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ABSTRACT
The Nyström method is an efficient approach to enabling large-
scale kernel methods. The Nyström method generates a fast
approximation to any large-scale symmetric positive semidefinete
(SPSD) matrix using only a few columns of the SPSD matrix.
However, since the Nyström approximation is low-rank, when
the spectrum of the SPSD matrix decays slowly, the Nyström
approximation is of low accuracy. In this paper, we propose a
variant of the Nyström method called the modified Nyström by
spectral shifting (SS-Nyström). The SS-Nyström method works
well no matter whether the spectrum of SPSD matrix decays fast
or slow. We prove that our SS-Nyström has a much stronger error
bound than the standard and modified Nyström methods, and that
SS-Nyström can be even more accurate than the truncated SVD of
the same scale in some cases. We also devise an algorithm such that
the SS-Nyström approximation can be computed nearly as efficient
as the modified Nyström approximation. Finally, our SS-Nyström
method demonstrates significant improvements over the standard
and modified Nyström methods on several real-world datasets.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General—Numerical algorithms;
G.1.3 [Numerical Analysis]: Numerical Linear Algebra—Sparse,
structured, and very large systems

Keywords
Kernel approximation; the Nyström method; large-scale machine
learning
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1. INTRODUCTION
With the advent of the big-data era, how to efficiently learn from

big-data has become a major concern and a hot topic of machine
learning research. When data are large, many expensive matrix op-
erations, e.g., matrix inverse and eigenvalue decomposition, which
cost O(m3) time and O(m2) space for an m×m matrix, become
computational prohibitive. Such expensive matrix operations are
indispensable for many classical machine learning methods like
kernel methods [22, 23], so these machine learning methods are
infeasible when facing big-data problems. One possible approach
to making matrix computation and kernel methods scalable is to
use randomized matrix approximations to reduce the time and
space costs [18], among which the most famous one is perhaps the
Nyström method [5, 10, 14, 15, 20, 26, 30, 31].

The Nyström method approximates an arbitrary symmetric pos-
itive semidefinite (SPSD) kernel matrix using a small subset of its
columns, and the method reduces the time complexity of many
matrix operations from O(m3) or O(m2k) to O(mc2) and space
complexity from O(m2) to O(mc), where k is the target rank,
c is the number of selected columns, and it holds in general that
k < c � m. In this way, time and space costs are only linearly in
m, so many kernel methods can be efficiently solved even when m
is large.

Williams & Seeger [30] used the Nyström method to speedup
matrix inverse such that the inference of large-scale Gaussian
process regression can be efficiently performed. Later on, the
Nyström method has been applied to spectral clustering [7, 17],
kernel SVMs [33], kernel PCA and manifold learning [26, 32, 33],
kernel ridge regression [3], determinantal point processes [1], etc.

However, although the Nyström method is usually effective and
efficient, its approximation quality can be very low in some cases.
Wang & Zhang [28] showed that the relative-error (with respect
to the best rank-k approximation) of the Nyström approximation
grows with the matrix size m at least linearly. Thus the approxi-
mation can be rather rough when m is large, unless a large number
of columns are selected to construct the Nyström approximation,
which will violate the intention of using matrix approximations.
To improve the approximation quality without sampling a large
amount of columns, some other fast matrix approximation models
have been proposed. Particularly, Wang & Zhang [28] developed
the modified Nyström method to generate a low-rank approximation
in a similar way to the standard Nyström method. The modified
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Nyström method is much more accurate than the standard Nyström
method in that it only samples an acceptable amount of columns
and its relative error does not grow with matrix sizem. In addition,
the modified Nyström method only requires the original matrix to
be symmetric, which is milder than SPSD required by the standard
Nyström method.

The standard/modified Nyström methods generate low-rank ap-
proximations to kernel matrices, and their approximation errors
cannot be better than the rank c truncated SVD, where c is the
number of columns selected by the Nyström methods. When the
spectrum of a kernel matrix decays slowly (that is, the c + 1
to m largest eigenvalues are not small enough), the low-rank
approximations constructed by either the truncated SVD or the
standard/modified Nyström methods are far from the original
kernel matrix. Cortes et al. [3] showed that the accuracy of
kernel approximations affects the accuracy of learning algorithms.
Therefore, when the spectrum of the kernel matrix decays slowly,
the standard/modified Nyström methods cannot generate effective
approximations to be used in learning algorithms.

