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ABSTRACT
In this paper, we propose a novel supervised learning method,
Fast Flux Discriminant (FFD), for large-scale nonlinear clas-
sification. Compared with other existing methods, FFD has
unmatched advantages, as it attains the efficiency and in-
terpretability of linear models as well as the accuracy of
nonlinear models. It is also sparse and naturally handles
mixed data types. It works by decomposing the kernel den-
sity estimation in the entire feature space into selected low-
dimensional subspaces. Since there are many possible sub-
spaces, we propose a submodular optimization framework
for subspace selection. The selected subspace predictions are
then transformed to new features on which a linear model
can be learned. Besides, since the transformed features nat-
urally expect non-negative weights, we only require smooth
optimization even with the !1 regularization. Unlike other
nonlinear models such as kernel methods, the FFD model is
interpretable as it gives importance weights on the original
features. Its training and testing are also much faster than
traditional kernel models. We carry out extensive empiri-
cal studies on real-world datasets and show that the pro-
posed model achieves state-of-the-art classification results
with sparsity, interpretability, and exceptional scalability.
Our model can be learned in minutes on datasets with mil-
lions of samples, for which most existing nonlinear methods
will be prohibitively expensive in space and time.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining; J.3 [Computer Applications]: Life and
Medical Sciences
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1. INTRODUCTION
In supervised classification, there are several potentially

competing needs. For example in biomedical applications,
classifiers often need to be feature-sparse, in order to identify
leading risk factors for prevention and intervention of crit-
ical medical conditions. In addition, the training sets can
be very large, thus requiring good scalability, but the clas-
sifier should also be expressive enough to model nonlinear
feature interaction. Finally, and possibly most importantly,
the classifier must also achieve high accuracy. These require-
ments are by no means specific to biomedical applications.
In fact, they are representative for many machine learning
application domains. Although several methods excel at var-
ious aspects, to date none manages to capture all of them.

Linear classifiers [33] cover many of these needs: they can
be highly scalable [8], learn weights that are naturally in-
terpretable and, if paired with !1 regularization, can also be
feature-sparse [7, 29]. Because of these strengths, they are
a common choice for machine learning practitioners. How-
ever, linear classifiers fall short on at least two of the desired
requirements: they cannot learn nonlinear decision bound-
aries, which inherently limits their accuracy on difficult or
lower-dimensional datasets. Further, they cannot discover
the relevance of features that are beneficial only through
nonlinear interactions with each other.

Nonlinear classifiers can model such feature interactions
and are not limited by linear decision boundaries, but they
typically suffer from different limitations. For example, deep
neural nets [12] are highly nonlinear and scalable, but do
not naturally incorporate feature sparsity and the decisions
are hard to interpret. Similarly, tree ensembles, such as
Random Forests [4], share the same weaknesses. The kernel
trick [26] is a popular method to extend linear classifiers
to learn nonlinear decision boundaries, but it also removes
their natural interpretability and scalability.

To get the best out of both nonlinear methods (nonlin-
ear separability) and linear methods (high efficiency), a re-
cent trend in data mining and machine learning is to replace
heavy nonlinear machineries with simpler linear ones, and to
achieve high accuracy by introducing certain nonlinearity in
feature mapping. That is, they map the original input
data x ∈ RD to a feature vector φ(x) ∈ RM and then learn
a linear hyperplane wTφ(x), w ∈ RM [17, 22, 24, 30]. A lin-
ear classifier, trained on φ(x) ∈ RM instead of the“raw” fea-
tures x ∈ RD, can learn nonlinear decision boundaries in the
original input space while maintaining its high scalability.
Unfortunately, however, this approach does not also main-
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tain its interpretability and feature-sparseness. The classi-
fier weights can no longer be interpreted, which drastically
limits the usefulness of this approach for many applications
tied to the discovery of feature importance.

As our first contribution, we propose a novel algorithm,
which we refer to as Fast Flux Discriminant (FFD). FFD is
designed to combine all the strengths of linear and nonlin-
ear supervised learning. It maintains the scalability, feature-
sparsity and interpretability of linear classifiers, yet can learn
non-linear decision boundaries, discover pairwise feature in-
teractions and it matches the high accuracy of state-of-the-
art nonlinear models.

At its core, FFD is based on kernel density estimation
(KDE) [3]. The ultimate goal of (discriminative) super-
vised learning is to estimate the conditional label distribu-
tion p(y|x), for a label y of an input x∈RD. If unlimited
labeled data were available, this distribution could be esti-
mated directly with KDE. In practice, however, such a näıve
approach does often not work. The curse of dimensional-
ity [3] makes the data requirements of KDE grow exponen-
tially with the data dimensionality, thus quickly exceeding
any realistic limitations, if the data is sufficiently high di-
mensional. However, if the dimensionality is low, KDE is
very effective.

Chen et al. [6] make use of KDE as a feature transfor-
mation. They point out that if features do not interact
with each other, the conditional label distribution can be de-
composed as log p(y=1|x)

p(y=−1|x) = w0 +
∑D

d=1 wd log
p(y=1|[x]d)
p(y=−1|[x]d)

,

where [x]d denotes the dth dimension of x and the weights
wd are estimated from the data.1 Similar to Rahimi and
Recht [24], this approach learns an explicit feature trans-
formation that enables linear classifiers to learn non-linear
decision boundaries. Unfortunately, it cannot discover non-
linear feature interactions.

