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ABSTRACT
Traditional data mining techniques are designed to model a
single type of heterogeneity, such as multi-task learning for
modeling task heterogeneity, multi-view learning for model-
ing view heterogeneity, etc. Recently, a variety of real appli-
cations emerged, which exhibit dual heterogeneity, namely
both task heterogeneity and view heterogeneity. Examples
include insider threat detection across multiple organiza-
tions, web image classification in different domains, etc. Ex-
isting methods for addressing such problems typically as-
sume that multiple tasks are equally related and multiple
views are equally consistent, which limits their application
in complex settings with varying task relatedness and view
consistency. In this paper, we advance state-of-the-art tech-
niques by adaptively modeling task relatedness and view
consistency via a nonparametric Bayes model: we model
task relatedness using normal penalty with sparse covari-
ances, and view consistency using matrix Dirichlet process.
Based on this model, we propose the NOBLE algorithm
using an efficient Gibbs sampler. Experimental results on
multiple real data sets demonstrate the effectiveness of the
proposed algorithm.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: [nonparametric statis-
tics]; I.5.1 [Pattern Recognition]: Models—statistical

Keywords
Nonparametric Bayes modeling; multi-task multi-view; Gibbs
sampler.

1. INTRODUCTION
Nowadays, we are facing large amount of data in a va-

riety of areas, such as social media, manufacturing, traffic
analytics, etc. A common challenge in these areas is how
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to handle multiple types of data heterogeneity. For exam-
ple, in social media, we may have micro-blogs coming from
heterogeneous sources, such as Facebook and Twitter, and
each micro-blog may be characterized by heterogeneous fea-
tures, such as key words, hashtags, number of re-tweets,
number of Facebook likes, etc; in manufacturing, we may
have products from heterogeneous manufacturing lines, and
each product may be characterized by heterogeneous envi-
ronmental variables, such as temperature, pressure, etc; in
traffic analytics, we can collect traffic information from het-
erogeneous geographic locations (e.g., different states), and
for each location, we may have heterogeneous traffic indica-
tors, such as volume, GPS positions, etc.

Recent years have seen growing interest in addressing prob-
lems with multiple types of data heterogeneity [22, 19, 14,
43, 20, 21, 42]. In particular, for problems with dual hetero-
geneity, i.e., both task and view heterogeneity, researchers
have proposed multi-task multi-view learning, or M2TV
learning, to jointly learn in multiple related tasks with over-
lapping, partially overlapping or completely different feature
spaces [22, 43, 21, 42]. Compared with traditional multi-task
learning [12, 46, 11, 38, 30], where the feature space is ho-
mogeneous across different tasks, i.e., a single view, M2TV
learning is able to handle heterogeneous feature spaces; com-
pared with traditional multi-view learning [13, 24, 16, 28, 8],
where the examples come from a homogeneous task, i.e., a
single task, M2TV learning is able to leverage heterogeneous
(related) tasks to improve the learning performance in each
task.

A key question in M2TV learning is how to model the
relatedness among multiple tasks/views. Existing methods
for M2TV learning [22, 43, 21, 42] usually assume that all
the tasks are equally related, and all the views are equally
consistent. Therefore, they mainly focus on exploring vari-
ous types of task relatedness and view consistency. In this
paper, we go one step further, and study: (1) if all the tasks
are equally related and all the views are equally consistent;
(2) to what extent the multiple tasks are related and the
multiple views are consistent. This is motivated by the fact
that in many real applications, it is often not known a priori
the degree of relatedness among multiple tasks and consis-
tency among multiple views. In the adversarial cases where
some tasks are negatively related to the others and some
views are contaminated by noise, simply applying the exist-
ing methods for M2TV learning may even hurt the perfor-
mance. Although in traditional multi-task learning, there
has already been some work accommodating various task

582



relatedness [45, 46, 12, 11], to the best of our knowledge,
our work is the first to study this problem in the context of
M2TV learning.

To this end, motivated by the successful application of
Bayesian hierarchical modeling in multi-task learning and
multi-view learning [19, 3, 5], we propose a nonparametric
Bayes method for M2TV learning. In this method, task
relatedness is modeled via a normal penalty that decom-
poses the full covariance matrix into the Kronecker product,
and view consistency is modeled via a matrix Dirichlet pro-
cess. Furthermore, we design the NOBLE algorithm, which
stands for NOnparametric Bayes LEarning with dual het-
erogeneity. It is based on an efficient Gibbs sampler scalable
to relatively high dimensions. The main contributions of this
paper can be summarized as follows.