To make the approximation still effective even when the spec-
trum of the original kernel matrix decays slowly, we propose in
this paper a new method called the modified Nyström by spectral
shifting (SS-Nyström). Unlike the standard/modified Nyström
methods which approximate the kernel matrix K ∈ Rm×m
by a low-rank factorization K ≈ CUCT , our SS-Nyström
approximates K by K ≈ C̄ŪC̄T + δIm, where C, C̄ ∈ Rm×c,
U, Ū ∈ Rc×c, and δ ≥ 0. When the spectrum of K decays slowly,
the term δIm significantly improves the approximation accuracy.
We show that SS-Nyström method has a provably tighter bound
than the standard/modified Nyström methods. In sum, this paper
offers the following contributions:

• We propose a kernel approximation method called the mod-
ified Nyström by Spectral Shifting (SS-Nyström), which
is provably superior over the standard/modified Nyström
methods (see Theorem 3). SS-Nyström can be even tighter
than the truncated SVD in some conditions (See Example 1).

• We devise an efficient algorithm such that the SS-Nyström
approximation can be computed nearly as efficient as the
modified Nyström approximation. The proposed algorithm is
also pass-efficient in that it goes only four passes through the
kernel matrix, thus SS-Nyström is still efficient even when
data do not fit in RAM.

The kernel approximation models proposed in the very recent
work [15, 24] are also variants of the Nyström method and reported
to achieve higher approximation accuracy. It is also straightforward
to improve the ensemble Nyström method [15] and the memory
efficient kernel approximation method [24] using the spectral
shifting method proposed in this paper.

The remainder of this paper is organized as follows. In Section 2
we define the notation that will be used in this paper. In Section 3
we formally introduce the standard Nyström method and the
modified Nyström method. In Section 4 we formulate our SS-
Nyström method and show that our SS-Nyström can speedup
several kernel methods in the same way as the standard Nyström
method does. In Section 5 we theoretically show the superiority
of SS-Nyström over the standard/modified Nyström methods. In
Section 6 we devise an efficient algorithm for computing SS-
Nyström. In Section 7 we empirically evaluate the SS-Nyström
method and the proposed efficient algorithm. The proof of the
theorems are deferred to the appendix.

2. NOTATION
For a matrix A = [aij ], we let aj be its j-th column, and
‖A‖F = (

∑
i,j a

2
ij)

1/2 be its Frobenius norm. For a squared
matrix, the matrix trace tr(·) is the sum of the diagonal entries.
We also let Im be the m × m identity matrix and let 1m be the
size-m all-one vector.

Letting ρ = rank(A), we write the condensed singular value
decomposition (SVD) of A as A = UAΣAVT

A, where the (i, i)-
th entry of ΣA ∈ Rρ×ρ is the i-th largest singular value of A,
denoted σi(A). We also let UA,k and VA,k be the first k (< ρ)
columns of UA and VA, respectively, and ΣA,k be the k × k top
left block of ΣA. Then the matrix Ak = UA,kΣA,kV

T
A,k is the

“closest” rank-k approximation to A. If A is a squared matrix, we
let λi(A) be the i-th largest eigenvalue. If A is SPSD, then the
eigenvalue decomposition and SVD are equivalent.

For anm×nmatrix, the full SVD costs timeO(min{m2n,mn2}),
and the rank k truncated SVD costs timeO(mnk). Although mul-
tiplying anm×nmatrix by an n×pmatrix runs inO(mnp) flops,
the constant in the big-O notation is tremendously smaller than
that of SVD, and matrix multiplication can be highly efficiently
performed in parallel computing facilities. So we instead denote the
time complexity of matrix multiplication by Tmultiply(mnp), which
is far less than O(mnp) in practice [12, 28].

3. RELATED WORK
Given an m × m SPSD matrix K, we let J (J ⊂ [m] ,
{1, 2, . . . ,m} and |J | = c) be an index set computed by some
column selection algorithm. Then we let C ∈ Rm×c be the
columns of K indexed by J , and let W ∈ Rc×c be the rows of
C indexed by J . The standard Nyström method [30] approximates
K by

K̃nys
c = CUnysCT = CW†CT ,

where W† is the Moore-Penrose inverse of W. The modified
Nyström method [28, 29] is defined by

K̃mod
c = CUmodCT = C

(
C†K(C†)T

)
CT .

The only difference between the standard and the modified Nys-
tröm methods is their intersection matrices: Unys = W† for
the standard Nyström method and Umod = C†K(C†)T for the
modified Nyström method.