In this paper we follow this insight but relax the restric-
tion that features cannot interact with each others. Instead,
we assume that features can interact, but their interactions
are limited to r"D features. Let A denote a set or “bag” of
features, with |A| ≤ r, and let [x]A denote the shortened in-
put vector x with only those features in A. We assume that
r is small enough, so that p(y|[x]A) can still be computed
fast and accurately via KDE. FFD learns a new representa-
tion x→Φ(x), where each dimension ofΦ( x) corresponds to
the conditional label distribution p(y|[x]A) for some feature
bag A. A linear classifier learned on the dataΦ( x) can learn
nonlinear decision boundaries and its weights indicate which
feature “bags” are most important. If in addition the classi-
fier is regularized to be sparse, we can identify which feature
bags are in fact sufficient to make accurate predictions. Be-
cause KDE is highly non-linear and approximates the true
conditional distribution, FFD reliably learns the within-bag
feature interactions.

One immediate challenge with this setup is the exponen-
tially growing number,

(
D
r

)
, of possible sets A. How can we

identify which such sets of features to include in our repre-
sentation? Our second contribution is to formulate this as
a tractable optimization problem. We propose a novel op-
timization framework which maximizes the similarity cover-
age and minimizes redundancy of the selected feature set.

1This approximation is exact for wd = 1 if the features are
label conditionally independent, which is also often referred
to as the Näıve Bayes assumption [3].

Moreover, the optimization formulation contains cardinal-
ity penalty for sparsity and interpretability. We formulate
this selection problem as a combinatorial optimization with
a submodular objective. Previous work [9] proves that for
this category of problems, there exists a 1/3-approximation
bound in the worst case.

To further promote feature sparsity of the FFD model, we
also employ !1 regularization. A disadvantage of typical !1
regularization is that it is not differentiable everywhere and
requires non-smooth optimization techniques such as sub-
gradient descent. However, since the KDE features in FFD
model conditional label distribution, their weights are natu-
rally expected to be non-negative. Based on this key insight,
we add non-negativity constraints to the training objective
and make it a smooth optimization problem even with !1
regularization. This enables us to employ fast smooth opti-
mization algorithms.

Finally, we carry out extensive experiments on real-world
datasets and show that the proposed FFD model achieves
state-of-the-art classification results with exceptional scala-
bility. FFD can be learned in minutes on datasets with mil-
lions of samples, for which other nonlinear methods will be
prohibitively expensive in space and time. FFD also demon-
strates interpretability and results in very sparse models.

This paper is organized as follows. In Section 2, we present
the notations and preliminaries. We describe the proposed
FFD model in Section 3. We discuss related work in Section
4 and present experimental results in Section 5. Section 6
gives conclusions.

2. PRELIMINARIES
In this section, we introduce the notations and review the

density-based logistic regression (DLR) model [6], which is
highly related to the proposed model.

Assume we are given a dataset D = {xi, yi}, i = 1, · · · , N ,
xi ∈ RD where D is the number of attributes2, and the label
yi ∈ { −1, 1}. Let the input vector be xi = ([xi]1, · · · , [xi]D).

D can be further partitioned into two datasets D1 and
D−1, which include all the data points whose labels are y = 1
and y = −1, respectively.

In the training phase, the DLR model first maps each
training sample to a new feature space in a dimension-wise
manner, i.e. x → Φ(x) where

Φ(x) = (φ1(x), φ2(x), · · · , φD(x)) .

Similar to logistic regression, DLR models the conditional
probability of y given a sample x by a sigmoid function on
the transformed features.

p(y = 1|x) = 1
1 + exp (− (wΦ(x)))

(1)

where the parameter w can be learned via maximum likeli-
hood estimation or equivalently the empirical risk minimiza-
tion with logistic loss:

minimize
w

1
N

N∑

i=1

(
1 + e−yi(wΦ(xi))

)
+ λ‖w‖2 (2)

2For simplicity, here we only discuss datasets with numerical
features. The proposed method also applies to datasets with
categorical and mixed features.
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If we use the original attributes without feature mapping,
i.e. φd(x) = [x]d for d = 1, · · · , D, Eq. (1) is the original
LR.

Unlike LR, DLR introduces a nonlinear feature mapping
based on the following rationale. First, Eq. (1) can be re-
written as:

wΦ(x) = ln
p(y = 1|x)
p(y = −1|x) (3)

Assuming conditional independence of the attributes given
the class label y, it can be shown that [6]

ln
p(y = 1|x)
p(y = −1|x) = w0 +

D∑

d=1

(
ln

p(y = 1|[x]d)
p(y = −1|[x]d)

)
(4)

where w0 = (D − 1) ln p(y=1)
p(y=−1) . Comparing (3) with (4)

and setting w = 1, we can naturally derive the following
feature transformation used by DLR. For each dimension d,
the DLR feature mapping is:

φd(x) = ln
p(y = 1|[x]d)
p(y = −1|[x]d)

, (5)

which is a logit transformation on the conditional probability
of y given a single feature [x]d.
In order to compute the features φd(x) in (5), DLR es-

timates p(y|[x]d) by treating categorial and numerical at-
tributes in different ways.

• If [x]d is a categorical attribute, p(y = 1|[x]d) is es-
timated by counting the proportion of samples with
label y = 1 among all the samples whose dth attribute
is [x]d. Let D[x]d be the set of of samples in D whose
dth attribute equals to [x]d. The DLR estimate is

φd(x) = ln
|D1

⋂
D[x]d |

|D−1
⋂

D[x]d |
. (6)

• If [x]d is a numerical attribute, then DLR calculates
φd(x) by kernel density estimation (KDE) [3]. The
DLR estimate is

φd(x) = ln

∑
i∈D1

exp(− ([x]d−[xi]d)
2

h2
d

)
∑

i∈D−1
exp(− ([x]d−[xi]d)2

h2
d

)
, (7)

where hd is a parameter called the kernel bandwidth.