1. For the first time, in the context of M2TV learning,
we study problems where multiple tasks may exhibit
different degree of relatedness, and multiple views may
exhibit different degree of consistency;

2. We propose a nonparametric Bayes method for M2TV
learning which adaptively learns various task related-
ness and view consistency;

3. We design the NOBLE algorithm based on an efficient
Gibbs sampler scalable to relatively high dimensions;

4. We compare the performance of our proposed NOBLE
algorithm with state-of-the-art techniques on various
real data sets.

The rest of the paper is organized as follows. In Section
2, we briefly review the related work. The nonparametric
Bayes method for M2TV learning is proposed in Section 3,
followed by the algorithm description of NOBLE in Section
4. Section 5 compares NOBLE with state-of-the-art meth-
ods on real data sets. Finally, we conclude in Section 6.

2. RELATED WORK
In this section, we briefly review the related work in het-

erogeneous learning and Dirichlet process mixture models.

2.1 Heterogeneous Learning
The goal of heterogeneous learning is to leverage multiple

types of heterogeneities (e.g., task heterogeneity, view het-
erogeneity, instance heterogeneity, label heterogeneity, etc)
to improve the performance of predictive modeling. For ex-
ample, in [22, 23, 33, 43, 19, 21, 42], the authors jointly
modeled the task and view heterogeneities; in [41] the au-
thors jointly modeled the view and instance heterogeneities;
in [26], the authors jointly modeled the instance and label
heterogeneities.

For problems with both task and view heterogeneity, the
authors of [22] focused on multiple tasks with completely
different feature spaces, and proposed to construct a sin-
gle prediction model in the shared induced space; the au-
thors of [23] proposed to learn shared predictive structures
on common views from multiple related tasks, and used the
consistency among different views to improve the perfor-
mance; the authors of [43] used co-regularization in each
task to obtain a linear mapping, and used additional regu-
larization functions across different tasks to impose task re-
latedness; the authors of [19] proposed a latent probit model

to jointly learn the domain transforms, and a probit classifier
shared in the common domain; the authors of [42] proposed
a large margin framework to address transfer learning prob-
lems1 with the same set of views in the source and target
domains; the authors of [21] proposed a graph-based frame-
work to model the relationship among multiple tasks/views,
and designed an iterative algorithm IteM2 to find the clas-
sification function. The major difference between our work
and the existing work is the following. Existing methods
assume that all the tasks are equally related and all the
views are equally consistent. Therefore, they mainly focus
on exploring various kinds of task relatedness and view con-
sistency. In our work, we go one step further, and study:
(1) if all the tasks are equally related and all the views are
equally consistent; and (2) to what extent the multiple tasks
are related and the multiple views are consistent.

The problem of varying task relatedness has been stud-
ied in traditional multi-task learning. For example, in [37],
the authors proposed to use bipartite graphs to represent
multi-task learning, and made use of Gaussian process to
model varying task relatedness; in [12], the authors pro-
posed a robust multi-task learning (RMTL) algorithm that
learns multiple tasks simultaneously as well identifies the
irrelevant tasks; in [46], the authors showed the equivalent
relationship between alternating structure optimization and
clustered multi-task learning; etc. However, the above meth-
ods and analysis only apply in the multi-task setting, and it
is not straightforward to extend them to M2TV learning.

In particular, Bayesian modeling has been widely used
in multi-task learning and multi-view learning over the last
decade. Research work dedicated to Bayesian hierarchical
modeling has demonstrated effectiveness and improvement
in performance [19, 3, 5]. The proposed methods have been
successfully applied to different areas, such as information
retrieval [7] and computer vision [30]. Typical approaches
to transfer information among multiple tasks/views include:
sharing hidden nodes in neural networks, placing a common
prior in hierarchical models, sharing a common structure on
the predictor space, and structured regularization in kernel
methods, among others [19, 38, 9, 40, 39].