When rank(K) = rank(Unys) = rank(Umod), that is, when K
is low-rank, both of the standard/modified Nyström approximations
are exact [29]. The modified Nyström method is in general
more accurate than the standard Nyström method due to ‖K −
K̃mod
c ‖F ≤ ‖K − K̃nys

c ‖F . With the selected columns at hand, it
costs time O(c3) to compute the standard Nyström approximation
and O(mc2) + Tmultiply(m

2c) to compute the modified Nyström
approximation.

The quality of the Nyström approximations is largely determined
by whether the selected columns are informative, so a better
column selection algorithm makes the Nyström approximations
more accurate. In the previous work much attention has been paid
to the relative-error column selection algorithms [2, 4, 6, 10, 11],
among which the uniform sampling [10] and adaptive sampling [4]
are the most widely used ones. The following lemma is the
strongest theoretical result for the Nyström methods [28].

LEMMA 1. Given an m×m symmetric matrix K and a target
rank k, by selecting c = O(kε−2) columns of K to form C ∈
Rm×c using the adaptive sampling based algorithm of [28], the
following inequality holds:

E
∥∥K− K̃mod

c

∥∥
F
≤ (1 + ε)

∥∥K−Kk

∥∥
F
,
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where Kk denotes the top k truncated SVD approximation of K.
The algorithm takes time O(mc2 + mk3ε−2/3) + Tmultiply(m

2c)
and space O(mc) in computing C and U of the modified Nyström
approximation.

Lemma 1 indicates that by selecting c = O(kε−2) columns
of K, the modified Nyström approximation achieves comparable
accuracy as the rank k truncated SVD. When the spectrum of K
decays fast, the approximation generated by the truncated SVD is
highly accurate, and so is the modified Nyström approximation.
Otherwise, if the bottom m − k singular values (i.e. eigenvalues)
of K are large, then ‖K−Kk‖F is large, and so is ‖K− K̃mod

c ‖F .
This work is closely related to the matrix ridge approximation

(MRA) [34], which improves approximation accuracy by pre-
serving the eigenvalues both large and small. When the bottom
eigenvalues of K are large, MRA is much more accurate than the
truncated SVD and the Nyström method [27, 34]. However, MRA
is solved by iterative algorithms and is thus not pass-efficient and
memory-efficient, it is thus limited to medium-scale data problems.
Inspired by MRA, we propose a kernel approximation model which
inherits the efficiency of the Nyström method and is effective when
the bottom eigenvalues are large.

4. THE SS-NYSTRÖM APPROXIMATION
In the first subsection we formulate and justify our SS-Nyström

method. In the second subsection we discuss how to apply SS-
Nyström to speedup Gaussian process regression, kernel SVM, and
kernel ridge regression problems.

4.1 Problem Formulation
Given a target rank k (≤ c � m), the SS-Nyström approxima-

tion of K is defined as

K̃ss
c = C̄ŪC̄T + δIm. (1)

Here δ ≥ 0 is called the spectral shifting term and C̄ŪC̄T is
the rank c modified Nyström approximation of K̄ = K − δIm.
Notice that since K̄ is symmetric but possibly not SPSD, the c× c
intersection matrix Ū is also in general indefinite. Later we will
see that the term δIm has a direct effect on the spectrum of K,
that is why we call our method the modified Nyström by spectrum
shifting.

Now we consider how to choose δ. It follows from the definition
directly that the approximation error is K− K̃ss

c = K̄− C̄ŪC̄T ;
Lemma 1 indicates that by selecting sufficiently many columns of
K̄ to construct C̄ and Ū, it holds in expectation that

E
∥∥K− K̃ss

c

∥∥ = E
∥∥K̄− C̄ŪC̄T

∥∥ ≤ (1 + ε)
∥∥K̄− K̄k

∥∥
F
.

Apparently, for fixed k, the smaller the error ‖K̄ − K̄k‖F is, the
tighter error bound the SS-Nyström has; if ‖K̄ − K̄k‖F ≤ ‖K −
Kk‖F , then SS-Nyström has a better error bound than the modified
Nyström. Therefore, to make the error bound as strong as possible,
we formulate the following optimization problem to compute δ:

min
δ≥0

∥∥K̄− K̄k

∥∥2

F
; s.t. K̄ = K− δIm.