In the training phase, DLR first computes the feature
mapping and then calls a standard LR package to learn w.
In the testing phase, given a testing sample x, the DLR
model first transforms it to Φ(x) via KDE or counting de-
pending on the feature type. The conditional probability of
y given x is then calculated by Eq. (1).

Though DLR offers good interpretability as it assigns a
weight to each original dimension, it has some serious draw-
backs. 1) DLR has high training and testing complexity. Al-
though DLR is more efficient in its training time, its feature
computation is still expensive. For a dataset with N samples
and D dimensions, DLR requires O(DN2) time for training
and O(DN) time for testing one single sample. Such a test-
ing cost is the same as kernel SVM, making it too expensive
for applications where extensive testings are required. 2)
DLR generates dense vectors and does not offer sparsity. 3)
DLR assumes conditional independence of each dimension
give the class label, which is often violated in practice and
may suffer from high correlation between dimensions.

3. FAST FLUX DISCRIMINANT (FFD)
In this section, we propose our FFD model. Like DLR,

FFD also performs a feature mapping based on density es-
timation and then learns a linear machine after the feature
mapping. However, FFD is significantly different from DLR
and offers a few salient advantages. It does not assume con-
ditional independence and is able to capture the correla-
tion between features. Also, it preserves the interpretability
and explicitly promotes sparsity of the model. Moreover,
the learning process of FFD is far more efficient than DLR,
leveraging on the fast computing of low-dimensional density
estimation via histogram estimation.

In summary, the main steps of FFD include the following.

1. Subspace feature mapping, which generates features
based on non-parametric kernel density estimation.

2. Submodular subspace selection, which selects subspace
features based on submodular optimization.

3. Model training, which learns a sparse and interpretable
linear machine with smooth !1 regularization.

All the above steps are designed to be highly efficient and
capable of scaling to large data. Below, we discuss the main
components of FFD before putting them together.

3.1 Subspace feature mapping
This step generates features that can effectively model the

conditional probability p(y|x), which enables the nonlinear
separability of the model. It is based on non-parametric den-
sity estimation which does not make any parametric assump-
tion of the data distribution and is particular suitable for
large data since it can make full use of all the data samples.
Here, we first describe the histogram-based density estima-
tion in general for the full feature space, which is unrealistic
due to the curse of dimensionality. But the same idea can
be applied to and is very efficient for low-dimensional sub-
spaces. We then combine the predictions from all subspaces
via a linear model and generate nonlinear classification de-
cision boundary.

First, each dimension is divided into equal-length bins.
Let bd be the number of bins for the dth dimension. If [x]d
is categorical, bd is always the number of categories for this
feature. If [x]d is numerical, bd is a parameter we need to
set.

In the training phase, given the training dataset D =
{xi, yi}, i = 1, · · · , N , we assign each training sample to the
corresponding bin. If [xi]d is a categorical feature, B([xi]d),
the bin index for dimension d is the category index of [xi]d.
For a numerical feature, suppose the bins of the dth dimen-
sion start at

startd = min
k=1..N

{[xk]d}

and end at

endd = max
k=1..N

{[xk]d}.

The bin length ld is given by:

ld =
endd − startd

bd
(8)

Let B([xi]d) be the bin index for [xi]d. We have that

B([xi]d) =
[xi]d − startd

ld
(9)
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Figure 1: Histogram estimation for a 2-D subspace.
Left: a snapshot of a 2-D grid. Right: The propor-
tion of y = 1 in each grid cell based on counting.

Each data sample xi corresponds to a grid cell3 (a vector
of bin indices):

B(xi) = (B([xi]1), · · · , B([xi]D)) .

After assigning each training sample to the correspond-
ing grid cell, a naive histogram-based density method would
estimate the the probability of p(y|x) by counting the pro-
portion of samples with different labels in grid cell B(x).
This naive histogram-based density estimation is efficient
and does not make any assumption on the distribution of the
underlying data. However, if the number of training samples
is not enough, this estimation would suffer from huge bias
and variance. In addition, the number of grid cells grows
exponentially with the number of dimensions, leading to the
curse of dimensionality. As a result, this simple histogram
method is not practical.

To overcome this problem, instead of directly modeling
p(y|x) by density estimation for the whole space, FFD ex-
presses p(y|x) by a number of density estimation for low di-
mensional subspaces. Each subspace contains a small num-
ber (less than r) of features. In essence, we assume that fea-
tures can interact with each other, but their interactions are
limited to r"D features. We assume that r is small enough,
so that the density estimation for r-dimensional subspaces
can still be computed fast. For example, Figure 1 shows the
histogram-based density estimation for a 2-dimensional sub-
space. This subspace is discretized into a grid as shown on
the left subfigure. The proportion of training samples with
y = 1, i.e. p(y = 1|B), is then computed for each grid cell
by simple counting as shown on the right subfigure.

To combine the density estimations from all subspaces, we
convert the result from each subspace to a new feature and
then apply a linear model on these new features. Specifically,
FFD learns a new representation x→Φ(x), where

Φ(x) = (φ1(x), · · · , φM (x))

is a vector of M subspace features. For each m = 1, · · · ,M ,
FFD uses the following feature

φm(x) = ln
p(y = 1|[x]Am)
p(y = −1|[x]Am)

, (10)

3In this paper, the meanings of “bin” and “grid cell” are
interchangeable. We often refer to “bin” in the context of a
single dimension and “grid cell” otherwise

p(y = 1|B)

[x]1

Figure 2: Kernel smoothing for a 1-D histogram.
The height of each bin is the proportion of y = 1 in
each bin based on counting. The purple dots are the
new p(y = 1|B) for each bin after kernel smoothing.

where Am ⊂ {1, · · · , D}, |Am| ≤ r, is a subset of feature
dimensions and [x]Am = ([x]d∈Am) are x’s values in the di-
mensions included in Am.