2.2 Dirichlet Process Mixture Models
In this paper, we propose to use Dirichlet process (DP)

prior to encourage view clustering in the context of M2TV
learning. Before presenting our model, we briefly review DP
mixture models. In a Bayesian mixture model, we assume
that the true density of the response Y can be written as
a mixture of parametric densities, conditioned on a hidden
parameter θ. For example, in a Gaussian mixture, θ corre-
sponds to the mean μ and variance σ2. The marginal prob-
ability of an observation is given by a continuous mixture,
f(y) =

∫
T f(y|θ)P (dθ), where T is the set of all possible

parameters and the prior P is a measure on that space. DP
models uncertainty about the prior density P [17, 2]. If P
is drawn from a Dirichlet process then it can be analytically
integrated out of the conditional distribution of θT given
θ1:(T−1), where θT denotes the T th parameter for observa-
tion yT . Specifically, the random variable θT has a Polya

1Transfer learning is very similar to multi-task learning ex-
cept that in transfer learning, we only care about the learn-
ing performance in the target domain.
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urn distribution [6]:

θT |θ1:(T−1) ∼
1

α+ T − 1

T−1∑
t=1

δθt +
α

α+ T − 1
G0.

The above equation reveals the clustering property of the
joint distribution of θ1:T , where there is a positive probabil-
ity that each θt will take on the value of another θt′ , leading
some of the parameters to share values. This equation also
makes clear the roles of α and G0. The unique values of
θ1:(T−1) are drawn independently from G0; the parameter α
controls how likely θT is to be a newly drawn value from G0

rather than to take one of values from θ1:(T−1). G0 controls
the distribution of a new component.

In a DP mixture, θ is a latent parameter to an observed
data point y [2]: P ∼ DP(αG0), θt ∼ P, yt|θt ∼ f(·|θt). Ex-
amining the posterior distribution of θ1:T given y1:T brings
out its interpretation as an “infinite clustering” model. Be-
cause of the clustering property, observations are grouped
by their shared parameters. Unlike finite clustering mod-
els, however, the number of groups is random and unknown.
Moreover, a new data point can be assigned to a new cluster
that was not previously seen in the data.

However, the DP prior does not allow local clustering
of tasks/views with respect to a subset of the feature vec-
tor without making independence assumptions. Considering
sample s (s = 1, . . . , nt) from task (or view) t (t = 1, . . . , T ),
suppose that the response variable is yts and related feature
vector is xts with dimension np by 1. A common strat-
egy for such problem is to use a hierarchical model of the
form yts ∼ p(xts,f t,φ), where p(x, f ,φ) is the conditional
distribution of y given feature vector x, parameters f and
φ. φ are global parameters and f = (f1, . . . ,fT ) is a vec-
tor of task-specific (or view-specific) coefficients. We could
specify independent DP priors for the coefficients [35, 14]:

ftp
iid∼ Gt, Gt ∼ DP (αj , G0j) for p = 1, . . . , np. This ap-

proach allows differential clustering of the coefficients for
different feature components, however, independence is as-
sumed across the feature components. This is unappealing,
because ftp = ft′p provides information that tasks t and t′

are similar, which should intuitively increase the probability
that ftp = ft′p′ , for p �= p′. Motivated by this desire to
borrow information across related feature components and
tasks simultaneously, [35] propose a matrix stick-breaking
process (MSBP) by assuming

ftp
ind∼ Gtp, G ∼ P ,

where G = {Gtp, p = 1, . . . , np, t = 1, . . . , T} is a matrix of
random probability measures, and P is a probability mea-
sure on (Ω,G), with Ω the space of T ×np matrices with the
(t, p)th element a probability measure on (Xt,Bt). Here, G
is a σ-algebra of subsets of Ω and Bt is a Borel σ-algebra of
subsets of Xt, ftp ∈ Xt. The proposed MSBP allows sepa-
rate clustering and borrowing of information for the different
feature components through

Gtp =

H∑
h=1

{Vtph

∏
l<h

Vtpl}δΘph , Θph
ind∼ G0p,

Vtph = UthWph, Uth
iid∼ Beta(1, α), Wph

iid∼ Beta(1, β).

To provide an intuitive explanation for the above formu-
lation, we first consider the sticks Wph. If Wph is large for

a particular index h∗, then the corresponding parameters
Θph∗ is likely to be shared among multiple tasks. We also
note that this sharing among tasks is encouraged by large
Uth∗ . Since Uth∗ may be large for multiple different tasks t,
this implies that if parameter sharing occurs for one predic-
tor among the multiple tasks, then it is also likely that there
will be sharing for other predictors. We can therefore gen-
eralize the following key properties of MSBP: (i) if a given
parameter for predictor p, Θph∗ , is shared among some of
the tasks, it is more likely to be shared among other tasks;
(ii) if sharing occurs between multiple predictors for a subset
of tasks, then it is more encouraged that sharing will occur
between other predictors within these tasks.