However, since K̄ is in general indefinite, it needs all of the
eigenvalues of K to solve the problem exactly. Since computing
the full eigenvalue decomposition is expensive, we attempt to relax
the problem. Considering that

∥∥K̄− K̄k

∥∥2

F
= min

|J |=m−k

∑
j∈J

(
σj(K)− δ

)2
≤

m∑
j=k+1

(
σj(K)− δ

)2
, (2)

we seek to minimize the upper bound of ‖K̄ − K̄k‖2F to compute
δ, leading to the solution

δopt =
1

m− k

m∑
j=k+1

σj(K) =
1

m− k

(
tr(K)−

k∑
j=1

σj(K)

)
. (3)

If we choose δ = 0, then SS-Nyström degenerates to the modified
Nyström method. The following theorem indicates that the SS-
Nyström with any δ ∈ (0, δopt] has a stronger relative-error bound
than the modified Nyström method.

THEOREM 2. Give an m × m SPSD matrix K, we let K̄ =
K− δIm and δopt be defined in (3). Then for any δ ∈ (0, δopt], the
following inequality holds:∥∥K̄− K̄k

∥∥2

F
≤
∥∥K−Kk

∥∥2

F
.

We give an example in Figure 1 to illustrate why SS-Nyström
is useful. From the plot of the eigenvalues we can see that the
“tail” of the eigenvalues becomes thinner after the spectral shifting.
Specifically, ‖K − Kk‖2F = 0.52 and ‖K̄ − K̄k‖2F ≤ 0.24.
When the same number of columns are selected to construct the
SS-Nyström or the modified Nyström approximations, SS-Nyström
has much tighter error bound because ‖K̄−K̄k‖2F is much smaller
than ‖K−Kk‖2F .

4.2 Applications to Kernel Methods
We discuss in this section how to speed up matrix inverse and

eigenvalue decomposition using the Nyström methods.Many kernel
methods will become scalable if the matrix inverse and eigenvalue
decomposition can be efficiently solved.

• Gaussian process regression [30], least squares SVM [25],
and kernel ridge regression [21] all require computing this
kind of linear system:

(K + αIm)b = y, (4)

which amounts to the matrix inverse problem b = (K +
αIm)−1y. Here α is a constant.

• Spectral clustering [7, 17], kernel PCA [32], and many
manifold learning [33, 26] need to perform the truncated
eigenvalue decomposition; the sampling algorithm of deter-
minantal point processes [13, 1] performs the full eigenvalue
decomposition.

Let K ∈ Rm×m be the kernel matrix, and let the SS-Nyström
approximation of K be defined by

K̃ss
c = C̄ŪC̄T + δIm.

We show that when K is replaced by K̃ss
c , the aforementioned linear

system and eigenvalue decomposition can be efficiently solved.
When using K̃nys

c or K̃mod
c to replace K, one can still use the results

by setting δ = 0.
We first show how to approximately compute b = (K +

αIm)−1y. Let Ū = ZΛZT be the condensed eigenvalue
decomposition of the intersection matrix of SS-Nyström, where
Z ∈ Rc×ρ, Λ ∈ Rρ×ρ, and ρ = rank(Ū) ≤ c. We expand
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(a) Before spectral shifting.
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(b) After spectral shifting.

Figure 1: Toy data: 100 × 100 SPSD matrix whose the t-th
eigenvalue is 1.05−t. We set m = 100, k = 30, and thus δopt =
0.064. We plot the eigenvalues of K in Figure 1(a) and K̄ =
K− δoptI100 in Figure 1(b).

(K̃ss
c + αIm)−1 by the Sherman-Morrison-Woodbury formula and

obtain(
K̃ss
c + αIm

)−1
=
(
C̄ZΛZT C̄T + τIm

)−1

= τ−1Im − τ−1C̄Z
(
τΛ−1 + ZT C̄T C̄Z

)−1
ZT C̄T ,

where τ = δ+α. In this way the linear system (4) can be computed
in only O(mc2) time and O(mc) space.

Now we show how to approximately compute the eigenvalue
decomposition of K. We let C̄ = UC̄ΣC̄VC̄ be the condensed
SVD of C̄. Suppose ρ = rank(C̄), we let

S = ΣC̄VC̄ŪVT
C̄ΣT

C̄ ∈ Rρ×ρ,

and we write the eigenvalue decomposition of S as S = USΛSUT
S .

Now we can write the eigenvalue decomposition of K̃ss
c as

K̃ss
c = (UCUS)ΛS(UCUS)T + δIm

= (UCUS)(ΛS + δIρ)(UCUS)T + U⊥(δIm)UT
⊥.

Here U⊥ ∈ Rm×(m−ρ) is a column orthogonal matrix orthogonal
to (UCUS).