Following the design of logistic regression, FFD models
the following probability:

p(y = 1|x) = 1

1 + exp
(
−
∑M

m=1 wmφm(x)
) . (11)

3.2 Kernel smoothing for histogram
FFD estimates p(y = 1|[x]Am) via histogram-based den-

sity estimation. Since the cardinality |Am| ≤ r where r "
D, it avoids the curse of dimensionality.

For relatively small datasets, the histogram estimation for
the subspace specified by Am is still unstable. First, if the
length of bins is too small, there would be few data samples
in each bin, resulting in inaccurate estimation. Second, the
histogram estimation could be non-smooth for neighboring
bins.

To address these issues, we propose to use a bin ker-
nel smoothing technique, which allows the bins to affect
each other according to their mutual kernel. Suppose B =
(B1, · · · , B|Am|) is a grid cell in the subspace specified by
the dimensions in Am and denote GAm as the set of all the
grid cells in this subspace. We have the following smoothed
estimate for grid cell B

p(y|B) =

∑
B′∈GAm

nB′(y)Kbin(B,B′)
∑

B′∈GAm
NB′Kbin(B,B′)

(12)

where nB′(y) is the the number of training samples with
label y in B′, and NB′ is the total number of training sam-
ples in B′. The kernel between two grid cells B and B′ is a
Guassian kernel given by

Kbin(B,B′) = exp

(
−

∑

d∈Am

(Bd −B′
d)

2l2d
2h2

d

)
(13)

where hd > 0 is a parameter called the bandwidth of the
kernel density function. A popular rule of thumb [27] for
deciding the value of hd is as follow:

h∗
d = 1.06σdN

−1/5, (14)

where σd is the standard deviation of the training samples on
dth dimension. Figure 2 illustrates the kernel smoothing for
a 1-dimensional histogram. As we can observe, p(y = 1|B)
in the third bin is originally very low due to the lack of data.
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However, after kernel smoothing, this value gets higher and
the overall histogram becomes smoother.

In essence, the proposed bin kernel smoothing is an ap-
proximation of KDE by discretizing each dimension into bins
and treating all samples in the bin as located at the center
of the bin. Not surprisingly, we can show that the approx-
imation error approaches zero as the discretization is fine
enough.

Proposition 1. As bd → ∞, the conditional probability
estimated by (12) approaches the result by the Nadaraya-
Watson estimator [3]

p̂(y = 1|[x]Am) =

∑
i∈D1

KAm (x, xi)
∑N

i=1 KAm (x, xi)
(15)

where D1 is the set of training samples with label y = 1
and KAm(x1, x2) is a Guassian kernel function on variables
specified by Am, namely,

KAm(x1, x2) = exp

(
−

∑

d∈Am

([x1]d − [x2]d)
2

2h2
d

)
. (16)

The size of memory required to store all histogram infor-

mation is O
(∑M

m=1 bAm

)
where bAm =

∏
d∈Am

bd is the

total number of grid cells required for the subspace speci-
fied by Am. Since |Am| is always very small (e.g. less than
3), the memory cost will not be large. One advantage of
FFD is that the size of the model does not increase as the
training dataset gets larger. This is different from other pop-
ular non-parametric models such as RBF-SVM and KNN.
For example, in RBF-SVM all the support vectors should
be stored. As the training set gets larger, the number of
support vectors will also increase.

In addition, in the testing phase, the kernel matrix be-
tween support vectors and testing samples needs to be com-
puted, resulting in O(NtNs) running time where Nt is the
size of the testing data and Ns is the number of support vec-
tors. In contrast, FFD has a linear test time O(Nt), since
for a given testing sample FFD only needs to retrieve the
value stored in the histogram in order to compute φm.

3.3 Submodular subspace selection
Let U be the ground set containing all subspace candi-

dates, i.e. all Am ⊂ {1, · · · , D} such that |Am| ≤ r. The
cardinality of U is

∑r
k=1

(
D
k

)
. With so many candidates,

one key challenge is to determine which subspaces in U to
choose from. Here we propose a combinatorial optimization
framework to address this problem. Suppose S ⊆ U is the
set of subspaces we select, we propose to find S such that

maximize
S

∑

i∈S

∑

j∈U−S

ci,j − α
∑

i,j∈S,i %=j

ci,j + β
∑

i∈S

ai − µ|S|2

(17)
where ci,j is the Pearson correlation between φi and φj based
on Ai and Aj , respectively. ai is the training accuracy of
the subspace estimation for GAi , which can be computed ef-
ficiently by simply checking the number of mislabeled sam-
ples in all grid cells of GAi . (α, β, µ) are all non-negative
hyper-parameters.

The four components in (17) correspond to four differ-
ent goals, respectively. 1) The first term, which is a cut
function [10], maximizes the similarity coverage of the set U
so that set S is a good representative of U . 2) The second

term minimizes the pair-wise correlations within S to reduce
the redundancy and relieve the problem of highly correlated
features and co-linearity. 3) The third term maximizes the
overall accuracy of histogram estimation of the selected sub-
spaces. 4) The fourth term minimizes the cardinality of S
for sparsity.

The maximization of (17) is a NP-hard problem. However,
we show that (17) is a submodular maximization problem
and good approximation bound can be achieved. We first
introduce the concept of submodular set functions.

Definition 1. [10] Suppose U is the ground set, a set func-
tion f : 2U → R is submodular if it satisfies the property of
diminishing return: for every A,B ∈ U , A ⊆ B, and every
e ∈ U −B, we have that

f(A ∪ e)− f(A) ≥ f(B ∪ e)− f(B). (18)

If equality always holds in (18), f is modular.