3. NONPARAMETRIC BAYES LEARNING
WITH DUAL HETEROGENEITY

3.1 Notation
Suppose that we have T tasks and V views in total. For

the vth view, there are dv features. For the tth task (t =
1, . . . , T ), there are nt examples and each example can be
represented as xts = [(xts1)

′, . . . , (xtsV )′]′ with label ŷts
(s = 1, . . . , nt), where ()′ denotes vector transpose. xtsv ∈
R

dv denotes the features from the vth view (v = 1, . . . , V )
of the sth example in the tth task, and ŷts is either dis-
crete for classification problems, or real-valued for regres-
sion problems. Notice that if a certain view is missing, the
associated features will all be 0. Therefore, our problem set-
ting is essentially the same as in [21] where some views are
shared by multiple tasks, and some views are task specific.
Without loss of generality, suppose that we know the output
ŷt1, . . . , ŷtmt of the first mt examples, where mt is usually
much smaller than nt. Our goal is to leverage both the label
information from all the related tasks, as well as the consis-
tency among different views of a single task to predict the
output of the remaining nt −mt examples.

3.2 Model Formulation
In our proposed model, we first decompose each task into

multiple single-view models. Each of them generates a pre-
dictor based on the features in the single view, which can
be used to make predictions on future unseen examples.
Here we relax the common assumption in multi-view learn-
ing [8, 29, 34] that different views are conditionally indepen-
dent given the class label. To be specific, for the tth task
(t = 1, . . . , T ), we use a mixture linear regression model for
the estimated output ŷts (s = 1, . . . , nt) by averaging the
prediction results from all single-view models as follows:

ŷts =
V∑

v=1

(xtsv)
′f tv + εts,

where f tv ∈ R
dv is the coefficient vector, and εtsv ∈ R is the

observational error. Based on the above model, we estimate
the task relatedness and the view consistency as follows.

1. Task Relatedness: Here we use a Gaussian process de-
fined on εts to model the task relatedness. To be spe-
cific, we assume that εs = {εts}t=1,...,T ∼ N(0, K), where
K ∈ R

T×T is the kernel matrix of the Gaussian pro-
cess, and it is the key to determining the various task
relatedness. Different from [37], where only a single in-
formation source is used to obtain the kernel function,
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in this paper, we fully leverage the multi-view property
to estimate K in a more reliable way. To be specific, in
order to estimate K, we define a task graph as follows:
the graph consists of T nodes with each node represent-
ing a single task; let B ∈ R

T×T denote the adjacency
matrix of the graph, whose element in the tth row and
t′th column is Btt′ = 1

ntnt′
∑nt

s=1

∑nt′
s′=1

< xts,xt′s′ >,

where t, t′ = 1, . . . , T , and < ·, · > denotes vector inner
product. For this graph, we can compute the Laplacian
Δ = D −B, where D ∈ R

T×T is a diagonal matrix with
each diagonal element equal to the row sum of B. Using
Δ, we obtain K as follows:

K =
[
β(Δ +

1

σ2
I)
]−1

,

where both β and σ2 are positive parameters. In par-
ticular, β controls the overall sharpness of the distri-
bution: large values of β mean that the distribution is
more peaked around its mean. For more flexibility, we
let β ∼ Ga(a, b), which stands for Gamma distribution
with shape parameter a and scale parameter b. It will
be adapted to the data through adjusting the distribu-
tion related parameters a and b. σ2 controls the amount
of regularization. For this parameter, we could use the
following prior σ2 ∼ IG(c, d), which stands for Inverse-
Gamma distribution with shape parameter c and scale
parameter d.

We would like to point out several important aspects of
the proposed Gaussian process. First, the kernel matrix
K, whose elements indicate the similarity among various
tasks, depends on the inverse of the regularized graph
Laplacian Δ. Therefore, the relatedness between two
tasks is global in the sense that it depends on all the
tasks. Second, if we also have unlabeled data in addition
to the labeled training data, all the unlabeled data can be
used to define the adjacency matrix B (since it does not
require label information), thus making it more robust to
noise. Finally, the adjacency matrix B depends on the
features from all the views through xts. It tends to be
more reliable if certain views have been contaminated by
noise.

