, and sim-
ply use the output as an approximation to our histogram.
But the theoretical approximation bound with respect to the
deterministic data (in our case, the expected frequencies of
all items) does not carry over to probabilistic histogram def-
inition with respect to n random variables (frequency distri-
butions of every item i). To the best of our knowledge, the
(1+ε) approximation from [23] is the best method with theo-
retical guarantees for histograms over deterministic data (in
fact, to the best of our knowledge, other methods are mostly
heuristic-based approaches). We did explore this approach
as a baseline method in our study.

8. CONCLUSION
This paper designed novel approximation methods for con-

structing optimal histograms on large probabilistic data.
Our approximations run much faster and have much bet-
ter scalability than the state-of-the-art. The quality of the
approximate histograms are almost as good as the optimal
histograms in practice. We also introduced novel techniques
to extend our methods to distributed and parallel settings,
which further improve the scalability. Interesting future
work include but not limited to how to extend our study to
probabilistic histograms with pdf bucket representatives [5]
and how to handle histograms of other error metrics.
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Appendix A: The Weighted Histogram
Fast computation of bucket Error. We can show that

in the weighted case the minb̂(s, e, b̂) is achieved by setting

b̂ =
∑e
k=s wkfk∑e
k=s

wk
and the corresponding bucket error for the

bucket b is as follows: SSE(b, b̂) =
∑e
j=s wj(f

2
j − b̂2). The

prefix sum arrays need to be precomputed are:

P [e] =
e∑
i=1

wjfj , PP [e] =
e∑
i=1

wjf
2
j , W [e] =

e∑
i=1

wj .

Given these arrays, minb̂(s, e, b̂) is computed as:

PP [e] − PP [s] −
(P [e] − P [s])2

W [e] − W [s]
.
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