It has been shown that maximizing a submodular function
without any constraints can achieve a 1/3-approximation
bound using a deterministic local search (DLS) algorithm [9,
13]. That is,

fobj(Sg) ≥
1
3
fobj(S

∗),

where fobj is the objective function in (17), Sg is the solution
by the DLS algorithm, and S∗ is the optimal solution. Note
that this lower bound only occurs in the worst case. In
practice, the performance is typically much better.

Now we prove the submodularity of (17).

Theorem 1. The objective function in (17) is submodu-
lar if ci,j ≥ 0, ∀i, j ∈ U .

Proof. Let

fc(S) =
∑

i∈S

∑

j∈U−S

ci,j − α
∑

i,j∈S,i %=j

ci,j . (19)

It has been shown that fc(S) is submodular if ci,j ≥ 0, ∀i, j ∈
U [20]. Moreover, it is easy to verify that β

∑
i∈S ai is a

modular function and that −µ|S|2 is submodular function
according to Definition 1. Since submodularity is preserved
under non-negative linear combination of submodular func-
tions [10], we see that the the objective function in (17) is
submodular.

In practice, we find that most ci,j are non-negative, since
each φm is an indicator of the label y and they are not
likely to have negative correlation. For completeness, we
have the following lemma to help guarantee the submodu-
larity of (17).

Lemma 1. Let γ = −min {mini,j{ci,j}, 0}, then fc(S) −
γ(1 + α)|S|2 is submodular where fc(S) is defined in (19).

Proof. Let eS be the |U | × 1 indicator vector of set S
where U is the ground set, and eS(i) = 1 if Ai ∈ S and 0
otherwise 4 (so eU is a vector whose elements are all 1). Let
C be the correlation matrix of all elements in U where its
element (i, j) is ci,j . We rewrite the function in matrix form
as follows

fc(S) = e&SC(eU − eS)− αe&S (C − I)eS

= e&SCeU + αe&S IeS − (α+ 1)e&SCeS

= e&SCeU + α|S| − (α+ 1)e&SCeS

(20)

4eS(i) is the ith element in eS
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Suppose E is a |U | × |U | matrix with all elements being 1.
It is easy to show that |S|2 = e&SEeS . Thus, we have that

fc(S)− γ(1 + α)|S|2

=e&SCeU + α|S| − (α+ 1)(e&SCeS + γe&SEeS)

=e&SCeU + α|S| − (α+ 1)e&S (C + γE)eS

(21)

Now we define

C+ = C + γE. (22)

According to the definition of γ, we have that γ ≥ 0 and
elements in C+ are all non-negative. Thus, −(α+1)e&S (C+
γE)eS is submodular due to the submodularity of nega-
tive quadratic function [2]. In addition, we can see that
e&SCeU + α|S| is modular. Thus, fc(S) − γ(1 + α)|S|2 is
submodular.

Theorem 2. When µ ≥ γ, the objective function in (17)
is submodular and the DLS algorithm has a 1/3-approximation
bound in the worst case.

Proof. According to Lemma 1, (17) can be rewritten as
∑

i∈S

∑

j∈U−S

c+i,j −α
∑

i,j∈S,i %=j

c+i,j +β
∑

i∈S

ai − (µ− γ)|S|2, (23)

where c+i, j are elements in C+ defined in (22). Since c+i,j ≥
0, we see that (23) has the same form as defined in Theorem
1 if µ − γ ≥ 0. Thus, it is submodular and has a 1/3-
approximation bound [9].

In practice, we can first compute all the ci,j and γ, and
then choose a µ value such that µ ≥ γ. Therefore, we can al-
ways guarantee the submodularity and optimization bound.

3.4 Sparse learning algorithm
Since the dimensionality of subspaces should be relatively

small to avoid the curse of dimensionality, in this paper
we have a restriction that |Am| ≤ 2. So there are M =
O(D(D+1)/2) potential φm(x) including 1-dimensional and
2-dimensional subspaces. After all those φm(x) are com-
puted by smoothed histogram estimation and filtered by
submodular subspace selection, we need to learn the weight
vector w = (w1, · · · , wM )5 in (11). We require strong spar-
sity on w, which is not satisfied by the learning framework
in (2).

One simple alternative is to replace the !2 regularization
with !1 regularization [11] which promotes sparsity. How-
ever, the FFD model has a nice structure and can offer an
even better solution. Let us rewrite (10) as

φm(x) = ln
p(y = 1|[x]Am)

1− p(y = 1|[x]Am)
= g (p(y = 1|[x]Am)) (24)

where g(z) = ln z
1−z is a logit function. We can observe

that φm(x) is an increasing function of p(y = 1|[x]Am). In
addition, φm(x) ≥ 0 if p(y = 1|[x]Am) ≥ 0.5 and less than 0
otherwise. Given the monotonic relation between p(y = 1|x)
and φm(x) in (11), the weight wm on φm(x) is supposed to
be non-negative under the assumption that p(y = 1|[x]Am)
estimated by histogram is a weak learner. Given that w is

5Now M is the number of φm after submodular subspace
selection.

Algorithm 1 The learning algorithm for FFD

1: for m = 1 to M do ( Histogram estimation
2: Build grid GAm .
3: for i = 1 to N do
4: Assign xi to the grid cell indexed by (9)
5: end for
6: for B ∈ GAm do
7: Compute p(y|B) by (12)
8: end for
9: end for
10: for i = 1 to N do ( Computing φm(xi)
11: for m = 1 to M do
12: Compute φm(xi) by (10)
13: end for
14: end for
15: Select subspaces by solving (17) using the DLS algo-

rithm
16: Learn w by solving (25)

non-negative, we have that ‖w‖1 =
∑M

m=1 wm. The learning
formulation with !1 regularization becomes:

minimize
w

1
N

N∑

i=1

(
1 + e−yi(wΦ(xi))

)
+ λ

M∑

m=1

wm

subject to w ≥ 0

(25)

Compared with other !1 norm method, the !1 norm in our
framework is differentiable for all feasible w. Such a smooth
optimization problem with simple bound constraints can be
efficiently solved by gradient-descent solvers.