2. View Consistency: To estimate the various view con-
sistency, we jointly model the coefficient vectors f tv (v =
1, . . . , V ) through:

⎛
⎜⎝

f t1

...
f tV

⎞
⎟⎠ ∼ N

⎛
⎜⎝ 0 ,

⎡
⎢⎣

Ψ11 Ψ12 · · · Ψ1V

...
...

. . .
...

ΨV 1 ΨV 2 · · · ΨV V

⎤
⎥⎦
⎞
⎟⎠

where Ψvv′ ∈ R
dv×dv′
+ denotes the covariance matrix be-

tween the vth and the v′th views. Ψvv′ = Ψv′v.

Furthermore, a Dirichlet Process (DP) prior can be used
here to encourage view cluster. However, without the
conditional independence assumption, the DP prior does
not allow local clustering of views with respect to a subset
of the feature vectors. To address this problem, we extend
the matrix DP prior [15] to define the covariance matrix
Ψvv′ , which encourages cross-view sharing of data. To be
specific, we borrow information by incorporating depen-
dency in the prior distributions for the matrices {Ψvv′}.

We start by assuming for v ≥ v′ ≥ 1,

Ψvv′
ind∼ Fvv′ , F ∼ P ,

Here F = {Fvv′ , V ≥ v ≥ v′ ≥ 1} is a matrix of random
probability measures. Let Ω be the space of symmetric
V × V matrices and F will be a σ-algebra of subsets of
Ω. P is a probability measure on (Ω,F).

Next, our focus is on the specification of P . Assuming
each element in F has a stick-breaking representation,
i.e.,

Fvv′ =

∞∑
h=1

{
Wvv′,h

∏
l<h

(1−Wvv′,l)
}
δΘh ,Θh

ind∼ G, (1)

where W vv′ = {Wvv′,h, h = 1, . . . ,∞}, for V ≥ v ≥
v′ ≥ 1, is an array of random stick-breaking weights.
Θh ∈ R

dv×dv
+ stands for the latent covariance matrix2

that is drawn from the base measure G, which usually
takes the Inverse-Wishart (IW) distribution. Notice that
similar to the usual Dirichlet Process, Ψvv′ equals to Θh

with probability proportional to Wvv′,h
∏

l<h(1−Wvv′,l).

Dependency within dimensions of F will be incorporated
through dependent stick-breaking weights and the com-
mon parametric prior G. For the stick-breaking weights,
we decompose them as follows

Wvv′,h = γvhγv′h, γvh ∼ Beta(1, α), α
ind∼ Ga(1, α0),

where both γvh and γv′h are random variables with the
same Beta distribution, α > 0 is a parameter in the Beta
distribution, and α0 > 0 is the scale parameter in the
Gamma distribution. In this way, we guarantee the sym-
metric property: Wvv′,h = Wv′v,h. Furthermore, accord-
ing to [15], the definition of γvh ensures that

∞∑
h=1

{
Wvv′,h

∏
l<h

(1−Wvv′,l) = 1
}

Therefore, Equation (1) is a valid probability measure.

We use the following example to show the intuition of the
above formulation. Let V = 4, and V1, . . . , V4 stand for
the four different views. Then the probability that two
covariance matrices ΨV1V2 and ΨV1V3 are same can be
computed as follows.

Pr(ΨV1V2 = ΨV1V3) =
1

(α+ 1)(α+ 2) − 1

Furthermore, the conditional probability of these two ma-
trices being the same given that ΨV4V2 = ΨV4V3 can be
computed as follows.

lim
α→0

Pr(ΨV1V2 = ΨV1V3 |ΨV4V2 = ΨV4V3) =
1

α+ 1

From the above equations, we can see that the probability
of ΨV1V2 and ΨV1V3 being the same ranges between 0
and 1, depending on the value of the parameter α. Both
converge to 1 in the limit as α → 0 and to 0 as α → ∞.
We can verify that Pr(ΘV1V2 = ΘV1V3) ≤ Pr(ΘV1V2 =
ΘV1V3 |ΘV4V2 = ΘV4V3). It means given that view 2, 4 and

2For the sake of explanation, we assume that dv is a constant
for v = 1, . . . , V ; otherwise we fill in 0 values to make the
dimensionality of each view equal.
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view 3, 4 are equally correlated in terms of the covariance
matrices, then there will be an increased probability that
view 1, 2 and view 1, 3 are equally correlated.