5. THEORETICAL ANALYSIS
We provide theoretical analysis for the SS-Nyström method in

Theorem 3, which shows that SS-Nyström has a much tighter error
bound than the modified Nyström method. We also demonstrate in
Example 1 that in some cases the SS-Nyström method can be better
than any other low-rank matrix approximation methods.

THEOREM 3. Suppose there is a column selection algorithm
Acol such that for anym×m symmetric matrix S and target rank k
(� m), by selecting c ≥ C(m, k, ε) columns of S using algorithm
Acol, the modified Nyström method attains the error bound∥∥S− S̃mod

c

∥∥2

F
≤ (1 + ε)

∥∥S− Sk
∥∥2

F
.

Then for any m ×m SPSD matrix K, we compute δopt according
to (3) and compute K̄ = K − δoptIm. By using Acol to select c ≥
C(m, k, ε) columns of K̄, the SS-Nyström defined in (1) attains the
error bound∥∥K− K̃ss

c

∥∥2

F
≤ (1 + ε)

(∥∥K−Kk

∥∥2

F
−
[∑m

i=k+1 λi(K)
]2

m− k

)
.

If the columns of K̄ are selected by the adaptive sampling based
algorithm of [28], which satisfies the assumption in Theorem 3 and
is the best practical algorithm for the modified Nyström method,
then the error bound incurred by SS-Nyström is given in the
following corollary.

COROLLARY 4. Suppose we are given an SPSD matrix K. By
sampling c = O(kε−2) columns of K̄ using the adaptive sampling
based algorithm of [28], SS-Nyström attains the following error
bound:

E
∥∥K− K̃ss

c

∥∥2

F
≤ (1 + ε)

(
‖K−Kk‖2F −

[∑m
i=k+1 λi(K)

]2
m− k

)
.

Recall from Lemma 1 that the best known error bound of the
modified Nyström method is

E
∥∥K− K̃mod

c

∥∥2

F
≤ (1 + ε)

∥∥K−Kk

∥∥2

F
,

where c = O(kε−2) columns are selected from K. When the
bottom eigenvalues λk+1(K), · · · , λm(K) are large, we can see
from Lemma 1 and Corollary 4 that the error bound of SS-Nyström
is much better than that of the modified Nyström method. Here we
give an example to demonstrate the superiority of SS-Nyström over
the the standard/modified Nyström methods and even the truncated
SVD of the same scale.

EXAMPLE 1. Let K be an m × m SPSD matrix such that
λ1(K) ≥ · · · ≥ λk(K) > θ = λk+1(K) = · · · = λm(K) > 0.
By sampling c = O(k) columns by the adaptive sampling based
algorithm of [28], we have that∥∥K− K̃ss

c

∥∥2

F
= 0,

and that

(m− c)θ2 =
∥∥K−Kc

∥∥2

F

≤
∥∥K− K̃mod

c

∥∥2

F
≤
∥∥K− K̃nys

c

∥∥2

F
.

In this example SS-Nyström is far better than the other approxima-
tion methods if we set θ a large constant.

6. EFFICIENT ALGORITHM
Notice that computing the spectral shifting term δ in (1) accord-

ing to (3) requires the truncated SVD which costs time O(m2k)
and spaceO(m2). This can be accelerated by computing the top-k
singular values approximately using random projection techniques
[2, 12]. We depict the whole algorithm for computing SS-Nyström
using random projections in Algorithm 1. The performance of the
approximation is analyzed in the following theorem.
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Algorithm 1 The Modified Nyström by Spectral Shifting.
1: Input: an m × m SPSD matrix K, a target rank k, the

oversampling parameter l.
2: // compute δopt approximately
3: Ω←− m× l standard Gaussian matrix;
4: Q←− the l orthonormal basis of Y = KΩ ∈ Rm×l;
5: s←− sum of the top k singular values of A = QTK ∈ Rl×m;
6: δ̃ = 1

m−k

(
tr(K)− s

)
≈ δopt;

7: // spectral shifting
8: K̄← K− δ̃Im ∈ Rm×m;
9: // compute the modified Nyström approximation for K̄

10: C̄ ←− c columns of K̄ selected by some column sampling
algorithm;

11: Ū←− C̄†K̄(C̄†)T ∈ Rc×c;
12: return the SS-Nyström approximation K̃ss

c = C̄ŪC̄T + δ̃Im.