Using (25), FFD also enforces more sparsity than tradi-
tional !1 regularization. To see that, assume that the gra-
dient of a positive wm is negative. When doing gradient
descent on it, wm will tend to decrease its value. But due to
the non-negative constraint, it cannot go below 0 and will
thus end up at 0, which leads to even more sparse solution
than !1 regularization.

The overall learning algorithm for FFD is shown in Algo-
rithm 1.

3.5 Discussions
We make a few further comments about FFD.

Cross validation. Before executing the complete algo-
rithm of FFD as stated in Algorithm 1, all the hyperparame-
ters should be pre-specified including λ in (25) and (α, β, µ)
in (17). Experts can set these hyper-parameters by good
intuition. For non-experts, a typical way to tune them is
utilizing a k-fold cross-validation where grid search is per-
formed on all hyper parameters to minimize the validation
error. However, this brute-force algorithm has a high com-
putational cost. In addition, it does not make use of the
validation errors during the grid search.

As a better solution,we use a recent Bayesian optimiza-
tion technique [28] to tune the hyper-parameters in order
to globally minimize the validation error. Specifically, the
validation error is modeled as a sample from a Gaussian
Process (GP). Each time, we sample the hyper-parameters
(λ,α , β, µ) which minimize the expectation of its validation
error under the assumption of GP. Then, Algorithm 1 is
run on this hyper-parameter sample to evaluate its actual
cross-validation error. This sample with its validation error
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are then incorporated in the previous GP and forms a new
GP. This process keeps running until a maximum iteration
limit is reached. The best hyper-parameters are the one
that have the minimum cross-validation error among all the
samples. It has been shown that this Bayesian optimization
method for cross validation largely outperforms normal grid
search [28].

Usefulness of submodular subspace selection. Though
!1 regularization encourages sparsity, the performance of lin-
ear methods with !1 regularization (including logistic regres-
sion) suffers if the input variables are highly correlated or
even co-linear [11,14]. Thus, before training FFD by solving
(25), it is necessary and important to do subset selection on
all φm in order to reduce their correlation.

Interpretability. Similar to LR, FFD can provide prob-
ability of its prediction in addition to the predicted label.
However, in LR model the weights on different features may
not be directly comparable. For example, the measurement
of blood pressure has a vastly different scale than that of
height, and their weights are not comparable. In contrast,
the weights w in FFD do not suffer from this problem be-
cause all φm are on the same scale as they model condi-
tional probabilities. In addition, each φm(x) is an indicator
of p(y = 1|[x]Am) because they have a monotonic relation-
ship as shown in (10). With the sparsity of FFD, we can
also identify which feature bags Am are in fact sufficient
to make accurate predictions based on the weights. Since
kernel density estimation for the subspaces is highly non-
linear and approximates the true conditional distribution,
FFD reliably learns the feature interactions.

4. RELATEDWORK
Our FFD model is related to density-based logistic regres-

sion (DLR) [6] which transforms the original raw features to
a new feature representation by KDE and then trains a lo-
gistic regression model on the new feature vectors. However,
it does not promote sparsity and is not capable of handling
feature interaction. In addition, compared to DLR, the fea-
ture transformation in FFD allows much faster computation,
reducing the training time from O(DN2) to O(DN) and the
testing time from O(DN) to O(D).
In general, FFD is related to recent works on learning lin-

ear models with explicit nonlinear feature transformations.
For example, random kitchen sinks (RKS) [24] transforms
each data x into a finite-dimensional vector φ(x) ∈RM to
approximate the RBF-kernel function for any two inputs x
and y in such way that φ(x)Tφ(y) ≈ K(x, y), where K(x,y)
is the RBF kernel function. This allows highly scalable linear
classifiers in the transformed space to learn approximately
the same decision boundaries as SVM with a RBF kernel in
the original input space. The recent fastfood algorithm [17]
further speeds up RKS using matrix approximation tech-
niques and reduces the time and space complexities. Other
feature mapping techniques include those based on random
projection [1,15,18,23], polynomial approximation [21], and
hashing [19,32]

Existing feature mapping techniques, when combined with
linear classifiers, can achieve both nonlinear separability and
higher scalability of linear classifiers. However, they cannot
take advantage of the interpretability of linear classifiers.
The feature mapping techniques such as Fourier transfor-

Table 1: Comparison of the characteristics of differ-
ent classifiers.

LR SVM-rbf DLR RKS FFD
Interpretable Yes No Yes No Yes
Efficient Yes No No Yes Yes
Nonlinear No Yes Yes Yes Yes
Sparse Yes No No No Yes

mation, random projection, and hashing are all defined in a
different space than that of the original features. As a re-
sult, these models do not provide a weight for each original
feature dimension and cannot offer a clear notion of inter-
pretability. Moreover, all these works except for [18] do not
explicitly support sparsity.

5. EXPERIMENTAL RESULTS
In this section, we conduct extensive experiments to eval-

uate the proposed FFD model. We evaluate three versions
of FFD.

• FFD-1: FFD with only 1-dimensional subspaces, i.e.
|Am| ≤ 1, and without submodular subspace selection.