Finally, for the base measure G of the view covariance
matrix, we consider the following degenerate distribution:

G = πI0 + (1− π)G0, G0 ∼ IW(ν,Ψ0)

where 0 ≤ π ≤ 1, ν is the degrees of freedom of the
Inverse-Wishart distribution, Ψ0 ∈ R

dv×dv
+ is the scale

matrix. When Ψvv′ falls into the I0 cluster, the corre-
sponding covariance matrix will be a zero matrix, and
the nonsignificant f tv will be set to 0.

Figure 1 shows the graphical representation of the pro-
posed model. To generalize, for each example s in the task
t (yst), task relatedness is characterized through K where
β controls the overall sharpness of the distribution and σ2

controls the amount of regularization. On the other hand,
there is a view-specific feature xtsv for the s example in
the tth task and we use f tv to characterize vth view effect
in the tth task. We extend the DP to characterize the co-
variance matrix Ψvv′ in order to cluster the coefficients f tv.
W and α characterize the stick weights; G characterizes
the base measure for DP, which is a degenerate distribution
with probability π to be the null matrix and with probability
1−π to be an Inverse-Wishart distribution G0 with degrees
of freedom ν and scale matrix Ψ0.

Figure 1: Graphical representation for the proposed
model.

4. THE PROPOSED ALGORITHM
In this section, we present the NOBLE algorithm, which

stands for NOnparametric Bayes LEarning with dual het-
erogeneity. It is based on an efficient Gibbs algorithm that
is scalable to relatively high dimensions. For simplicity, we
assume that nt = S in the following. In particular, each
iteration of the Gibbs sampler draws samples through the
following sequence. The joint likelihood of the samples is as
follows:

p(y|X ,f ,K) = (2π)−
TS
2 |IS ⊗K|−

1
2

· exp
{

− 1

2

(
y −Xf

)′(
IS ⊗K

)−1(
y −Xf

)}
(2)

where

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11
...

y1S
...

y21
...

y2S
...

yTS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11

...
x1S

x21

...
x2S

xT1

...
xTS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with xts =

⎛
⎜⎝

xts1

...
xtsV

⎞
⎟⎠ , and f =

⎛
⎜⎝

f1

...
fT

⎞
⎟⎠ ,f t =

⎛
⎜⎝

f t1

...
f tV

⎞
⎟⎠ .

The posterior distribution of f tv is proportional to com-
bining the joint likelihood and the prior in Equation (1).
Therefore we can update f tv jointly from the following con-
jugate mulvariate normal distribution:

p(f | · · · ) ∼ MN

((
X(K−1 ⊗ IS)X + IT ⊗Ψ

)−1
X ′(K−1 ⊗ IS ŷ),

(
X(K−1 ⊗ IS)X + IT ⊗Ψ

)−1
)
, (3)

Similarly, by combining the joint likelihood as in Equation
(2) and the prior Ga(a, b), β is updated directly through the
following Gamma distribution p(β| · · · ):

Ga

(
a+

1

2
TV, b+

1

2
(ŷ −Xf)′

(
(Δ +

1

σ2
IT )⊗ IS

)
(ŷ −Xf)

)
. (4)

In each iteration, given the prior IG(c, d), σ2 is drawn
through:

p(σ2| · · · ) ∼ IG

(
c+

1

2
TV, d+

1

2
β(ŷ −Xf)′(ŷ −Xf)

)
. (5)

Since the DP prior implies that D is almost surely dis-
crete, the prior will automatically group the m coefficient-
specific hyperparameters Ψvv′ into L clusters Ψ∗

l , where
L ≤ 1

2
V (V − 1). One of these clusters will most likely cor-

respond to Ψ∗
l = Idv×dv , and the other clusters will not be

0. We denote Jvv′ = l if the (v, v′)th covariance matrix is
clustered in the lth latent cluster. Our proposed prior can
be seen more clearly through the equivalent stick breaking
form Jvv′

∑∞
l=1 Wlδl with

Ψ∗
l∼

{
πδ0, for l = 1
(1− π)IW(ν,Ψ0), for l > 1.

Extending the exact block Gibbs sampler of [36], the joint
prior distributions of Jvv′ and a latent variable ζvv′ can be
written as

f(Jvv′ , ζvv′ |W ) =
∑

l:Wl>ζvv′

δl(·) =
∞∑
l=1

1(ζvv′ < Wl)δl(·).