THEOREM 5. Let δopt be defined in (3) and δ̃, k, l,m be defined
in Algorithm 1. The following inequality holds in expectation:

E
[∣∣δopt − δ̃

∣∣ / δopt] ≤ k/
√
l,

where the expectation is taken w.r.t. the Gaussian random matrix
Ω in Algorithm 1. Lines 2–6 in Algorithm 1 compute δ̃ in time
O(ml2) + Tmultiply(m

2l) and space O(ml).

By using Algorithm 1 to compute δopt approximately, it costs
only O(ml2) + Tmultiply(m

2l) more time to compute the SS-
Nyström approximation than the modified Nyström approximation.
Our experiments show that a small l (say, l = 4k) is sufficient
for obtaining a highly accurate approximation to δopt, no matter
whether the spectrum of K decays fast or slow. Since it costs
O(mc2) + Tmultiply(m

2c) time to compute the modified Nyström
and c can be set as O(kε−2), if we set l = 4k, then the time
complexity for computing SS-Nyström is the same as computing
the modified Nyström.

7. EXPERIMENTS
We conduct experiments on several real-world datasets to evalu-

ate the method and algorithm proposed in this paper. In Section 7.1
we describe the setup of the experiments. In Section 7.2 we
evaluate the fast approximation of δopt proposed in Section 6. In
Section 7.3 we compare SS-Nyström with the standard/modified
Nyström methods on several middle-size datasets. In Section 7.4
we compare the methods on a large-scale dataset where the kernel
matrix does not fit in RAM.

7.1 The Setup
We perform experiments on several datasets released by UCI [8]

and Statlog [19]. We obtain the data collected on the LIBSVM
website1 where the data are scaled to [0,1]. We summarize the
datasets in Table 1.

For each dataset, we generate a radial basis function (RBF)
kernel Kα defined by

kαij = exp
(
− 1

2α
‖xi − xj‖22

)
and a sparse RBF kernel Kα,ν,C [9] defined by

kα,ν,Cij =

[(
1− ‖xi − xj‖2

C

)ν]
+

· exp

(
− ‖xi − xj‖22

2α

)
.

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

Here x1, · · · ,xm are the data instances, α > 0 is the scaling
parameter, C > 0 is the cutting-off point, d is the number of
attributes, ν > (d + 1)/2, and [z]+ , max{z, 0}. The larger the
scaling parameter α is, the faster the spectrum of the kernel decays.
For the sparse RBF kernel, following [10], we fix ν = d(d+ 1)/2e
and C = 3α.

We implement all the algorithms in MATLAB and run the
algorithms on a workstation with Intel Xeon 2.40GHz CPUs, 24GB
RAM, and 64bit Windows Server 2008 system. To compare the
running time, we set MATLAB in single thread mode by the
command “maxNumCompThreads(1)”.

7.2 Performance of the Approximation to δopt

We evaluate the accuracy of the approximation to δopt (Lines 2–6
in Algorithm 1) proposed in Theorem 5. We generate RBF kernel
matrices of the listed datasets, where we set the scaling parameter
α = 0.1 or α = 1. We use the error ratio |δopt− δ̃|/δopt to evaluate
the approximation performance. We repeat the experiments 20
times and plot the average error ratio versus l/k in Figure 2. Here
δ̃, l, and k are defined in Theorem 5. We can see from Figure 2
that the approximation to δopt is of very high quality: when l = 4k,
the error ratios are less than 0.03 in all cases. So we set l = 4k in
all of the subsequent kernel approximation experiments in order to
obtain a low over-sampling rate with a high accuracy at the same
time.

7.3 Performance of Kernel Approximation
We evaluate the kernel approximation accuracy of SS-Nyström

mainly in comparison with the standard/modified Nyström meth-
ods. In this paper our attention is mainly focused on kernel matrices
whose spectrum decay slowly, so we set the scaling parameter α a
small value. Otherwise if α is large, the bottom eigenvalues will
be very small, and consequently the spectral shifting parameter δopt

will be so small that there is no significant difference between SS-
Nyström and the modified Nyström. Specifically, we set k = 50
and α = 0.2 for the dense RBF kernels and α = 2 for the
sparse RBF kernels. We use Algorithm 1 to compute the SS-
Nyström approximation, in which we set l = 4k. For each of
the standard/modified/SS Nyström methods, we use two algorithms
to select columns: the uniform sampling algorithm [10] and the
adaptive sampling algorithm [28].