• FFD-2: FFD with 1-dimensional and 2-dimensional
subspaces, i.e. |Am| ≤ 2, and without submodular
subspace selection.

• FFD-sfo: FFD-2 with submodular optimization for
subspace selection.

In FFD-2 and FFD-sfo, for φm involving two dimensions,
we picks the top 3D out of D(D − 1)/2 such φm’s accord-
ing to their accuracies for histogram estimation, where D is
the dimensionality of the training samples. For all the three
methods, we set the number of bins for numerical features to
50, i.e. bd = 50. For submodular maximization in (17), we
use the sfo toolbox developed by Andreas Krause [16]. To
solve the sparse learning problem in (25), we use the min-
Conf TMP function6. This function is superior at optimiz-
ing smooth objective functions subject to bound constraints,
which is exactly our case.

Baseline methods. We also consider four other methods
for comparison. 1) Logistic regression with !1 regulariza-
tion (LR) [11], implemented by Mark Schmidt [25]. 2) Sup-
port vector machines with the RBF kernel (SVM-rbf). We
use the LibSVM library [5]. 3) Density-based Logistic Re-
gression (DLR) [6], a linear classifier with nonlinear feature
mapping based on the naive Bayes assumption. 4) Random
Kitchen Sink (RKS) [24], a linear classifier with nonlinear
feature mapping that approximates the RBF kernel.

A comparison of the characteristics of these models is
given in Table 1. We can see that FFD is the only model
that can support all of the desirable properties including
interpretability, nonlinearity, efficiency, and sparsity.

Cross validation. The hyper-parameters in all meth-
ods are tuned via cross validation. The cross validations are
performed by Bayesian optimization which has been proved
to be far more efficient and accurate than a simple grid
search [28]. For the RKS model, we also cross validate all

6Available at
http://www.di.ens.fr/~mschmidt/Software/minConf
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Figure 3: The decision boundary of FFD-1 on a toy
example. Left: FFD-1 with 20 bins for each dimen-
sion. Right: FFD-1 with 100 bins for each dimen-
sion.

types of features including random Fourier features and ran-
dom binning features.

Visualization of a toy example. We create a nonlin-
early separable dataset to visualize the classification ability
of FFD method and the effect of using different number of
bins, as shown in Figure 3. We can observe that the FFD-
1 can perfectly separate the two classes while other linear
methods cannot. We also see that, as the number of bins
increases, the decision boundary gets smoother.

Comprehensive evaluation. Table 2 shows a compre-
hensive comparison of all methods on various datasets. All
these datasets are publicly available at the UCI repository7

or the LibSVM website8. The datasets are sorted by the
number of samples in the datasets. The experiments are
run on an off-the-shelve desktop with two 8-core Intel(R)
Xeon(R) processors of 2.67 GHz and 128GB of RAM. The
implementations of all methods are in or through the inter-
face of MATLABTM . In order for SVM-rbf to run as fast as
possible, we set the cache size of LibSVM to 10GB which is
sufficiently large for all the tested datasets.

From Table 2, we can observe the following facts.
In terms of accuracy, the performance of FFD methods

is fairly strong in general. Datasets including checkboard,
banana, mnist38 and cod-rna are well-known for its high
non-linearity, which can be told by the poor performance
of LR on these datasets. However, both FFD-2 and FFD-
sfo perform almost as good as SVM-rbf and RKS, which
demonstrates their superior nonlinear classification ability.
And for datasets including splice and Adult, FFD methods
largely outperforms all the other methods.

In terms of running time, we can see that FFD models
are very efficient in general, which is fairly comparable with
and sometimes even better than the linear machines LR
and RKS. For example, the Adult dataset has 14 features,
among which 8 are categorical. Models such as LR, SVM-
rbf and RKS should first convert the categorical features
to numerical features before training. The most popular
method, as recommended in [31], is using k binary numer-
ical features to represent an k-category feature. For exam-
ple, (red,blue,green) can be represented by (1,0,0), (0,1,0)

7https://archive.ics.uci.edu/ml/datasets.html
8http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary.html

and (0,0,1). We observe that the original 14 features in-
crease to 104 features at the end, which adds to the burden
of training. In contrast, our FFD models naturally handle
categorical features since each category is a bin in its dimen-
sion and no kernel smoothing is needed, leading to superior
time efficiency.

We also see that FFD models are much more efficient than
nonlinear models such as SVM-rbf and DLR. For the cod-rna
dataset with 0.27 million samples, it takes FFD models less
than 1 second while SVM-rbf spends over 10 minutes and
DLR cannot finish. The improvement is even more salient
on the kddcup99 dataset which contains almost 5 million
samples. We make kddcup99 a binary classified dataset by
setting class 6 to a positive class and other classes to a nega-
tive class, since class 6 contains 57% of the samples. It takes
FFD models less than one minute while it is prohibitively
large for both SVM-rbf and DLR.

However, though FFD-sfo generally has good accuracy
and efficiency, we also point out that the cost of submod-
ular optimization is sensitive to the dimensionality of the
datasets, and using submodular subspace selection may not
be the most sensible for image datasets such as mnist38.
However, even for the mnist38 dataset, FFD-sfo is much
faster than SVM-rbf and DLR, while FFD-1 and FFD-2 are
extremely fast.

In terms of practical usability, FFD models give inter-
pretability and sparsity, while other nonlinear models in-
cluding SVM-rbf and RKS do not. In summary, FFD is a
clear winner considering all the aspects.

Cases of highly correlated features. As stated in
Section 3, linear methods including models with !1 regu-
larization become more unstable and less accurate when
highly correlated features or co-linearity exist. Although
FFD methods are capable of classifying nonlinear datasets,
they are linear models on φm and thus may also suffer from
this issue. In this case, FFD-sfo is better than FFD-2 since it
rules out highly correlated φm by maximizing the submodu-
lar objective function in (17). This effect has been partially
reflected in Table 2.