We implement the following exact block Gibbs sampler steps:

(1). Sample ζvv′ ∼ uniform(0,WJvv′ ), for v ≥ v′ ≥ 1 with
Wl = γl

∏
h<l(1− γh).
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Sample the stick-breaking random variables γl from γl ∼
beta

(
1 +ml, α+

∑L
s=l+1ms

)
, for l = 1, . . . , L with L

the minimum value satisfying W1 + . . . + WL > 1 −
min{ζvv′}. ml is the number of components clustered
into the lth cluster.

Sample Ψ∗
l for l = 1, . . . , L by

(1) For l = 1,Ψ∗
1 = 0.

(2) For 2 ≤ l ≤ L, since (f tv|f t(−v)) ∝ exp
{
− 1

2
f tv

′Ψvv′f tv−
f tv

∑
v∼v′ Ψvv′f tv′

}
, Ψ∗

l can be drawn directly from:

Ψ∗
l ∼ IW

(
ml + ν + 1,Ψ0 +

∑
t

∑
Jvv′=l f tvf tv′

)
.

(2). Sample Jvv′ for v ≥ v′ ≥ 1 from the multinomial con-
ditional with

Pr(Jvv′ = l|·) ∝ 1(ζvv′ < πl)
∏
t

exp{−f tvΨ
∗
l f tv′}.

After updating γh, with the relationship γvh ∼ beta(1, α), α
ind∼

Ga(1, α0), we sample α through

p(α| · · · ) ∼ E
(
α0 −

∑
v,h

log(1− γvh)

)
. (6)

where E(x;λ) = λ exp(−λx) is the exponential density.
Based on the above discussion, the proposed NOBLE al-

gorithm is summarized in Algorithm 1.

Algorithm 1 NOBLE Algorithm

Require: yts, xtsv, INtsv, K t = 1, . . . , T , s = 1, . . . , S,
v = 1, . . . , V

Ensure: the initial value for f tv, β, σ
2, Ψvv′ and α

1: for i = 1 to Total number of iterations do
2: for t = 1 to T do
3: for v, v′ = 1 to V do
4: Update f through the multivariate normal distri-

bution in Equation (3);
5: Update β through the Gamma distribution as in

Equation (4);
6: Draw σ2 directly from Inverse Gamma distribu-

tion in Equation (5);
7: Update DP related parameters using exact block

Gibbs sampler as described in the above Step 4;
8: Update α using truncated exponential distribu-

tion as in equation (6).
9: end for
10: end for
11: end for

5. EXPERIMENTS
In this section, we present some experimental results show-

ing the effectiveness of the proposed NOBLE algorithm and
compare against the following algorithms3:

1. regMVMT [44]: an inductive multi-view learning algo-
rithm for multiple related tasks through a co-regularized
framework.

3We did not compare with IteM2 [21] since in our experi-
ments, the features are not guaranteed to be non-negative.
As shown in [43], the performance of IteM2 is not satisfac-
tory in this case.

2. SMTL [27]: a Bayesian semi-supervised learning frame-
work for problems with multiple tasks using unlabeled
data based on Markov random walk.

3. CASO [10]: a multi-task learning algorithm improving
the ASO algorithm [1] through a novel regularizer.

For all 4 algorithms, we repeat the experiments 10 times
and report the average classification error4. For regMVMT,
the parameters are optimized using cross-validation. For
SMTL and CASO, the parameters are set according to [27]
and [10] respectively. For the proposed NOBLE algorithm,
we simply set non-informative hyperparameters as α0 = 1,
π = 1/2, ν = 2np+1 and Ψ0 = Inp without prior knowledge
about the correlation among the tasks and the relative im-
portance of each view in the predictive model of each task.
We also performed convergence diagnostics, such as trace
plots and Geweke’s convergence diagnostic for randomly se-
lected parameters. No signs of adverse mixing have been
found. All results are based on 3,000 Gibbs sampling itera-
tions after a burn-in period of 2,000.