We report the approximation accuracy and running time of
each algorithm for each method. The approximation accuracy is
evaluated by

Approximation Error = ‖K− K̃‖F /‖K‖F ,

where K̃ is the approximation generated by each method. Every
time when we do column sampling, we run each sampling al-
gorithm 10 times and report the minimal approximation error of
the 10 repeats since the error bound of each method is actually
guaranteed with expectations and we can get a quite accurate
approximation within 10 repeats according to [28]. We report the
average elapsed time of the 10 repeat rather than the total elapsed
time because the 10 repeats can be done in parallel on 10 machines.
We depict the approximation errors and the average elapsed time of
the dense RBF kernels in Figures 3 and Figure 4 and those of the
sparse RBF kernels are in Figure 5 and Figure 6. In the figures, we
use c

m
as the X-axis because the compared methods have the same

RAM cost when c and m are fixed.
The results clearly show that our SS-Nyström works significantly

better than the standard/modified Nyström methods when the
spectrum of the kernel matrix decays slowly. As for the running
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Table 1: A summary of the datasets for the Nyström approximation.
Dataset MNIST Letters Wine Quality Satimage Segment DNA German Splice Breast Cancer
#Instance 60, 000 15, 000 4, 898 4, 435 2, 310 2, 000 1, 000 1, 000 683
#Attribute 780 16 12 36 19 180 24 60 10

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

(a) Letters.

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

(b) Wine Quality.

2 4 6 8 10 12
0

1

2

3

4

5
x 10−4

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

(c) Satimage.

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

(d) Segment.

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

(e) DNA.

2 4 6 8 10 12
0

0.005

0.01

0.015

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

(f) German.

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

l/k

Er
ro

r R
at

io

 

 

k = 100
k = 50
k = 20
k = 10

(g) Splice.

2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

l/k

E
rr

or
 R

at
io

 

 

k = 100
k = 50
k = 20
k = 10

2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

l/k

E
rr

or
 R

at
io

 

 

k = 100
k = 50
k = 20
k = 10

(h) Breast Cancer.

Figure 2: The error ratio |δopt − δ̃|/δopt versus l/k. In each subfigure, the left corresponds to the RBF kernel matrix with scaling
parameter α = 0.1, and the right corresponds to α = 1.
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Figure 3: The kernel approximation error incurred by the standard Nyström, modified Nyström, and SS-Nyström on the dense RBF
kernels.
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Figure 4: The elapsed time of the standard Nyström, modified Nyström, and SS-Nyström on the dense RBF kernels.

time, our SS-Nyström is a little slower than the modified Nyström
because SS-Nyström needs to compute δopt approximately by
randomized SVD, which costs time O(mk2) + Tmultiply(m

2k) (as
we set l = 4k). Since it costs time O(mc2) + Tmultiply(m

2c) to
compute the modified Nyström approximation, so our SS-Nyström

should be only constant times slower than the modified Nyström;
this is verified by experiments.

7.4 Large-Scale Experiment
Finally, we compare SS-Nyström with the standard/modified

Nyström methods on a large-scale dataset. We use the MNIST
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Figure 5: The kernel approximation error incurred by the standard Nyström, modified Nyström, and SS-Nyström on the sparse
RBF kernels.
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Figure 6: The elapsed time of the standard Nyström, modified Nyström, and SS-Nyström on the sparse RBF kernels.

[16] dataset which has 60, 000 instance. We generate an RBF
kernel with the scaling parameter α = 5. The kernel matrix of
MNIST has size of 60, 000 × 60, 000 which exceed the RAM of
our workstation. We partition the kernel matrix to 30 blocks of size
60, 000 × 2, 000 and store them in the disk; at each time at most
one block is loaded into the RAM. We only use uniform sampling

to construct the approximations because other sampling methods
are much more expensive, and we set k = c/3 for SS-Nyström.
The standard Nyström method goes one pass through the data,
the modified Nyström method goes two passes, and SS-Nyström
(Algorithm 1) goes four passes. We report the approximation error
(the minimum of 10 repeats) in Figure 7. We can see that the error
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Figure 7: The kernel approximation error incurred by the
standard Nyström, modified Nyström, and SS-Nyström on the
MNIST dataset.

incurred by SS-Nyström is lower than that of the standard/modified
Nyström methods. This set of experiments demonstrates that our
proposed SS-Nyström method is still feasible for large-scale data
that do not fit in RAM.