To demonstrate the advantage of FFD-sfo over FFD-2 in
a more observable way, we conduct another experiment in
the feature selection context. First, we make a new splice
data set by duplicating each feature, which makes them co-
linear. Then, we run FFD-2 and FFD-sfo on both the origi-
nal and new datasets. For reference, we also run the LR and
Lasso [11] models which are state-of-the-art feature selection
methods. For FFD methods, one feature is considered se-
lected if it is used by any φm whose wm /= 0. Figure 4 shows
the curves about accuracy versus number of selected fea-
tures. First, we observe that FFD methods is much better
than LR and Lasso since FFD offers nonlinear separabil-
ity. Second, although FFD-2 and FFD-sfo have comparable
performance on the original dataset, FFD-sfo is way better
than FFD-2 on the new dataset, demonstrating the ability
of FFD-sfo in addressing the issue of highly correlated or
co-linear features.

Real-world clinical prediction. In addition to evalua-
tion on public benchmark datasets, we also test FFD models
on a real-world clinical application. This is a collaboration
with Barnes-Jewish Hospital, one of the largest hospitals in
the US. The task is to predict potential ICU transfers for
hospitalized patients based on 34 vital signs. The data col-
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Table 2: Performance of various methods on various datasets. Note that the FFD models have the additional
advantages of interpretability and sparsity, which are not found in SVM-rbf and RKS.“N/A”means unfinished
in 2 hours or memory overflow.

Dataset N D Performance LR SVM-rbf DLR RKS FFD-1 FFD-2 FFD-sfo
breast 683 9 accuracy(%) 96.63 96.05 97.36 97.07 96.34 97.51 97.07

time(sec) 0.0164 0.0165 0.0574 0.0573 0.0278 0.4242 0.5779
splice 1000 60 accuracy(%) 80.70 87.20 92.00 90.10 91.60 94.60 94.50

time(sec) 0.0144 0.2468 0.4069 0.0679 0.0835 1.235 2.2159
checkboard 2000 2 accuracy(%) 49.70 93.95 51.00 92.50 51.25 92.20 92.30

time(sec) 0.0143 0.1454 0.0589 0.8763 0.0188 0.0434 0.07
banana 5300 2 accuracy(%) 56.70 90.45 71.89 89.57 71.74 89.72 89.91

time(sec) 0.0126 0.6449 0.2354 0.5021 0.0326 0.0516 0.0298
musk 6598 166 accuracy(%) 94.33 90.69 95.21 96.42 96.88 95.06 94.71

time(sec) 1.2882 58.6402 23.1885 0.7666 1.0141 4.1618 25.139
mnist38 11982 784 accuracy(%) 96.77 99.11 97.09 97.28 96.32 98.69 98.98

time(sec) 0.9187 230.1897 1621 0.4323 2.0696 1.0952 122.419
magic04 14226 10 accuracy(%) 79.50 86.38 82.59 84.57 81.40 82.21 84.98

time(sec) 0.2639 20.145 21.6976 1.6225 0.3211 0.188 0.4033
Adult 30162 14 accuracy(%) 84.71 80.43 85.41 83.96 85.40 85.31 85.42

time(sec) 6.8223 492.7818 81.8001 3.8515 0.4057 3.1718 1.1399
cod-rna 271617 8 accuracy(%) 75.08 91.75 N/A 92.29 77.34 89.53 89.73

time(sec) 0.785 629.759 N/A 5.7484 0.6583 1.0074 0.7651
kddcup99 4898431 41 accuracy 99.99 N/A N/A 99.92 99.99 99.99 99.99

runtime(sec) 179.2541 N/A N/A 41.3827 46.2968 50.0306 54.0227
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Figure 4: Accuracy vs. proportion of selected features. Left: The original splice dataset; Right: The new
splice dataset with co-linear features.

lection process can be found in [6]. On this dataset, FFD-sfo
and FFD-2 have 95.37% and 94.59% accuracy, respectively.
The results outperform the DLR model with a 93.26% ac-
curacy which is found to be better than LR and SVM [6].
Moreover, FFD is the only model that can offer sparsity and
interpretability. This is vitally important in clinical practice
since healthcare personnel can be informed of the most im-
portant risk factors and take proper actions for prevention
and intervention.

6. CONCLUSIONS
Many applications in the big data era find existing classi-

fiers inadequate. They often require not only high accuracy
but also high efficiency, sparsity, and interpretability. To
date no classifier, linear or nonlinear, excel at all these as-
pects. We have presented a novel Fast Flux Discriminant
(FFD) model which delivers all these desirable properties.
FFD learns a linear discriminant on top of a non-parametric

feature mapping which captures nonlinear feature interac-
tions. FFD addresses the curse of dimensionality by decom-
posing the kernel density estimation in the original feature
space into low-dimensional subspaces. We have also pro-
posed a submodular optimization framework to select sub-
spaces and to address the problem of highly correlated fea-
tures and collinearity. Moreover, FFD attains feature spar-
sity using !1 regularization. A nice feature of FFD is that its
density-based features naturally have non-negative weights
and hence allows for smooth optimization, which is not pre-
viously possible for !1 regularization. Empirical results have
shown that FFD delivers similar accuracy as state-of-the-art
nonlinear classifiers, but with sparsity, interpretability, and
much better scalability. To the best of our knowledge, this
is the first classifier that possesses all these merits. Given its
unprecedented combination of advantages, we believe FFD
will become a popular general-purpose classification model
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for a large scope of real-world applications such as biomed-
ical prediction.
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