In our experiments, to generate multiple views from the
original feature space, we adopt a similar strategy as in [25],
and apply different linear/nonlinear dimensionality reduc-
tion methods, including ICA with different functions (pow3

or order 3 polynomial kernel, Tanh, Gaussian, skew) [18],
PCA based (PCA, Prob PCA [31], and kernel PCA), MDS,
diffusion maps, Laplacian, and Laplacian Eigenmaps [32],
resulting in 11 views total.
20 newsgroups data set. We first consider the 20 news-
groups data set [4]. This data set consists of articles from 20
different newsgroups forming a hierarchical structure. Here
we focus on the “comp” and “rec” categories (similar experi-
mental results are observed for the other categories and thus
omitted for brevity), and create 4 tasks from them. To be
specific, for each task, we pick one subcategory from “comp”
and“rec”respectively and randomly sample 100 articles from
each subcategory to form 2 classes, each described by 53975
features.

To test the capability of our proposed algorithm to re-
cover data sets with different sparsity, we experiment on
data sets with various numbers of labeled examples: vary-
ing from randomly selecting 20 to 180 observed samples and
use the remaining as test set.

Figure 2 shows the comparison results of the 4 algorithms
with varying training set size. Each subfigure shows the av-
erage classification error for a single task. From these figures,
we can see that the performance of NOBLE dominates the
other methods, and the margin becomes more significant as
the number of labeled examples increases. This is because
NOBLE is able to learn from data: (1) if all the tasks/views
are related, and (2) how much they are related to each other.

Figure 3 shows that by using the DP prior, we are able to
partition the 11 views into 2 groups roughly: one consists of
7 views generated using ICA and PCA based dimensionality
reduction methods, and the other consists of 4 views gener-
ated using MDS, diffusion maps, Laplacian, and Laplacian
Eigenmaps. In each iteration of the algorithm, there is a
positive probability that ΨViVj = ΨViVj′ for every j �= j′.

Two views j �= j′ are said to be clustered in terms of shar-
ing covariance matrices if and only if ΨViVj = ΨViVj′ and
Figure 3 is the average over the iterations. The clustering

4For the sake of clarity, we did not display the error bars.
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Figure 2: Comparison results on the 20 Newsgroups data.

of the views encoded by the ties among the covariance ma-
trices will simply be referred to as the “clustering of the
views”, although it should be understood that it is the data
themselves that are clustered. The fact that our model in-
duces ties among the views is the means by which it borrows
strength across objects for estimation.
WebKB data set. Next we test the performance of NO-
BLE onWebKB data set, where the goal is to classify whether
a web page is course related or not [8]. We also create 4 tasks
from this data set, each including 200 web pages collected
from the same university.

View Clustering in 20 Newsgroups Data
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Figure 3: NOBLE clustering probability for 11
views of the 20 newsgroups data.

Figure 4 shows the comparison results with varying train-
ing set size. Similarly as before, we can see that the perfor-
mance of NOBLE is better than the other 3 competitors in
each of the 4 tasks.
Email spam data set. Finally, we compare on the email
spam data set from ECML 2006 discovery challenge.5 The
goal is to classify if each email is spam or ham. In prob-
lem A, There are 3 users with 2,500 emails each, which are
considered as 3 related tasks.

Comparison results are shown in Figure 5. On this data
set, we also see improved performance of NOBLE over the
competitors except for Task 1: when the training set size
is small, NOBLE and CASO are pretty close to each other;
when the training set size is large, the performance of NO-
BLE is consistently improved whereas the performance of
CASO fluctuates. We notice that throughout the exten-

5http://www.ecmlpkdd2006.org/challenge.html.

sive experiments, regMVMT cannot perform well when the
training sample size is small.

We also test the computation time per iteration in NO-
BLE as we vary the training set size, which is shown in
Figure 6. From this figure, we can see that NOBLE scales
linearly with respect to the total number of labeled exam-
ples, thus it is scalable to relatively large data sets.

6. CONCLUSION
In this paper, we propose a nonparametric Bayes model

for addressing problems with dual-heterogeneity, i.e., task
heterogeneity (multiple related tasks) and view heterogene-
ity (multiple views). Compared with state-of-the-art tech-
niques which assume that the tasks are equally related and
the views are equally consistent, we aim at answering the fol-
lowing two questions: (1) Are all the tasks equally related
and all the views equally consistent? (2) To what extent
are the tasks related to each other, and the views consistent
with each other? To this end, we make use of the normal
penalty with sparse inverse covariances and the matrix DP
prior to adaptively learn the task relatedness and the view
consistency. Furthermore, we propose the NOBLE algo-
rithm based on an efficient Gibbs sampler, which constructs
predictors for all the tasks leveraging both the multi-task
and multi-view nature. Experimental results on several real
data sets show that NOBLE outperforms existing methods
in M2TV learning.
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