8. CONCLUSIONS
The Nyström method is an important kernel approximation

method for enabling large-scale machine learning algorithms. In
this paper we have proposed the SS-Nyström method which is a
variant of the Nyström method and can speedup many kernel meth-
ods in the same way as the standard/modified Nyström methods.
We have shown that SS-Nyström has a much stronger error bound
than the standard/modified Nyström methods. Especially, when the
bottom eigenvalues of a kernel matrix are not sufficiently small,
the approximation accuracy of the standard/modified Nyström
method or even the truncated SVD is unsatisfactory, while our
SS-Nyström can still generate approximations of high accuracy.
We have also devised an algorithm for computing SS-Nyström
efficiently. Finally, the experiments have further demonstrated the
effectiveness and efficiency of our SS-Nyström method.
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APPENDIX
A. PROOF OF THEOREMS

We prove the three theorems of this paper respectively in the
following subsections.

A.1 Proof of Theorem 2
PROOF. Since (2) is in convex and δopt is the minimizer of (2),

then for any δ ∈ (0, δopt], it holds that
m∑

j=k+1

(
σj(K)− δ

)2 ≤ m∑
j=k+1

(
σj(K)− 0

)2
=
∥∥K−Kk

∥∥2

F
.

Then the theorem follows by the inequality (2) that any δ in the
given interval can result in a smaller error.

A.2 Proof of Theorem 3

PROOF. The error incurred by SS-Nyström is∥∥K− K̃ss
c

∥∥2

F
=
∥∥(K̄ + δoptIm

)
−
(
C̄ŪC̄T + δoptIm

)∥∥2

F

=
∥∥K̄− C̄ŪC̄T

∥∥2

F
≤ (1 + ε)

∥∥K̄− K̄k

∥∥2

F

= (1 + ε)

m∑
i=k+1

σ2
i

(
K̄
)

= (1 + ε)

m∑
i=k+1

λi
(
K̄2).

Here the inequality follows from the property of the column
selection algorithm Acol. The i-th largest eigenvalue of K̄ is
λi(K) − δopt, so the m eigenvalues of K̄2 are all in the set
{(λi(K) − δopt)2}mi=1. The sum of the least m − k of the m
eigenvalues of K̄2 must be less than or equal to the sum of any
m− k of the eigenvalues, thus we have

m∑
i=k+1

λi
(
K̄2) ≤ m∑

i=k+1

(
λi(K)− δopt

)2

=

m∑
i=k+1

λ2
i (K)− 2

m∑
i=k+1

δoptλi(K) + (m− k)(δopt)2

= ‖K−Kk‖2F −
1

m− k

[ m∑
i=k+1

λi(K)

]2

,

by which the theorem follows.

A.3 Proof of Theorem 5

PROOF. Let K̃ = Q(QTK)k, where Q is defined in Line 4 in
Algorithm 1. It was shown in [2] that

E‖K− K̃‖2F ≤ (1 + k/l) ‖K−Kk‖2F , (5)

where the expectation is taken w.r.t. the random Gaussian matrix
Ω.

It follows from Lemma 6 that

‖σK − σK̃‖
2
2 ≤ ‖K− K̃‖2F ,

where σK and σK̃ contain the singular values in a descending
order. Since K̃ has a rank at most k, the k + 1 to n entries of
σK̃ are zero. We split σK and σK̃ into vectors of length k and
m− k:

σK =

[
σK,k

σK,−k

]
and σK̃ =

[
σK̃,k

0

]
and thus

‖σK,k − σK̃,k‖
2
2 + ‖σK,−k‖22 ≤ ‖K− K̃‖2F . (6)

Since ‖σK,−k‖22 = ‖K−Kk‖2F , it follows from (5) and (6) that

E‖σK,k − σK̃,k‖
2
2 ≤

k

l
‖σK,−k‖22.

Since ‖x‖2 ≤ ‖x‖1 ≤
√
k‖x‖2 for any x ∈ Rk, we have that

E
∥∥σK,k − σK̃,k

∥∥
1
≤ k√

l

∥∥σK,−k
∥∥

1
.
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Then it follows from (3) and Line 6 in Algorithm 1 that

E
∣∣δopt − δ̃

∣∣ = E

[
1

m− k

∣∣∣∣ k∑
i=1

σi(K)−
k∑
i=1

σi(K̃)

∣∣∣∣
]

≤ 1

m− k E
∥∥σK,k − σK̃,k

∥∥
1

(7)

≤ k√
l

1

m− k
∥∥σK,−k

∥∥
1

=
k√
l
δopt.

The following lemma is used to prove the theorem. The lemma
is easy to prove, so here we do not show the detailed proof.

LEMMA 6. Let A and B be square matrices and σA and σB

contain the singular values in a descending order. Then we have
that

‖σA − σB‖22 ≤ ‖A−B‖2F .
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